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THE PROBLEM

Regularity results for local bounded minimizers of integral
functionals of the type

F(v,Ω) =

∫
Ω

f (x,Dv) dx Ω ⊂ Rn

in case
• unconstrained problem
• constrained problem

In both cases the integrand f
I ξ → f (x, ξ) p-growth

I can be discontinuous with respect to the x-variable.
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ASSUMPTIONS

Let us consider
F(v,Ω) =

∫
Ω

f (x,Dv) dx (F)

Ω open bounded set in Rn, n > 2

• v : Ω→ RN N ≥ 2

• f : Ω× Rn×N → R is a Carathéodory mapping satisfying



ASSUMPTIONS W.R.T ξ-VARIABLE

there exist p ≥ 2 and positive constants L, `, ν > 0 s.t.

1
L
|ξ|p ≤ f (x, ξ) ≤ L(1 + |ξ|p). (F1)

〈Dξf (x, ξ)−Dξf (x, η), ξ − η〉 ≥ ν(1 + |ξ|2 + |η|2)
p−2

2 |ξ − η|2 (F2)

|Dξf (x, ξ)−Dξf (x, η)| ≤ `(1 + |ξ|2 + |η|2)
p−2

2 |ξ − η| (F3)

for all ξ, η ∈ Rn×N and for almost every x ∈ Ω.



ASSUMPTIONS W.R.T x-VARIABLE

There exists g(x) ∈ Lσ(Ω), σ > 1 s.t.

|Dξf (x, ξ)−Dξf (y, ξ)| ≤ (|g(x)|+ |g(y)|)|x− y|(1 + |ξ|2)
p−1

2 (F4)

for a.e. x, y ∈ Ω and for all ξ ∈ Rn×N.

Assumption (F4) with g ∈ Lσloc(Ω) implies that

x→ Dξf (x, ξ) ∈W1,σ
loc (Ω,Rn×N)

(see Hajlasz, Potential Anal. 5 (1996))

(see Kristensen–Mingione, Arch. Ration. Mech. Anal. (2006)-
Arch. Ration. Mech. Anal.(2010))
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MODEL CASE

∫
Ω

a(x)(1 + |Du|2)
p
2 dx with a(x) ∈ L∞ ∩W1,σ(Ω)

p ≥ 2 and σ > 1

Question:
How does the regularity of a(x) transfer to Du?
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Unconstrained case



ABOUT THE ASSUMPTION ON x-VARIABLE

Classical Theory

• x 7→ Dξf (x, ξ) ∈ Lip(Ω)

i.e. there exists a constant K > 0

|Dξf (x, ξ)−Dξf (y, ξ)| ≤ K|x− y|(1 + |ξ|2)
p−1

2

⇓

(1 + |Du|2)
p−2

4 Du ∈W1,2



SOBOLEV ASSUMPTION

More recent Developments

• x 7→ Dξf (x, ξ) ∈W1,n

i.e. there exists a non negative function g ∈ Ln such that

|Dξf (x, ξ)−Dξf (y, ξ)| ≤ (|g(x)|+ |g(y)|)|x− y|(1 + |ξ|2)
p−1

2

⇓

Higher differentiability results with integer order



W1,n ASSUMPTION: HIGHER DIFFERENTIABILITY

RESULTS WITH INTEGER ORDER

Beltrami Equations
I Clop, Faraco, Mateu, Orobitg & Zhong - Publ. Mat. (2009)

( n = 2 and A(x, ξ) = A(x) · ξ with det A = 1 )
in connections with planar mappings with finite
distortion

Systems and integral functionals
I Passarelli di Napoli - Pot. Anal.(2014), Adv. Cal. Var.(2014)

p = n = 2 2 ≤ p < n
I Giannetti & Passarelli di Napoli - Math. Z.(2015)

variable exponents
I G. - J. Differential Equation (2015) p = n > 2
I G. - NoDEA (2016) Orlicz− Sobolev coefficients
I Cruz Uribe, Moen & Rodney - Ann. Math. Pura

Appl.(2016) Dirichlet problem
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W1,n ASSUMPTION: HIGHER DIFFERENTIABILITY

RESULTS WITH INTEGER ORDER

I Giannetti, Passarelli di Napoli & Scheven - J. Lond. Math.
Soc. (2016) parabolic case- Proc. Roy. Soc. Edinburgh Sect.
A (2019) p-q growth

I Cupini, Giannetti, G. & Passarelli di Napoli - J. Differential
Equation (2018) convexity only at∞

I Gentile - Adv. Calc. Var. (2020) sub-quadratic growth
I Capone & Radice - Journal of Elliptic and Parabolic

Equations (2020) - preprint(2021)lower order terms.
I Cupini, Marcellini, Mascolo & Passarelli di Napoli ,

Preprint (2021) degenerate ellipticity



FURTHER RESULTS IN CASE OF SOBOLEV

COEFFICIENTS
I Kristensen & Mingione - Arch. Ration. Mech. Anal. (2010)
I Kuusi & Mingione - J. Funct. Anal. (2012)
I Eleuteri, Marcellini & Mascolo

I Ann. Mat. Pura Appl. (2016),
I Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. (2016)
I Discrete Contin. Dyn. Syst. (2019)
I Adv. Calc. Var. (2020)

I Giannetti & Passarelli di Napoli J. Differential Equation
(2015)

I Cupini, Giannetti, G. & Passarelli di Napoli Nonlinear
Anal.(2017)

I De Filippis & Mingione, Preprint (2020)
I Clop, G., Hatami & Passarelli di Napoli Forum Math.

(2020)
I Cupini, Marcellini, Mascolo & Passarelli di Napoli ,

Preprint (2021)



W1,n

↪→ VMO

I Iwaniec & Sbordone J. Anal. Math. (1998)
I Kinnunen & Zhou Comm. Partial Differential Equations

(1999)
I Bögelein, Duzaar, Habermann & Scheven, Proc. Lond.

Math. Soc. (2011)
I Bögelein, J. Differential Equation (2012)
I Di Fazio, Fanciullo & Zamboni, Algebra i Analiz (2013)
I Goodrich & Ragusa , Nonlinear Anal (2019)
I Goodrich, Scilla & Stroffolini , Preprint (2021)
I Balci, Diening, G. & Passarelli di Napoli preprint (2020)
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Question:
What happens if we weaken the assumption on g?



A PRIORI BOUNDED MINIMIZERS
Theorem. [ G.- Passarelli di Napoli (2019)]

Let f : Ω × Rn×N → R be an integrand satisfying the assump-
tions (F1)–(F4) for a function g ∈ Lp+2

loc (Ω). If u ∈ W1,p
loc(Ω,RN) ∩

L∞loc(Ω,R
N) is a local minimizer of the functional F , then

(1 + |Du|2)
p−2

4 Du ∈W1,2
loc(Ω,Rn×N)

Moreover, for every balls BR ⊂ B2R ⊂ Ω, we have that

∫
BR

∣∣∣D((1 + |Du|2)
p−2

4 Du
)∣∣∣2dx

≤ c
∫

B2R

(1 + |Du|2)
p
2 dx + c

∫
B2R

|g(x)|p+2dx,

where c = c(‖u‖∞,R, p,n,N,L, ν).



REMARKS

g ∈ Lp+2

1. assumption on the summability of the function g(x) that is
independent of the dimension n.

2. this is a weaker assumption with respect to previous
papers when 2 ≤ p < n− 2
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PROOF OF THE THEOREM

Step 1: The approximation. We constract the approximating
problems:

Fix a compact set Ω′ b Ω, and for a smooth kernel
φ ∈ C∞c (B1(0)) with φ ≥ 0 and

∫
B1(0)φ = 1, let us consider the

corresponding family of mollifiers (φε)ε>0. Put

gε = g ∗ φε

and
fε(x, ξ) =

∫
B1

φ(ω)f (x + εω, ξ) dω

on Ω′, for each positive ε < dist (Ω′,Ω).



Fix a real number a ≥ ||u||L∞(Ω′) and, for m >
p
2 , let uε,m be a

minimizer to the functional

Fε,m(v,Ω′) =

∫
Ω′

(
fε(x,Dv) +

(
|v| − a

)2m
+

)

(Carozza – Kristensen – Passarelli di Napoli, Annales Inst. H.
Poincaré (C) Non Linear Analysis , (2011))



PROOF OF THE THEOREM
Step 2: Uniform higher differentiability estimates (by using
interpolation inequality)

τs,huε,m(x) = uε,m(x + hes)− uε,m(x)

Choosing ϕ = τs,−h(ρp+2τs,huε,m) as test function in the
Euler–Lagrange system associated to the functional Fε,m(v,Ω′)
and using the assumptions and some properties of the
difference quotients we obtain∫

B2R

|τs,h(ρ
p+2

2 V(Duε,m))|2

≤ c|h|2
∫

B2R

ρp+2(gε(x) + gε(x + h)
)2

(1 + |Duε,m|2)
p
2

+c
|h|2

R2

∫
B3R

(1 + |Duε,m|2)
p
2 .



PROOF OF THE THEOREM
By a suitable interpolation inequality we have

Duε,m ∈ L
m

m+1 (p+2)

we can use Hölder’s inequality with exponents m
m+1

p+2
p and

m(p+2)
2m−p to get∫

B2R

|τs,h(ρ
p+2

2 V(Duε,m))|2

≤ c|h|2
(∫

B2R

ρp+2(gε(x) + gε(x + h))
2m(p+2)

2m−p
) 2m−p

m(p+2)

·
(∫

B2R

ρp+2(1 + |Duε,m|2)
m

m+1
(p+2)

2

)m+1
m

p
p+2
,
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|h|2
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PROOF OF THE THEOREM

Step 3: we show that such estimates are preserved in passing
to the limit.



SYSTEMS UNDER SUITABLE STRUCTURE ASSUMPTIONS

We consider elliptic systems of the form

divA(x,Du)=

n∑
i=1

Dxi

( n∑
j=1

aij(x,Du)uαxj

)
=0, 1 ≤ α ≤ N, in Ω ⊂ Rn (∗)

satisfying
A(x, 0) = 0 (A0)

〈A(x, ξ)− A(x, η), ξ − η〉 ≥ α|ξ − η|2(1 + |ξ|2 + |η|2)
p−2

2 (A1)

|A(x, ξ)− A(x, η)| ≤ β|ξ − η|(1 + |ξ|2 + |η|2)
p−2

2 (A2)

There exists a nonnegative function g ∈ Lp+2
loc (Ω), such that

|A(x, ξ)− A(y, ξ)| ≤ (g(x) + g(y))|x− y| (1 + |ξ|2)
p−1

2 ; (A3)

for every ξ ∈ Rn×N and for almost every x, y ∈ Ω.
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Theorem. [ G.- Passarelli di Napoli (2019)]

Let A : Ω×RN×n → RN×n be a Carathéodory function satisfying
the assumptions (A0)–(A3). If u ∈ W1,p

loc(Ω) is a local solution of
the system (*) , then

(1 + |Du|2)
p−2

4 Du ∈W1,2
loc(Ω,R

n×N)

Moreover, for every ball Br b Ω∫
Br/4

(1 + |Du|2)
p−2

2 |D2u|2 dx ≤ c
r2

∫
Br

(1 + |Du|2)
p
2 dx

c
rn ||u||

p
Lp∗ (B2r)

(∫
Br

(1 + g(x))p+2 dx
)
,

for a constant c = c(α, β, p,n).



PROOF OF THE THEOREM
Step 1 A priori estimate
• difference quotient method

• local boundedness of the solutions u ∈W1,p
loc(Ω) of the

system and following estimate

sup
B R

2
(x0)
|u| ≤ c

{
−
∫

BR(x0)
(|u|+ 1)p∗ dx

} 1
p∗

(see Cupini, Marcellini & Mascolo,
Manuscripta Math. (2012) J. Optim. Theory Appl.(2015)-
Nonlinear Anal.(2017))
(see also Leonetti Boll. Un. Mat. Ital. (1991))
• interpolation inequality

Step 2 Approximation procedure
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REMARK

If is assumed a priori

u ∈ Lq, with q >
np

n− p− 2
(instead of u ∈ L∞)

the interpolation inequality gives

Du ∈ L
q

q+2 (p+2)
(instead of Du ∈ Lp+2)

Such higher integrability allow us to obtain the same higher

differentiability result assuming g ∈ L
q

q−p (p+2).

We’d like to point out that for p < n− 2 it results q
q−p(p + 2) < n.
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Constrained case



OBSTACLE PROBLEM

We consider the following obstacle problem

min

{∫
Ω

f (x,Dv(x)) : v ∈ Kψ(Ω)

}
, (1)

where Ω ⊂ Rn is a bounded open set,

• ψ : Ω 7→ [−∞,+∞) belonging to W1,p
loc is the obstacle,

• Kψ(Ω) = {v ∈W1,p
loc(Ω,R) : v ≥ ψ a.e. in Ω} is the class of the

admissible functions.



OBSTACLE PROBLEMS AND VARIATIONAL

FORMULATION

We observe that

u ∈W1,p
loc(Ω) is a solution to the obstacle problem in Kψ

m

u ∈ Kψ(Ω) is a solution to the variational inequality∫
Ω
〈A(x,Du),D(ϕ− u)〉 dx ≥ 0 ∀ϕ ∈ Kψ(Ω),

where A(x, ξ) = Dξf (x, ξ).



REGULARITY

It is well known that:

the regularity of solutions to the obstacle problems depends on the
regularity of the obstacle itself



Analysis of the extra differentiability of the solutions of the
obstacle problems∫

Ω
〈A(x,Du(x)),D(ϕ(x)− u(x))〉 dx ≥ 0 ∀ϕ ∈ Kψ(Ω),

assuming that the gradient of the obstacle Dψ has some
differentiability property



ASSUMPTIONS
Let us fix ψ ∈W1,p

loc(Ω) and consider∫
Ω
〈A(x,Du),D(ϕ− u)〉 dx ≥ 0, (∗∗)

for every ϕ ∈ Kψ(Ω) = {v ∈W1,p
loc(Ω,R) : v ≥ ψ a.e. in Ω}

There exist constants ν,L > 0 and an exponent p ≥ 2 such that

〈A(x, ξ)− A(x, η), ξ − η〉 ≥ ν|ξ − η|2(1 + |ξ|2 + |η|2)
p−2

2 (A1)

|A(x, ξ)− A(x, η)| ≤ L|ξ − η|(1 + |ξ|2 + |η|2)
p−2

2 (A2)

There exists a nonnegative function g ∈ Lp+2
loc (Ω), such that

|A(x, ξ)− A(y, ξ)| ≤ (g(x) + g(y))|x− y| (1 + |ξ|2)
p−1

2 ; (A3)

for all ξ, η ∈ Rn and for almost every x, y ∈ Ω.
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REMARK

The regularity of the solutions to the obstacle problem (**) is
strictly connected to the regularity of the solutions to PDE’s of
the form

divA(x,Du) = divA(x,Dψ).

It is well known that no extra differentiability properties for the
solutions of equations of the type

divA(x,Du) = divG

can be expected even if G is smooth, unless some assumption is
given on the x-dependence of the operator A.



SOME RESULTS

x 7→ A(x, ξ) ∈W1,r with r ≥ n

I Eleuteri & Passarelli di Napoli - Calc. Var. Partial
Differential Equations.(2018) - Nonlinear Anal. (2020)

I Gavioli - Forum Math. (2019)
I Ma & Zhang - J. Math. Anal. Appl. (2019)
I De Filippis - J. Math. Anal. Appl. (2019)
I Chlebicka& De Filippis - Ann. Mat. Pura Appl. (2019)
I De Filippis & Mingione - (2020)
I Gentile - Forum Math. (2021)



Theorem. [Caselli – Gentile – G.(2020)]

Let A(x, ξ) satisfy the conditions (A1)–(A4) for an exponent p ≥
2 and let u ∈ Kψ(Ω) be a solution to the obstacle problem. Then,
if ψ ∈ L∞loc(Ω) the following implication holds

Dψ ∈W
1, p+2

2
loc (Ω) ⇒

(
µ2 + |Du|2

) p−2
4 Du ∈W1,2

loc(Ω),

Remark: the assumption ψ ∈ L∞loc(Ω) is needed to get the
boundedness of the solution. Therefore if we deal with a priori
bounded minimizers, then the result holds without the
hypothesis ψ ∈ L∞.

(see Caselli – Eleuteri – Passarelli di Napoli, ESAIM - Control.
Optim. Calc. Var. (2021))
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PROOF OF THE THEOREM

• A priori estimate

• Approximation procedure



TEST FUNCTIONS

The main point is the choice of suitable test functions ϕ:

1. involving the difference quotient of the solution

2. belonging to the class of the admissible functions Kψ(Ω),

Let us consider ϕ := u + τv for a suitable v ∈W1,p
0 (Ω) such that

u− ψ + τv ≥ 0 ∀τ ∈ [0, 1], (∗ ∗ ∗)

Then ϕ ∈ Kψ(Ω) for all τ ∈ [0, 1], since ϕ = u + τv ≥ ψ.



TEST FUNCTIONS

Let η be a cut off function, we consider

v1(x) = η2(x) [(u− ψ)(x + h)− (u− ψ)(x)] ,

v1 satisfies (***). Indeed, for a.e. x ∈ Ω and for any τ ∈ [0, 1]

u(x)− ψ(x) + τv1(x) =

= u(x)− ψ(x) + τη2(x) [(u− ψ)(x + h)− (u− ψ)(x)]

= τη2(x)(u− ψ)(x + h) + (1− τη2(x))(u− ψ)(x) ≥ 0,

since u ∈ Kψ(Ω) and 0 ≤ η ≤ 1.
So we can use ϕ = u + τv1 as a test function in variational
inequality.



TEST FUNCTIONS

In a similar way, we consider

v2(x) = η2(x) [(u− ψ)(x− h)− (u− ψ)(x)] ,

and we have (***) still is satisfied for any τ ∈ [0, 1], since

u(x)− ψ(x) + τv2(x) =

= u(x)− ψ(x) + τη2(x) [(u− ψ)(x− h)− (u− ψ)(x)]

= τη2(x)(u− ψ)(x− h) + (1− τη2(x))(u− ψ)(x) ≥ 0.

So we can use ϕ = u + τv2 as a test function in variational
inequality .



Thanks for your attention!


