UNIVERSITÀ DEGLI STUDI DI NAPOLI
PARTHENOPE

Regularity results for bounded minimizers

Raffaella Giova

Monday's Nonstandard Seminar 2020/21
University of Warsaw, April 12, 2021

The Problem

Regularity results for local bounded minimizers of integral functionals of the type

$$
\mathcal{F}(v, \Omega)=\int_{\Omega} f(x, D v) d x \quad \Omega \subset \mathbb{R}^{n}
$$

in case

- unconstrained problem
- constrained problem

The Problem

Regularity results for local bounded minimizers of integral functionals of the type

$$
\mathcal{F}(v, \Omega)=\int_{\Omega} f(x, D v) d x \quad \Omega \subset \mathbb{R}^{n}
$$

in case

- unconstrained problem
- constrained problem

In both cases the integrand f

The Problem

Regularity results for local bounded minimizers of integral functionals of the type

$$
\mathcal{F}(v, \Omega)=\int_{\Omega} f(x, D v) d x \quad \Omega \subset \mathbb{R}^{n}
$$

in case

- unconstrained problem
- constrained problem

In both cases the integrand f

- $\xi \rightarrow f(x, \xi) \quad p$-growth

The Problem

Regularity results for local bounded minimizers of integral functionals of the type

$$
\mathcal{F}(v, \Omega)=\int_{\Omega} f(x, D v) d x \quad \Omega \subset \mathbb{R}^{n}
$$

in case

- unconstrained problem
- constrained problem

In both cases the integrand f

- $\xi \rightarrow f(x, \xi) \quad p$-growth
- can be discontinuous with respect to the x-variable.
- R. G. \& A. Passarelli di Napoli Regularity results for a priori bounded minimizers of non autonomous functionals with discontinuous coefficients Adv. Calc. Var. 12 (2019)
- M. Caselli, A. Gentile, R. G. Regularity results for solutions to obstacle problems with Sobolev coefficients. J. Differential Equations 269 (2020)

Assumptions

Let us consider

$$
\begin{equation*}
\mathcal{F}(v, \Omega)=\int_{\Omega} f(x, D v) d x \tag{F}
\end{equation*}
$$

Ω open bounded set in $\mathbb{R}^{n}, n>2$

- $v: \Omega \rightarrow \mathbb{R}^{N} \quad N \geq 2$
- $f: \Omega \times \mathbb{R}^{n \times N} \rightarrow \mathbb{R}$ is a Carathéodory mapping satisfying

ASSUMPTIONS W.R.T ξ-VARIABLE

there exist $p \geq 2$ and positive constants $L, \ell, \nu>0$ s.t.

$$
\begin{gather*}
\frac{1}{L}|\xi|^{p} \leq f(x, \xi) \leq L\left(1+|\xi|^{p}\right) \tag{F1}\\
\left\langle D_{\xi} f(x, \xi)-D_{\xi} f(x, \eta), \xi-\eta\right\rangle \geq \nu\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}}|\xi-\eta|^{2} \tag{F2}\\
\left|D_{\xi} f(x, \xi)-D_{\xi} f(x, \eta)\right| \leq \ell\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}}|\xi-\eta| \tag{F3}
\end{gather*}
$$

for all $\xi, \eta \in \mathbb{R}^{n \times N}$ and for almost every $x \in \Omega$.

AsSUMPTIONS W.R.T x-VARIABLE

There exists $g(x) \in L^{\sigma}(\Omega), \sigma>1$ s.t.

$$
\begin{equation*}
\left|D_{\xi} f(x, \xi)-D_{\xi} f(y, \xi)\right| \leq(|g(x)|+|g(y)|)|x-y|\left(1+|\xi|^{2}\right)^{\frac{p-1}{2}} \tag{F4}
\end{equation*}
$$

for a.e. $x, y \in \Omega$ and for all $\xi \in \mathbb{R}^{n \times N}$.

AsSUMPTIONS W.R.T x-VARIABLE

There exists $g(x) \in L^{\sigma}(\Omega), \sigma>1$ s.t.

$$
\begin{equation*}
\left|D_{\xi} f(x, \xi)-D_{\xi} f(y, \xi)\right| \leq(|g(x)|+|g(y)|)|x-y|\left(1+|\xi|^{2}\right)^{\frac{p-1}{2}} \tag{F4}
\end{equation*}
$$

for a.e. $x, y \in \Omega$ and for all $\xi \in \mathbb{R}^{n \times N}$.

Assumption (F4) with $g \in \mathrm{~L}_{\mathrm{loc}}^{\sigma}(\Omega)$ implies that

$$
\begin{aligned}
& x \rightarrow D_{\xi} f(x, \xi) \in \mathrm{W}_{\mathrm{loc}}^{1, \sigma}\left(\Omega, \mathbb{R}^{n \times N}\right) \\
& \quad \text { (see Hajlasz, Potential Anal. } 5 \text { (1996)) }
\end{aligned}
$$

(see Kristensen-Mingione, Arch. Ration. Mech. Anal. (2006)Arch. Ration. Mech. Anal.(2010))

Model Case

$$
\begin{aligned}
& \int_{\Omega} a(x)\left(1+|D u|^{2}\right)^{\frac{p}{2}} d x \quad \text { with } \quad a(x) \in L^{\infty} \cap W^{1, \sigma}(\Omega) \\
p \geq & 2 \text { and } \sigma>1
\end{aligned}
$$

Model Case

$$
\begin{aligned}
& \quad \int_{\Omega} a(x)\left(1+|D u|^{2}\right)^{\frac{p}{2}} d x \quad \text { with } \quad a(x) \in L^{\infty} \cap W^{1, \sigma}(\Omega) \\
& p \geq 2 \text { and } \sigma>1
\end{aligned}
$$

Question:
How does the regularity of $a(x)$ transfer to $D u$?

Unconstrained case

ABOUT THE ASSUMPTION ON x-VARIABLE

Classical Theory

$$
\text { - } x \mapsto D_{\xi} f(x, \xi) \in \operatorname{Lip}(\Omega)
$$

i.e. there exists a constant $K>0$

$$
\begin{gathered}
\left|D_{\xi} f(x, \xi)-D_{\xi} f(y, \xi)\right| \leq K|x-y|\left(1+|\xi|^{2}\right)^{\frac{p-1}{2}} \\
\Downarrow \\
\left(1+|D u|^{2}\right)^{\frac{p-2}{4}} D u \in W^{1,2}
\end{gathered}
$$

SOBOLEV ASSUMPTION

More recent Developments

$$
\text { - } \quad x \mapsto D_{\xi} f(x, \xi) \in W^{1, n}
$$

i.e. there exists a non negative function $g \in L^{n}$ such that

$$
\begin{gathered}
\left|D_{\xi} f(x, \xi)-D_{\xi} f(y, \xi)\right| \leq(|g(x)|+|g(y)|)|x-y|\left(1+|\xi|^{2}\right)^{\frac{p-1}{2}} \\
\Downarrow
\end{gathered}
$$

Higher differentiability results with integer order

$W^{1, n}$ assumption: Higher differentiability RESULTS WITH INTEGER ORDER

$W^{1, n}$ assumption: Higher differentiability RESULTS WITH INTEGER ORDER

Beltrami Equations

- Clop, Faraco, Mateu, Orobitg \& Zhong - Publ. Mat. (2009) ($n=2$ and $A(x, \xi)=A(x) \cdot \xi$ with $\operatorname{det} A=1$) in connections with planar mappings with finite distortion

$W^{1, n}$ assumption: Higher differentiability

 RESULTS WITH INTEGER ORDER
Beltrami Equations

- Clop, Faraco, Mateu, Orobitg \& Zhong - Publ. Mat. (2009) ($n=2$ and $A(x, \xi)=A(x) \cdot \xi$ with $\operatorname{det} A=1$) in connections with planar mappings with finite distortion

Systems and integral functionals

- Passarelli di Napoli - Pot. Anal.(2014), Adv. Cal. Var.(2014) $\mathbf{p}=\mathbf{n}=\mathbf{2} \quad \mathbf{2} \leq \mathbf{p}<\mathbf{n}$
- Giannetti \& Passarelli di Napoli - Math. Z.(2015) variable exponents
- G. - J. Differential Equation (2015) p=n>2
- G. - NoDEA (2016) Orlicz - Sobolev coefficients
- Cruz Uribe, Moen \& Rodney - Ann. Math. Pura Appl.(2016) Dirichlet problem

$W^{1, n}$ ASSUMPTION: Higher DIfferentiability RESULTS WITH INTEGER ORDER

- Giannetti, Passarelli di Napoli \& Scheven - J. Lond. Math. Soc. (2016) parabolic case- Proc. Roy. Soc. Edinburgh Sect. A (2019) p-q growth
- Cupini, Giannetti, G. \& Passarelli di Napoli - J. Differential Equation (2018) convexity only at ∞
- Gentile - Adv. Calc. Var. (2020) sub-quadratic growth
- Capone \& Radice - Journal of Elliptic and Parabolic Equations (2020) - preprint(2021)lower order terms.
- Cupini, Marcellini, Mascolo \& Passarelli di Napoli, Preprint (2021) degenerate ellipticity

Further Results in case of Sobolev COEFFICIENTS

- Kristensen \& Mingione - Arch. Ration. Mech. Anal. (2010)
- Kuusi \& Mingione - J. Funct. Anal. (2012)
- Eleuteri, Marcellini \& Mascolo
- Ann. Mat. Pura Appl. (2016),
- Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. (2016)
- Discrete Contin. Dyn. Syst. (2019)
- Adv. Calc. Var. (2020)
- Giannetti \& Passarelli di Napoli J. Differential Equation (2015)
- Cupini, Giannetti, G. \& Passarelli di Napoli Nonlinear Anal.(2017)
- De Filippis \& Mingione, Preprint (2020)
- Clop, G., Hatami \& Passarelli di Napoli Forum Math. (2020)
- Cupini, Marcellini, Mascolo \& Passarelli di Napoli , Preprint (2021)

$$
W^{1, n}
$$

$$
W^{1, n} \hookrightarrow V M O
$$

$$
W^{1, n} \hookrightarrow V M O
$$

- Iwaniec \& Sbordone J. Anal. Math. (1998)
- Kinnunen \& Zhou Comm. Partial Differential Equations (1999)
- Bögelein, Duzaar, Habermann \& Scheven, Proc. Lond. Math. Soc. (2011)
- Bögelein, J. Differential Equation (2012)
- Di Fazio, Fanciullo \& Zamboni, Algebra i Analiz (2013)
- Goodrich \& Ragusa , Nonlinear Anal (2019)
- Goodrich, Scilla \& Stroffolini , Preprint (2021)

$$
W^{1, n} \hookrightarrow V M O
$$

- Iwaniec \& Sbordone J. Anal. Math. (1998)
- Kinnunen \& Zhou Comm. Partial Differential Equations (1999)
- Bögelein, Duzaar, Habermann \& Scheven, Proc. Lond. Math. Soc. (2011)
- Bögelein, J. Differential Equation (2012)
- Di Fazio, Fanciullo \& Zamboni, Algebra i Analiz (2013)
- Goodrich \& Ragusa , Nonlinear Anal (2019)
- Goodrich, Scilla \& Stroffolini , Preprint (2021)
- Balci, Diening, G. \& Passarelli di Napoli preprint (2020)

Question:
What happens if we weaken the assumption on g ?

A PRIORI BOUNDED MINIMIZERS

Theorem. [G.- Passarelli di Napoli (2019)]
Let $f: \Omega \times \mathbb{R}^{n \times N} \rightarrow \mathbb{R}$ be an integrand satisfying the assumptions (F1)-(F4) for a function $g \in L_{\mathrm{loc}}^{p+2}(\Omega)$. If $u \in W_{\mathrm{loc}}^{1, p}\left(\Omega, \mathbb{R}^{N}\right) \cap$ $L_{\text {loc }}^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$ is a local minimizer of the functional \mathcal{F}, then

$$
\left(1+|D u|^{2}\right)^{\frac{p-2}{4}} D u \in W_{\mathrm{loc}}^{1,2}\left(\Omega, \mathbb{R}^{n \times N}\right)
$$

Moreover, for every balls $B_{R} \subset B_{2 R} \subset \Omega$, we have that

$$
\begin{aligned}
& \int_{B_{R}}\left|D\left(\left(1+|D u|^{2}\right)^{\frac{p-2}{4}} D u\right)\right|^{2} d x \\
& \quad \leq c \int_{B_{2 R}}\left(1+|D u|^{2}\right)^{\frac{p}{2}} d x+c \int_{B_{2 R}}|g(x)|^{p+2} d x
\end{aligned}
$$

where $c=c\left(\|u\|_{\infty}, R, p, n, N, L, \nu\right)$.

Remarks

$$
g \in \mathrm{~L}^{p+2}
$$

REMARKS

$$
g \in \mathrm{~L}^{p+2}
$$

1. assumption on the summability of the function $g(x)$ that is independent of the dimension n.

REMARKS

$$
g \in \mathrm{~L}^{p+2}
$$

1. assumption on the summability of the function $g(x)$ that is independent of the dimension n.
2. this is a weaker assumption with respect to previous papers when $2 \leq p<n-2$

Proof of The Theorem

Step 1: The approximation. We constract the approximating problems:

Fix a compact set $\Omega^{\prime} \Subset \Omega$, and for a smooth kernel $\phi \in \mathbb{C}_{c}^{\infty}\left(B_{1}(0)\right)$ with $\phi \geq 0$ and $\int_{B_{1}(0)} \phi=1$, let us consider the corresponding family of mollifiers $\left(\phi_{\varepsilon}\right)_{\varepsilon>0}$. Put

$$
g_{\varepsilon}=g * \phi_{\varepsilon}
$$

and

$$
f_{\varepsilon}(x, \xi)=\int_{B_{1}} \phi(\omega) f(x+\varepsilon \omega, \xi) \mathrm{d} \omega
$$

on Ω^{\prime}, for each positive $\varepsilon<\operatorname{dist}\left(\Omega^{\prime}, \Omega\right)$.

Fix a real number $a \geq\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$ and, for $m>\frac{p}{2}$, let $u_{\varepsilon, m}$ be a minimizer to the functional

$$
\mathfrak{F}_{\varepsilon, m}\left(v, \Omega^{\prime}\right)=\int_{\Omega^{\prime}}\left(f_{\varepsilon}(x, D v)+(|v|-a)_{+}^{2 m}\right)
$$

(Carozza - Kristensen - Passarelli di Napoli, Annales Inst. H. Poincaré (C) Non Linear Analysis , (2011))

Proof of the Theorem

Step 2: Uniform higher differentiability estimates (by using interpolation inequality)

$$
\tau_{s, h} u_{\varepsilon, m}(x)=u_{\varepsilon, m}\left(x+h e_{s}\right)-u_{\varepsilon, m}(x)
$$

Choosing $\varphi=\tau_{s,-h}\left(\rho^{p+2} \tau_{s, h} u_{\varepsilon, m}\right)$ as test function in the Euler-Lagrange system associated to the functional $\mathfrak{F}_{\varepsilon, m}\left(v, \Omega^{\prime}\right)$ and using the assumptions and some properties of the difference quotients we obtain

$$
\begin{aligned}
& \int_{B_{2 R}}\left|\tau_{s, h}\left(\rho^{\frac{p+2}{2}} V\left(D u_{\varepsilon, m}\right)\right)\right|^{2} \\
& \leq c|h|^{2} \int_{B_{2 R}} \rho^{p+2}\left(g_{\varepsilon}(x)+g_{\varepsilon}(x+h)\right)^{2}\left(1+\left|D u_{\varepsilon, m}\right|^{2}\right)^{\frac{p}{2}} \\
&+c \frac{|h|^{2}}{R^{2}} \int_{B_{3 R}}\left(1+\left|D u_{\varepsilon, m}\right|^{2}\right)^{\frac{p}{2}}
\end{aligned}
$$

Proof of the Theorem

By a suitable interpolation inequality we have

$$
D u_{\varepsilon, m} \in \mathrm{~L}^{\frac{m}{m+1}}(p+2)
$$

Proof of The Theorem

By a suitable interpolation inequality we have

$$
D u_{\varepsilon, m} \in \mathrm{~L}^{\frac{m}{m+1}}(p+2)
$$

we can use Hölder's inequality with exponents $\frac{m}{m+1} \frac{p+2}{p}$ and $\frac{m(p+2)}{2 m-p}$ to get

$$
\begin{aligned}
& \int_{B_{2 R}}\left|\tau_{s, h}\left(\rho^{\frac{p+2}{2}} V\left(D u_{\varepsilon, m}\right)\right)\right|^{2} \\
& \leq c|h|^{2}\left(\int_{B_{2 R}} \rho^{p+2}\left(g_{\varepsilon}(x)+g_{\varepsilon}(x+h)\right)^{\frac{2 m(p+2)}{2 m-p}}\right)^{\frac{2 m-p}{m(p+2)}} \\
& \cdot\left(\int_{B_{2 R}} \rho^{p+2}\left(1+\left|D u_{\varepsilon, m}\right|^{2}\right)^{\frac{m}{m+1} \frac{(p+2)}{2}}\right)^{\frac{m+1}{m} \frac{p}{p+2}} \\
&+ c \frac{|h|^{2}}{R^{2}} \int_{B_{3 R}}\left(1+\left|D u_{\varepsilon, m}\right|^{2}\right)^{\frac{p}{2}}
\end{aligned}
$$

Proof of the Theorem

Step 3: we show that such estimates are preserved in passing to the limit.

SYSTEMS UNDER SUITABLE STRUCTURE ASSUMPTIONS

We consider elliptic systems of the form

$$
\operatorname{div} A(x, D u)=\sum_{i=1}^{n} D_{x_{i}}\left(\sum_{j=1}^{n} a_{i j}(x, D u) u_{x_{j}}^{\alpha}\right)=0,1 \leq \alpha \leq N, \text { in } \Omega \subset \mathbb{R}^{n}(*)
$$

satisfying

$$
\begin{equation*}
A(x, 0)=0 \tag{A0}
\end{equation*}
$$

$$
\begin{equation*}
\langle A(x, \xi)-A(x, \eta), \xi-\eta\rangle \geq \alpha|\xi-\eta|^{2}\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}} \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
|A(x, \xi)-A(x, \eta)| \leq \beta|\xi-\eta|\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}} \tag{A2}
\end{equation*}
$$

SYSTEMS UNDER SUITABLE STRUCTURE ASSUMPTIONS

We consider elliptic systems of the form

$$
\operatorname{div} A(x, D u)=\sum_{i=1}^{n} D_{x_{i}}\left(\sum_{j=1}^{n} a_{i j}(x, D u) u_{x_{j}}^{\alpha}\right)=0,1 \leq \alpha \leq N, \text { in } \Omega \subset \mathbb{R}^{n}(*)
$$

satisfying

$$
\begin{gather*}
A(x, 0)=0 \tag{A0}\\
\langle A(x, \xi)-A(x, \eta), \xi-\eta\rangle \geq \alpha|\xi-\eta|^{2}\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}} \tag{A1}\\
|A(x, \xi)-A(x, \eta)| \leq \beta|\xi-\eta|\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}} \tag{A2}
\end{gather*}
$$

There exists a nonnegative function $g \in L_{\mathrm{loc}}^{p+2}(\Omega)$, such that

$$
\begin{equation*}
|A(x, \xi)-A(y, \xi)| \leq(g(x)+g(y))|x-y|\left(1+|\xi|^{2}\right)^{\frac{p-1}{2}} \tag{A3}
\end{equation*}
$$

for every $\xi \in \mathbb{R}^{n \times N}$ and for almost every $x, y \in \Omega$.

Theorem. [G.- Passarelli di Napoli (2019)]

Let $A: \Omega \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}^{N \times n}$ be a Carathéodory function satisfying the assumptions (A0)-(A3). If $u \in \mathrm{~W}_{\text {loc }}^{1, p}(\Omega)$ is a local solution of the system $\left({ }^{*}\right)$, then

$$
\left(1+|D u|^{2}\right)^{\frac{p-2}{4}} D u \in \mathrm{~W}_{\mathrm{loc}}^{1,2}\left(\Omega, \mathbb{R}^{n \times N}\right)
$$

Moreover, for every ball $B_{r} \Subset \Omega$

$$
\begin{gathered}
\int_{B_{r / 4}}\left(1+|D u|^{2}\right)^{\frac{p-2}{2}}\left|D^{2} u\right|^{2} \mathrm{~d} x \leq \frac{c}{r^{2}} \int_{B_{r}}\left(1+|D u|^{2}\right)^{\frac{p}{2}} \mathrm{~d} x \\
\frac{c}{r^{n}}\|u\|_{L^{p^{*}\left(B_{2 r}\right)}}^{p}\left(\int_{B_{r}}(1+g(x))^{p+2} \mathrm{~d} x\right),
\end{gathered}
$$

for a constant $c=c(\alpha, \beta, p, n)$.

Proof of The Theorem

Step 1 A priori estimate

- difference quotient method
- local boundedness of the solutions $u \in W_{\text {loc }}^{1, p}(\Omega)$ of the system and following estimate

$$
\sup _{B_{\frac{R}{2}}\left(x_{0}\right)}|u| \leq c\left\{f_{B_{R}\left(x_{0}\right)}(|u|+1)^{p^{*}} d x\right\}^{\frac{1}{p^{*}}}
$$

(see Cupini, Marcellini \& Mascolo,
Manuscripta Math. (2012) J. Optim. Theory Appl.(2015)Nonlinear Anal.(2017)) (see also Leonetti Boll. Un. Mat. Ital. (1991))

- interpolation inequality

Proof of The Theorem

Step 1 A priori estimate

- difference quotient method
- local boundedness of the solutions $u \in W_{\text {loc }}^{1, p}(\Omega)$ of the system and following estimate

$$
\sup _{B_{\frac{R}{2}}\left(x_{0}\right)}|u| \leq c\left\{f_{B_{R}\left(x_{0}\right)}(|u|+1)^{p^{*}} d x\right\}^{\frac{1}{p^{*}}}
$$

(see Cupini, Marcellini \& Mascolo,
Manuscripta Math. (2012) J. Optim. Theory Appl.(2015)Nonlinear Anal.(2017)) (see also Leonetti Boll. Un. Mat. Ital. (1991))

- interpolation inequality

Step 2 Approximation procedure

REMARK

If is assumed a priori

$$
u \in \mathrm{~L}^{q}, \quad \text { with } \quad q>\frac{n p}{n-p-2} \quad\left(\text { instead of } \quad u \in \mathrm{~L}^{\infty}\right)
$$

the interpolation inequality gives

$$
D u \in \mathrm{~L}^{\frac{q}{q+2}(p+2)} \quad\left(\text { instead of } \quad D u \in \mathrm{~L}^{p+2}\right)
$$

REMARK

If is assumed a priori

$$
u \in \mathrm{~L}^{q}, \quad \text { with } \quad q>\frac{n p}{n-p-2} \quad\left(\text { instead of } \quad u \in \mathrm{~L}^{\infty}\right)
$$

the interpolation inequality gives

$$
D u \in \mathrm{~L}^{\frac{q}{q+2}(p+2)} \quad\left(\text { instead of } \quad D u \in \mathrm{~L}^{p+2}\right)
$$

Such higher integrability allow us to obtain the same higher differentiability result assuming $g \in \mathrm{~L}^{\frac{q}{q-p}(p+2)}$.

We'd like to point out that for $p<n-2$ it results $\frac{q}{q-p}(p+2)<n$.

Constrained case

Obstacle Problem

We consider the following obstacle problem

$$
\begin{equation*}
\min \left\{\int_{\Omega} f(x, D v(x)): v \in \mathcal{K}_{\psi}(\Omega)\right\} \tag{1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded open set,

- $\psi: \Omega \mapsto[-\infty,+\infty)$ belonging to $W_{\text {loc }}^{1, p}$ is the obstacle,
- $\mathcal{K}_{\psi}(\Omega)=\left\{v \in W_{\text {loc }}^{1, p}(\Omega, \mathbb{R}): v \geq \psi\right.$ a.e. in $\left.\Omega\right\}$ is the class of the admissible functions.

ObSTACLE PROBLEMS AND VARIATIONAL FORMULATION

We observe that

$$
u \in W_{\mathrm{loc}}^{1, p}(\Omega) \text { is a solution to the obstacle problem in } \mathcal{K}_{\psi}
$$

$$
\Uparrow
$$

$u \in \mathcal{K}_{\psi}(\Omega)$ is a solution to the variational inequality

$$
\int_{\Omega}\langle A(x, D u), D(\varphi-u)\rangle d x \geq 0 \quad \forall \varphi \in \mathcal{K}_{\psi}(\Omega)
$$

where $A(x, \xi)=D_{\xi} f(x, \xi)$.

REGULARITY

It is well known that:
the regularity of solutions to the obstacle problems depends on the regularity of the obstacle itself

Analysis of the extra differentiability of the solutions of the obstacle problems

$$
\int_{\Omega}\langle A(x, D u(x)), D(\varphi(x)-u(x))\rangle d x \geq 0 \quad \forall \varphi \in \mathcal{K}_{\psi}(\Omega)
$$

assuming that the gradient of the obstacle $D \psi$ has some differentiability property

Assumptions

Let us fix $\psi \in W_{\mathrm{loc}}^{1, p}(\Omega)$ and consider

$$
\begin{equation*}
\int_{\Omega}\langle A(x, D u), D(\varphi-u)\rangle d x \geq 0 \tag{**}
\end{equation*}
$$

for every $\varphi \in \mathcal{K}_{\psi}(\Omega)=\left\{v \in W_{\text {loc }}^{1, p}(\Omega, \mathbb{R}): v \geq \psi\right.$ a.e. in $\left.\Omega\right\}$
There exist constants $\nu, L>0$ and an exponent $p \geq 2$ such that

$$
\begin{gather*}
\langle A(x, \xi)-A(x, \eta), \xi-\eta\rangle \geq \nu|\xi-\eta|^{2}\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}} \tag{A1}\\
|A(x, \xi)-A(x, \eta)| \leq L|\xi-\eta|\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}} \tag{A2}
\end{gather*}
$$

Assumptions

Let us fix $\psi \in W_{\text {loc }}^{1, p}(\Omega)$ and consider

$$
\begin{equation*}
\int_{\Omega}\langle A(x, D u), D(\varphi-u)\rangle d x \geq 0 \tag{**}
\end{equation*}
$$

for every $\varphi \in \mathcal{K}_{\psi}(\Omega)=\left\{v \in W_{\text {loc }}^{1, p}(\Omega, \mathbb{R}): v \geq \psi\right.$ a.e. in $\left.\Omega\right\}$
There exist constants $\nu, L>0$ and an exponent $p \geq 2$ such that

$$
\begin{gather*}
\langle A(x, \xi)-A(x, \eta), \xi-\eta\rangle \geq \nu|\xi-\eta|^{2}\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}} \tag{A1}\\
|A(x, \xi)-A(x, \eta)| \leq L|\xi-\eta|\left(1+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}} \tag{A2}
\end{gather*}
$$

There exists a nonnegative function $g \in L_{\text {loc }}^{p+2}(\Omega)$, such that

$$
\begin{equation*}
|A(x, \xi)-A(y, \xi)| \leq(g(x)+g(y))|x-y|\left(1+|\xi|^{2}\right)^{\frac{p-1}{2}} \tag{A3}
\end{equation*}
$$

for all $\xi, \eta \in \mathbb{R}^{n}$ and for almost every $x, y \in \Omega$.

REMARK

The regularity of the solutions to the obstacle problem $\left({ }^{* *}\right)$ is strictly connected to the regularity of the solutions to PDE's of the form

$$
\operatorname{div} A(x, D u)=\operatorname{div} A(x, D \psi)
$$

It is well known that no extra differentiability properties for the solutions of equations of the type

$$
\operatorname{div} A(x, D u)=\operatorname{div} G
$$

can be expected even if G is smooth, unless some assumption is given on the x-dependence of the operator A.

Some Results

$$
x \mapsto A(x, \xi) \in W^{1, r} \quad \text { with } \quad r \geq n
$$

- Eleuteri \& Passarelli di Napoli - Calc. Var. Partial Differential Equations.(2018) - Nonlinear Anal. (2020)
- Gavioli - Forum Math. (2019)
- Ma \& Zhang - J. Math. Anal. Appl. (2019)
- De Filippis - J. Math. Anal. Appl. (2019)
- Chlebicka\& De Filippis - Ann. Mat. Pura Appl. (2019)
- De Filippis \& Mingione - (2020)
- Gentile - Forum Math. (2021)

Theorem. [Caselli - Gentile - G.(2020)]

Let $A(x, \xi)$ satisfy the conditions (A1)-(A4) for an exponent $p \geq$ 2 and let $u \in \mathcal{K}_{\psi}(\Omega)$ be a solution to the obstacle problem. Then, if $\psi \in L_{\text {loc }}^{\infty}(\Omega)$ the following implication holds

$$
D \psi \in W_{\mathrm{loc}}^{1, \frac{p+2}{2}}(\Omega) \Rightarrow\left(\mu^{2}+|D u|^{2}\right)^{\frac{p-2}{4}} D u \in W_{\mathrm{loc}}^{1,2}(\Omega)
$$

Theorem. [Caselli - Gentile - G.(2020)]

Let $A(x, \xi)$ satisfy the conditions (A1)-(A4) for an exponent $p \geq$ 2 and let $u \in \mathcal{K}_{\psi}(\Omega)$ be a solution to the obstacle problem. Then, if $\psi \in L_{\text {loc }}^{\infty}(\Omega)$ the following implication holds

$$
D \psi \in W_{\mathrm{loc}}^{1, \frac{p+2}{2}}(\Omega) \Rightarrow\left(\mu^{2}+|D u|^{2}\right)^{\frac{p-2}{4}} D u \in W_{\mathrm{loc}}^{1,2}(\Omega),
$$

Remark: the assumption $\psi \in L_{\text {loc }}^{\infty}(\Omega)$ is needed to get the boundedness of the solution. Therefore if we deal with a priori bounded minimizers, then the result holds without the hypothesis $\psi \in L^{\infty}$.
(see Caselli - Eleuteri - Passarelli di Napoli, ESAIM - Control.
Optim. Calc. Var. (2021))

Proof of the Theorem

- A priori estimate
- Approximation procedure

Test functions

The main point is the choice of suitable test functions φ :

1. involving the difference quotient of the solution
2. belonging to the class of the admissible functions $\mathcal{K}_{\psi}(\Omega)$,

Let us consider $\varphi:=u+\tau v$ for a suitable $v \in W_{0}^{1, p}(\Omega)$ such that

$$
u-\psi+\tau v \geq 0 \quad \forall \tau \in[0,1], \quad(* * *)
$$

Then $\varphi \in \mathcal{K}_{\psi}(\Omega)$ for all $\tau \in[0,1]$, since $\varphi=u+\tau v \geq \psi$.

TEST FUNCTIONS

Let η be a cut off function, we consider

$$
v_{1}(x)=\eta^{2}(x)[(u-\psi)(x+h)-(u-\psi)(x)]
$$

v_{1} satisfies $\left({ }^{* * *}\right)$. Indeed, for a.e. $x \in \Omega$ and for any $\tau \in[0,1]$

$$
\begin{aligned}
& u(x)-\psi(x)+\tau v_{1}(x)= \\
= & u(x)-\psi(x)+\tau \eta^{2}(x)[(u-\psi)(x+h)-(u-\psi)(x)] \\
= & \tau \eta^{2}(x)(u-\psi)(x+h)+\left(1-\tau \eta^{2}(x)\right)(u-\psi)(x) \geq 0
\end{aligned}
$$

since $u \in \mathcal{K}_{\psi}(\Omega)$ and $0 \leq \eta \leq 1$.
So we can use $\varphi=u+\tau v_{1}$ as a test function in variational inequality.

Test functions

In a similar way, we consider

$$
v_{2}(x)=\eta^{2}(x)[(u-\psi)(x-h)-(u-\psi)(x)],
$$

and we have $\left({ }^{(* * *)}\right.$ still is satisfied for any $\tau \in[0,1]$, since

$$
\begin{aligned}
& u(x)-\psi(x)+\tau v_{2}(x)= \\
= & u(x)-\psi(x)+\tau \eta^{2}(x)[(u-\psi)(x-h)-(u-\psi)(x)] \\
= & \tau \eta^{2}(x)(u-\psi)(x-h)+\left(1-\tau \eta^{2}(x)\right)(u-\psi)(x) \geq 0 .
\end{aligned}
$$

So we can use $\varphi=u+\tau v_{2}$ as a test function in variational inequality.

Thanks for your attention!

