Lipschitz continuity of nonnegative minimizers of functionals of Bernoulli type with nonstandard growth

C. Lederman, N. Wolanski

Monday's nonstandard seminar June 7, 2021

The problem

I will comment on regularity results for nonnegative local minimizers of functionals

$$
J(v)=\int_{\Omega} F(x, v(x), \nabla v(x))+\lambda(x) \chi_{\{v>0\}} d x
$$

The problem

I will comment on regularity results for nonnegative local minimizers of functionals

$$
J(v)=\int_{\Omega} F(x, v(x), \nabla v(x))+\lambda(x) \chi_{\{v>0\}} d x
$$

As the results are of a local nature, I will assume without loss of generality that $\Omega \in \mathbb{R}^{N}$ is smooth.

The problem

I will comment on regularity results for nonnegative local minimizers of functionals

$$
J(v)=\int_{\Omega} F(x, v(x), \nabla v(x))+\lambda(x) \chi_{\{v>0\}} d x
$$

As the results are of a local nature, I will assume without loss of generality that $\Omega \in \mathbb{R}^{N}$ is smooth. Here $0 \leq \lambda(x) \in L^{\infty}$ and F is of $p(x)$ growth in the gradient variable.

The problem

I will comment on regularity results for nonnegative local minimizers of functionals

$$
J(v)=\int_{\Omega} F(x, v(x), \nabla v(x))+\lambda(x) \chi_{\{v>0\}} d x
$$

As the results are of a local nature, I will assume without loss of generality that $\Omega \in \mathbb{R}^{N}$ is smooth. Here $0 \leq \lambda(x) \in L^{\infty}$ and F is of $p(x)$ growth in the gradient variable. The idea we had in mind was to see how far could we generalize the case

$$
F(x, s, \eta)=\frac{|\eta|^{p(x)}}{p(x)}+b(x) s
$$

$b \in L^{\infty}$ that we had studied previously.

Previous results

In that simpler case, if $0<\lambda_{1} \leq \lambda(x), 1<p_{\min } \leq p(x) \leq p_{\max }<\infty$ and p Hölder continuous we proved,

- Any nonegative local minimizer u is locally Lipschtiz continous.

Previous results

In that simpler case, if $0<\lambda_{1} \leq \lambda(x), 1<p_{\min } \leq p(x) \leq p_{\max }<\infty$ and p Hölder continuous we proved,

- Any nonegative local minimizer u is locally Lipschtiz continous.
- $\Delta_{p(x)} u:=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=b$ in $\{u>0\}$.

Previous results

In that simpler case, if $0<\lambda_{1} \leq \lambda(x), 1<p_{\min } \leq p(x) \leq p_{\max }<\infty$ and p Hölder continuous we proved,

- Any nonegative local minimizer u is locally Lipschtiz continous.
- $\Delta_{p(x)} u:=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=b$ in $\{u>0\}$.
- If moreover p is Lipschtiz continuous, $\partial\{u>0\}$ is a $C^{1, \alpha}$ surface but for a set of null $N-1$-dimensional Hausdorff measure.

Previous results

In that simpler case, if $0<\lambda_{1} \leq \lambda(x), 1<p_{\min } \leq p(x) \leq p_{\max }<\infty$ and p Hölder continuous we proved,

- Any nonegative local minimizer u is locally Lipschtiz continous.
- $\Delta_{p(x)} u:=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=b$ in $\{u>0\}$.
- If moreover p is Lipschtiz continuous, $\partial\{u>0\}$ is a $C^{1, \alpha}$ surface but for a set of null $N-1$-dimensional Hausdorff measure.
- $|\nabla u(x)|=\left(\frac{p(x)}{p(x)-1} \lambda(x)\right)^{\frac{1}{p(x)}}$ on the regular part of $\partial\{u>0\}$.

This last result shows that Lipschitz continuity is the optimal regularity one can expect.

First assumptions

In order to get existence of minimizers with given boundary data $\varphi \in W^{1, p(x)}(\Omega)$ we assume that $F \in C_{s} \cap C_{\eta}^{1}$ and

$$
-c_{1}^{-1}\left(1+|s|^{q}\right)+\lambda_{0}|\eta|^{p(x)} \leq F(x, s, \eta) \leq c_{1}\left(1+|s|^{\tau(x)}\right)+\Lambda_{0}|\eta|^{p(x)}
$$

with $1<q<\min _{\Omega} \tau(x)$ and positive constants c_{1}, λ_{0} and Λ_{0}. Here

$$
\begin{array}{ll}
\tau(x)=p^{*}(x)=\frac{N p(x)}{N-p(x)} & \text { if } \quad p_{\max }<N \\
\tau(x) \in L^{\infty}, \tau(x) \geq p(x) & \text { if } \quad p_{\min }>N \\
\tau(x)=p(x) & \text { if } \quad p_{\min } \leq N \leq p_{\max }
\end{array}
$$

Existence is proved for any $0 \leq \lambda(x) \in L^{\infty}$.

First assumptions

We also get existence of minimizers under a small oscillation hypothesis on $p(x)$. This result allows to get existence for the functional set in small subdomains $\Omega^{\prime} \subset \Omega$.

First assumptions

We also get existence of minimizers under a small oscillation hypothesis on $p(x)$. This result allows to get existence for the functional set in small subdomains $\Omega^{\prime} \subset \Omega$.
In fact, we assume that

$$
-c_{1}^{-1}\left(1+|s|^{r(x)}\right)+\lambda_{0}|\eta|^{p(x)} \leq F(x, s, \eta) \leq c_{1}\left(1+|\boldsymbol{s}|^{\tau(x)}\right)+\Lambda_{0}|\eta|^{p(x)}
$$

with $1<r(x) \leq \tau(x)-2 \delta$ in $\Omega^{\prime} \subset \Omega$ with $\delta>0$ such that $\max _{\Omega^{\prime}} \tau-\min _{\Omega^{\prime}} \tau<\delta$, and positive constants c_{1}, λ_{0} and Λ_{0}.

First assumptions

We also get existence of minimizers under a small oscillation hypothesis on $p(x)$. This result allows to get existence for the functional set in small subdomains $\Omega^{\prime} \subset \Omega$.
In fact, we assume that

$$
-c_{1}^{-1}\left(1+|s|^{r(x)}\right)+\lambda_{0}|\eta|^{p(x)} \leq F(x, s, \eta) \leq c_{1}\left(1+|\boldsymbol{s}|^{\tau(x)}\right)+\Lambda_{0}|\eta|^{p(x)}
$$

with $1<r(x) \leq \tau(x)-2 \delta$ in $\Omega^{\prime} \subset \Omega$ with $\delta>0$ such that $\max _{\Omega^{\prime}} \tau-\min _{\Omega^{\prime}} \tau<\delta$, and positive constants c_{1}, λ_{0} and Λ_{0}.
Observe that this hypothesis always holds if $r(x)<\tau(x)$ in $\Omega, r(x)$ and $\tau(x)$ are continuous and the diameter of Ω^{\prime} is small enough.

First assumptions

We also get existence of minimizers under a small oscillation hypothesis on $p(x)$. This result allows to get existence for the functional set in small subdomains $\Omega^{\prime} \subset \Omega$.
In fact, we assume that

$$
-c_{1}^{-1}\left(1+|s|^{r(x)}\right)+\lambda_{0}|\eta|^{p(x)} \leq F(x, s, \eta) \leq c_{1}\left(1+|s|^{\tau(x)}\right)+\Lambda_{0}|\eta|^{p(x)}
$$

with $1<r(x) \leq \tau(x)-2 \delta$ in $\Omega^{\prime} \subset \Omega$ with $\delta>0$ such that $\max _{\Omega^{\prime}} \tau-\min _{\Omega^{\prime}} \tau<\delta$, and positive constants c_{1}, λ_{0} and Λ_{0}.
Observe that this hypothesis always holds if $r(x)<\tau(x)$ in $\Omega, r(x)$ and $\tau(x)$ are continuous and the diameter of Ω^{\prime} is small enough.
Given $u \in W^{1, p(x)}(\Omega)$, these assumptions allow to get uniform $u+W_{0}^{1, p(x)}\left(\Omega^{\prime}\right)$ estimates for any minimizing sequence.
And we prove that there exists a minimizer $v \in u+W_{0}^{1, p(x)}\left(\Omega^{\prime}\right)$ for any $0 \leq \lambda(x) \in L^{\infty}$.

First assumptions

Throughout this talk p is assumed to be Hölder contiuous.

First assumptions

Throughout this talk p is assumed to be Hölder contiuous.
As usual, under some regularity assumptions of F, if $\lambda(x) \equiv 0$, any minimizer is a solution to

$$
\begin{aligned}
\operatorname{div} A(x, v(x), \nabla v(x)) & =B(x, v(x), \nabla v(x)) & & \text { in } \quad \Omega^{\prime}, \\
v & =u & & \text { on } \quad \partial \Omega^{\prime},
\end{aligned}
$$

where $A(x, s, \eta)=\nabla_{\eta} F(x, s, \eta), B(x, s, \eta)=F_{s}(x, s, \eta)$.

First assumptions

Throughout this talk p is assumed to be Hölder contiuous.
As usual, under some regularity assumptions of F, if $\lambda(x) \equiv 0$, any minimizer is a solution to

$$
\begin{aligned}
\operatorname{div} A(x, v(x), \nabla v(x)) & =B(x, v(x), \nabla v(x)) & & \text { in } \quad \Omega^{\prime}, \\
v & =u & & \text { on } \quad \partial \Omega^{\prime},
\end{aligned}
$$

where $A(x, s, \eta)=\nabla_{\eta} F(x, s, \eta), B(x, s, \eta)=F_{s}(x, s, \eta)$.
Our next assumptions are those set by Fan (JDE, 2007) for the local $C^{1, \alpha}$ regularity of bounded weak solutions.

$$
\begin{aligned}
A(x, s, 0) & =0 \\
\sum_{i, j} \frac{\partial A_{i}}{\partial \eta_{j}}(x, s, \eta) \xi_{i} \xi_{j} & \geq \lambda_{0}|\eta|^{p(x)-2}|\xi|^{2} \\
\sum_{i, j}\left|\frac{\partial A_{i}}{\partial \eta_{j}}(x, s, \eta)\right| & \leq \Lambda_{0}|\eta|^{p(x)-2}
\end{aligned}
$$

$$
\begin{gathered}
\left|A\left(x_{1}, s, \eta\right)-A\left(x_{2}, s, \eta\right)\right| \leq \Lambda_{0}\left|x_{1}-x_{2}\right|^{\beta}\left(|\eta|^{p\left(x_{1}\right)-1}+|\eta|^{p\left(x_{2}\right)-1}\right)(1+|\log | \eta| |) \\
\left|A\left(x, s_{1}, \eta\right)-A\left(x, s_{2}, \eta\right)\right| \leq \Lambda_{0}\left|s_{1}-s_{2}\right||\eta|^{p(x)-1} \\
|B(x, s, \eta)| \leq \Lambda_{0}\left(1+|\eta|^{p(x)}+|s|^{\tau(x)}\right)
\end{gathered}
$$

From the assumptions on A it is easy to see that

$$
\begin{gathered}
|A(x, s, \eta)| \leq \bar{\alpha}\left(p_{\min }\right) N \Lambda_{0}|\eta|^{p(x)-1} \\
A(x, s, \eta) \cdot \eta \geq \alpha\left(p_{\max }\right) \lambda_{0}|\eta|^{p(x)}
\end{gathered}
$$

Under the assumptions above, Fan (JDE 2007) proved that bounded solutions to the equation are locally $C^{1, \alpha}$.

Under the assumptions above, Fan (JDE 2007) proved that bounded solutions to the equation are locally $C^{1, \alpha}$.

Moreover, if the growth of B is

$$
|B(x, s, \eta)| \leq \Lambda_{0}\left(1+|\eta|^{p(x)-1}+|s|^{p(x)-1}\right)
$$

there holds that weak solutions to the equation are locally bounded and, if the domain Ω^{\prime} is smooth and the boundary datum $u \in L^{\infty}\left(\Omega^{\prime}\right)$ Fan and Zhao (Nonlinear Anal. 1999) proved that the weak solution $v \in L^{\infty}\left(\Omega^{\prime}\right)$ with norm bounded in terms of the universal constants, $\|v\|_{W^{1, p(x)}\left(\Omega^{\prime}\right)}$ and $\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$.

Observe that, $F(x, s, \eta)=a(x, s) \frac{| |^{p(x)}}{p(x)}+f(x, s)$ implies that

$$
A(x, s, \eta)=a(x, s)|\eta|^{p(x)-2} \eta
$$

and

$$
B(x, s, \eta)=a_{s}(x, s) \frac{|\eta|^{p(x)}}{p(x)}+f_{s}(x, s)
$$

In this case, the growth assumption of Fan-Zhao is not verified.

Observe that, $F(x, s, \eta)=a(x, s) \frac{| |^{p(x)}}{p(x)}+f(x, s)$ implies that

$$
A(x, s, \eta)=a(x, s)|\eta|^{p(x)-2} \eta
$$

and

$$
B(x, s, \eta)=a_{s}(x, s) \frac{|\eta|^{p(x)}}{p(x)}+f_{s}(x, s)
$$

In this case, the growth assumption of Fan-Zhao is not verified.
And, if $F(x, s, \eta)=G(x, \eta)+f(x, s)$,

$$
A(x, s, \eta)=\nabla_{\eta} G(x, \eta)
$$

and

$$
B(x, s, \eta)=f_{s}(x, s)
$$

A very important inequality for minimization problems in $W^{1, p}$ with p constant is the following. Let $u \in W^{1, p}\left(\Omega^{\prime}\right)$ and $v \in u+W_{0}^{1, p}\left(\Omega^{\prime}\right)$ the solution to $\Delta_{\rho} v=0$ in Ω^{\prime}. Then,
$\int_{\Omega^{\prime}}|\nabla u|^{p}-|\nabla v|^{p} d x \geq c_{0} \begin{cases}\int_{\Omega^{\prime}}|\nabla u-\nabla v|^{p} d x & \text { if } p \geq 2, \\ \int_{\Omega^{\prime}}|\nabla u-\nabla v|^{2}(|\nabla u|+|\nabla v|)^{p-2} d x & \text { if } p<2 .\end{cases}$
These inequalities can be used to prove that convergente sequences $\left\{v_{n}\right\}$ of solutions with boundary data $\left\{u_{n}\right\}$ that are minimizers with $\lambda_{n} \rightarrow 0$, are such that their limits coincide.

These inequalities have been generalized to the case $F(x, s, \eta)=a(x) \frac{\mid \eta^{p(x)}}{p(x)}+b(x) s$ in our previous paper. There holds,

$$
\begin{aligned}
\int_{\Omega^{\prime}} a(x)\left(\frac{|\nabla u|^{p(x)}}{p(x)}-\right. & \left.\frac{|\nabla v|^{p(x)}}{p(x)}\right)+b(x)(u(x)-v(x)) d x \\
\geq c_{0} & {\left[\int_{\{p(x) \geq 2\}}|\nabla u-\nabla v|^{p(x)} d x\right.} \\
& \left.+\int_{\{p(x)<2\}}|\nabla u-\nabla v|^{2}(|\nabla u|+|\nabla v|)^{p(x)-2} d x\right] .
\end{aligned}
$$

The corresponding inequality does not hold for a general F without further assumptions.

Our assumption is

$$
\begin{equation*}
2\left|A_{s}(x, s, \eta) \cdot \xi w\right| \leq \frac{1}{2} \sum_{i, j} \frac{\partial A_{j}}{\partial \eta_{j}}(x, s, \eta) \xi_{i} \xi_{j}+B_{s}(x, s, \eta) w^{2}, \tag{H}
\end{equation*}
$$

for every $\eta, \xi \in \mathbb{R}^{N}, s, w \in \mathbb{R}, x \in \Omega$.

Our assumption is

$$
\begin{equation*}
2\left|A_{s}(x, s, \eta) \cdot \xi w\right| \leq \frac{1}{2} \sum_{i, j} \frac{\partial A_{j}}{\partial \eta_{j}}(x, s, \eta) \xi_{i} \xi_{j}+B_{s}(x, s, \eta) w^{2} \tag{H}
\end{equation*}
$$

for every $\eta, \xi \in \mathbb{R}^{N}, s, w \in \mathbb{R}, x \in \Omega$.
Under assumption (H), for every $u \in W^{1, p(\cdot)}(\Omega)$ and $v \in W^{1, p(\cdot)}\left(\Omega^{\prime}\right)$
such that

$$
\left\{\begin{array}{l}
\operatorname{div} A(x, v, \nabla v)=B(x, v, \nabla v) \text { in } \Omega^{\prime} \\
v=u \text { on } \partial \Omega^{\prime}
\end{array}\right.
$$

there holds that,

$$
\begin{aligned}
\int_{\Omega^{\prime}}(F(x, u, \nabla u)- & F(x, v, \nabla v)) d x \geq \\
\frac{1}{2} \alpha \lambda_{0}(& \int_{\Omega^{\prime} \cap\{p(x) \geq 2\}}|\nabla u-\nabla v|^{p(x)} d x \\
& \left.+\int_{\Omega^{\prime} \cap\{p(x)<2\}}(|\nabla u|+|\nabla v|)^{p(x)-2}|\nabla u-\nabla v|^{2} d x\right),
\end{aligned}
$$

- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- If moreover, $B(x, 0,0) \equiv 0, v(x) \equiv M$ is a supersolution to the equation if $M>0$ and a subsolution if $M<0$.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- If moreover, $B(x, 0,0) \equiv 0, v(x) \equiv M$ is a supersolution to the equation if $M>0$ and a subsolution if $M<0$.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- If moreover, $B(x, 0,0) \equiv 0, v(x) \equiv M$ is a supersolution to the equation if $M>0$ and a subsolution if $M<0$.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- If moreover, $B(x, 0,0) \equiv 0, v(x) \equiv M$ is a supersolution to the equation if $M>0$ and a subsolution if $M<0$.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- If moreover, $B(x, 0,0) \equiv 0, v(x) \equiv M$ is a supersolution to the equation if $M>0$ and a subsolution if $M<0$.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if $B(x, 0,0) \equiv 0$ and the boundary datum u is bounded, there holds that the solution v satisfies that $\|v\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- If moreover, $B(x, 0,0) \equiv 0, v(x) \equiv M$ is a supersolution to the equation if $M>0$ and a subsolution if $M<0$.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if $B(x, 0,0) \equiv 0$ and the boundary datum u is bounded, there holds that the solution v satisfies that $\|v\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- If moreover, $B(x, 0,0) \equiv 0, v(x) \equiv M$ is a supersolution to the equation if $M>0$ and a subsolution if $M<0$.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if $B(x, 0,0) \equiv 0$ and the boundary datum u is bounded, there holds that the solution v satisfies that $\|v\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$.
- With the growth assumption of Fan and Zhao, the solution w with boundary datum $M=\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$ is a bounded in terms of M and $\|W\|_{W^{1, p(x)}\left(\Omega^{\prime}\right)}$.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- If moreover, $B(x, 0,0) \equiv 0, v(x) \equiv M$ is a supersolution to the equation if $M>0$ and a subsolution if $M<0$.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if $B(x, 0,0) \equiv 0$ and the boundary datum u is bounded, there holds that the solution v satisfies that $\|v\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$.
- With the growth assumption of Fan and Zhao, the solution w with boundary datum $M=\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$ is a bounded in terms of M and $\|W\|_{W^{1, p(x)}\left(\Omega^{\prime}\right)}$.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- If moreover, $B(x, 0,0) \equiv 0, v(x) \equiv M$ is a supersolution to the equation if $M>0$ and a subsolution if $M<0$.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if $B(x, 0,0) \equiv 0$ and the boundary datum u is bounded, there holds that the solution v satisfies that $\|v\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$.
- With the growth assumption of Fan and Zhao, the solution w with boundary datum $M=\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$ is a bounded in terms of M and $\|w\|_{W^{1}, p(x)\left(\Omega^{\prime}\right)}$. But, with constant boundary data we can see from the proof of the minimization argument that this last norm can be bounded in terms of M and universal constants.
- Observe that assumption (H) always holds if $A=A(x, \eta)$ and $B_{s} \geq 0$.
- Also, if (H) holds, necessarily $B_{s} \geq 0$.
- If moreover, $B(x, 0,0) \equiv 0, v(x) \equiv M$ is a supersolution to the equation if $M>0$ and a subsolution if $M<0$.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if $B(x, 0,0) \equiv 0$ and the boundary datum u is bounded, there holds that the solution v satisfies that $\|v\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$.
- With the growth assumption of Fan and Zhao, the solution w with boundary datum $M=\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}$ is a bounded in terms of M and $\|w\|_{W^{1}, p(x)\left(\Omega^{\prime}\right)}$. But, with constant boundary data we can see from the proof of the minimization argument that this last norm can be bounded in terms of M and universal constants. So that, there holds that $\|v\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq\|w\|_{L^{\infty}\left(\Omega^{\prime}\right)} \leq C\left(\|u\|_{L^{\infty}\left(\Omega^{\prime}\right)}\right)$.

The problem with $0 \leq \lambda(x) \in L^{\infty}, 0 \not \equiv \lambda(x)$

Recall that, under some growth assumptions on F, there exists a minimizer u of $J(v)$ with boundary datum $\varphi \in W^{1, p(x)}(\Omega)$.

The problem with $0 \leq \lambda(x) \in L^{\infty}, 0 \not \equiv \lambda(x)$

Recall that, under some growth assumptions on F, there exists a minimizer u of $J(v)$ with boundary datum $\varphi \in W^{1, p(x)}(\Omega)$.
If moreover, $-M_{2} \leq \varphi \leq M_{1}$ with $M_{1}>0, M_{2} \geq 0$ and for instance,
$F(x, s, \eta)=G(x, s, \eta)+f(x, s)$ with G, f measurable functions

The problem with $0 \leq \lambda(x) \in L^{\infty}, 0 \not \equiv \lambda(x)$

Recall that, under some growth assumptions on F, there exists a minimizer u of $J(v)$ with boundary datum $\varphi \in W^{1, p(x)}(\Omega)$.
If moreover, $-M_{2} \leq \varphi \leq M_{1}$ with $M_{1}>0, M_{2} \geq 0$ and for instance,

$$
\begin{aligned}
& F(x, s, \eta)=G(x, s, \eta)+f(x, s) \text { with } G, f \text { measurable functions } \\
& G \geq 0 \text { in } \Omega \times \mathbb{R} \times \mathbb{R}^{N}, \quad G(x, s, \eta)=0 \Longleftrightarrow \eta=0,
\end{aligned}
$$

The problem with $0 \leq \lambda(x) \in L^{\infty}, 0 \not \equiv \lambda(x)$

Recall that, under some growth assumptions on F, there exists a minimizer u of $J(v)$ with boundary datum $\varphi \in W^{1, p(x)}(\Omega)$. If moreover, $-M_{2} \leq \varphi \leq M_{1}$ with $M_{1}>0, M_{2} \geq 0$ and for instance,

$$
\begin{aligned}
& F(x, s, \eta)=G(x, s, \eta)+f(x, s) \text { with } G, f \text { measurable functions } \\
& G \geq 0 \text { in } \Omega \times \mathbb{R} \times \mathbb{R}^{N}, \quad G(x, s, \eta)=0 \Longleftrightarrow \eta=0,
\end{aligned}
$$

$f(x, \cdot)$ nonincreasing in $(-\infty, 0]$ and nondecreasing in $[0,+\infty)$, there holds that $-M_{2} \leq u \leq M_{1}$ in Ω.

The problem with $0 \leq \lambda(x) \in L^{\infty}, 0 \not \equiv \lambda(x)$

In fact, both $w_{1}=u-\left(u-M_{1}\right)^{+}$and $w_{2}=u+\left(u+M_{2}\right)^{-}$are admissible functions. Moreover,

$$
\begin{aligned}
& \left\{w_{1}=u-\left(u-M_{1}\right)^{+}>0\right\}=\{u>0\} \quad \text { and } \\
& \left\{w_{2}=u+\left(u+M_{2}\right)^{-}>0\right\}=\{u>0\} .
\end{aligned}
$$

The problem with $0 \leq \lambda(x) \in L^{\infty}, 0 \not \equiv \lambda(x)$

In fact, both $w_{1}=u-\left(u-M_{1}\right)^{+}$and $w_{2}=u+\left(u+M_{2}\right)^{-}$are admissible functions. Moreover,

$$
\begin{aligned}
& \left\{w_{1}=u-\left(u-M_{1}\right)^{+}>0\right\}=\{u>0\} \quad \text { and } \\
& \left\{w_{2}=u+\left(u+M_{2}\right)^{-}>0\right\}=\{u>0\} .
\end{aligned}
$$

So that on the one hand,

$$
\begin{aligned}
0 & \leq \int_{\Omega} F\left(x, w_{1}, \nabla w_{1}\right)-F(x, u, \nabla u)=\int_{u>M_{1}} F\left(x, M_{1}, 0\right)-F(x, u, \nabla u) \\
& =\int_{u>M_{1}} f\left(x, M_{1}\right)-f(x, u)-\int_{u>M_{1}} G(x, u, \nabla u) \\
& \leq-\int_{u>M_{1}} G(x, u, \nabla u) \leq 0 .
\end{aligned}
$$

Hence, $G(x, u, \nabla u)=0$ in $\left\{u>M_{1}\right\}$. So that, $\nabla\left(u-M_{1}\right)^{+}=0$ in Ω. As $\left(u-M_{1}\right)^{+}=0$ on $\partial \Omega$, we deduce that $u \leq M_{1}$ in Ω. And, proceeding in a similar way we find that $u \geq-M_{2}$.

Regularity of nonnegative, bounded minimizers

One first observation is that a local minimizer is a subsolution to the equation

$$
\operatorname{div} A(x, u(x), \nabla u(x)) \geq B(x, u(x) \nabla u(x)) \quad \text { in } \quad \Omega .
$$

The reason is that for every $0 \leq \phi \in C_{0}^{\infty}(\Omega),\{u-\varepsilon \phi>0\} \subset\{u>0\}$.

Regularity of nonnegative, bounded minimizers

One first observation is that a local minimizer is a subsolution to the equation

$$
\operatorname{div} A(x, u(x), \nabla u(x)) \geq B(x, u(x) \nabla u(x)) \quad \text { in } \quad \Omega .
$$

The reason is that for every $0 \leq \phi \in C_{0}^{\infty}(\Omega),\{u-\varepsilon \phi>0\} \subset\{u>0\}$. Hence,

$$
0 \geq \int_{\Omega} F(x, u(x), \nabla u(x))-F(x, u(x)-\varepsilon \phi(x), \nabla u(x)-\varepsilon \nabla \phi(x)) d x .
$$

Proceeding as usual we get that for every $0 \leq \phi \in C_{0}^{\infty}(\Omega)$,

$$
0 \geq \int_{\Omega} A(x, u(x), \nabla u(x)) \nabla \phi(x)+B(x, u(x), \nabla u(x)) \phi(x) d x .
$$

Regularity of nonnegative, bounded minimizers

On the other hand,

$$
\operatorname{div} A(x, u(x), \nabla u(x))=B(x, u(x) \nabla u(x)) \quad \text { in } \quad\{u>0\}^{\circ} .
$$

Regularity of nonnegative, bounded minimizers

On the other hand,

$$
\operatorname{div} A(x, u(x), \nabla u(x))=B(x, u(x) \nabla u(x)) \quad \text { in } \quad\{u>0\}^{\circ}
$$

In fact, if $0 \leq \phi \in C_{0}^{\infty}\left(\{u>0\}^{\circ}\right)$, we have that $\{u+\varepsilon \phi>0\}=\{u>0\}$.

Regularity of nonnegative, bounded minimizers

On the other hand,

$$
\operatorname{div} A(x, u(x), \nabla u(x))=B(x, u(x) \nabla u(x)) \quad \text { in } \quad\{u>0\}^{\circ} .
$$

In fact, if $0 \leq \phi \in C_{0}^{\infty}\left(\{u>0\}^{\circ}\right)$, we have that $\{u+\varepsilon \phi>0\}=\{u>0\}$. Proceeding as above we get,

$$
0 \geq \int_{\Omega} F(x, u(x), \nabla u(x))-F(x, u(x)+\varepsilon \phi(x), \nabla u(x)+\varepsilon \nabla \phi(x)) d x
$$

Regularity of nonnegative, bounded minimizers

On the other hand,

$$
\operatorname{div} A(x, u(x), \nabla u(x))=B(x, u(x) \nabla u(x)) \quad \text { in } \quad\{u>0\}^{\circ} .
$$

In fact, if $0 \leq \phi \in C_{0}^{\infty}\left(\{u>0\}^{\circ}\right)$, we have that $\{u+\varepsilon \phi>0\}=\{u>0\}$. Proceeding as above we get,

$$
0 \geq \int_{\Omega} F(x, u(x), \nabla u(x))-F(x, u(x)+\varepsilon \phi(x), \nabla u(x)+\varepsilon \nabla \phi(x)) d x
$$

So that for every $0 \leq \phi \in C_{0}^{\infty}\left(\{u>0\}^{\circ}\right)$,

$$
0 \leq \int_{\Omega} A(x, u(x), \nabla u(x)) \nabla \phi(x)+B(x, u(x), \nabla u(x)) \phi(x) d x
$$

Regularity of nonnegative, bounded minimizers

- Our first regularity result is the Hölder continuity of nonnegative bounded local minimizers.

Regularity of nonnegative, bounded minimizers

- Our first regularity result is the Hölder continuity of nonnegative bounded local minimizers.

Regularity of nonnegative, bounded minimizers

- Our first regularity result is the Hölder continuity of nonnegative bounded local minimizers.
- A first conclusion is that such a minimizer is a solution to the equation in its positivity set.

Regularity of nonnegative, bounded minimizers

- Our first regularity result is the Hölder continuity of nonnegative bounded local minimizers.
- A first conclusion is that such a minimizer is a solution to the equation in its positivity set.

Regularity of nonnegative, bounded minimizers

- Our first regularity result is the Hölder continuity of nonnegative bounded local minimizers.
- A first conclusion is that such a minimizer is a solution to the equation in its positivity set.
- I will give some idea of the proof. In particular, in order to show one use of the main inequality.

Regularity of nonnegative, bounded minimizers

The idea is to prove that, given $\Omega^{\prime} \subset \subset \Omega^{\prime \prime} \subset \subset \Omega$ such that the diameter of $\Omega^{\prime \prime}$ is small enough, there exists $\rho_{0}>0$ such that, if $\rho \leq \rho_{0}, x_{0} \in \Omega^{\prime}$,

$$
\left(\frac{1}{\rho^{N}} \int_{B_{\rho}\left(x_{0}\right)}|\nabla u|^{p_{-}} d x\right)^{1 / p_{-}} \leq C \rho^{\alpha-1}
$$

for some $0<\alpha<1$ and some positive constant C. Then, $\boldsymbol{u} \in C^{\alpha}\left(\Omega^{\prime}\right)$. Here $p_{-}=\min _{\Omega^{\prime \prime}} p$.

Regularity of nonnegative, bounded minimizers

The idea is to prove that, given $\Omega^{\prime} \subset \subset \Omega^{\prime \prime} \subset \subset \Omega$ such that the diameter of $\Omega^{\prime \prime}$ is small enough, there exists $\rho_{0}>0$ such that, if $\rho \leq \rho_{0}, x_{0} \in \Omega^{\prime}$,

$$
\left(\frac{1}{\rho^{N}} \int_{B_{\rho}\left(x_{0}\right)}|\nabla u|^{p_{-}} d x\right)^{1 / p_{-}} \leq C \rho^{\alpha-1}
$$

for some $0<\alpha<1$ and some positive constant C. Then, $\boldsymbol{u} \in C^{\alpha}\left(\Omega^{\prime}\right)$. Here $p_{-}=\min _{\Omega^{\prime \prime}} p$.
In order to get this inequality we use as comparison function the solution $v \in u+W_{0}^{1, p(x)}\left(B_{r}\left(x_{0}\right)\right)$ to the equation $A-B$.

Regularity of nonnegative, bounded minimizers

The idea is to prove that, given $\Omega^{\prime} \subset \subset \Omega^{\prime \prime} \subset \subset \Omega$ such that the diameter of $\Omega^{\prime \prime}$ is small enough, there exists $\rho_{0}>0$ such that, if $\rho \leq \rho_{0}, x_{0} \in \Omega^{\prime}$,

$$
\left(\frac{1}{\rho^{N}} \int_{B_{\rho}\left(x_{0}\right)}|\nabla u|^{p_{-}} d x\right)^{1 / p_{-}} \leq C \rho^{\alpha-1}
$$

for some $0<\alpha<1$ and some positive constant C. Then, $\boldsymbol{u} \in C^{\alpha}\left(\Omega^{\prime}\right)$. Here $p_{-}=\min _{\Omega^{\prime \prime}} p$.
In order to get this inequality we use as comparison function the solution $v \in u+W_{0}^{1, p(x)}\left(B_{r}\left(x_{0}\right)\right)$ to the equation $A-B$.
We take $r \leq r_{0}$ with r_{0} small enough so that $B_{r_{0}}\left(x_{0}\right) \subset \Omega^{\prime \prime}$ and the diameter of $\Omega^{\prime \prime}$ small so that r_{0} is small so that this solution exists.

Regularity of nonnegative, bounded minimizers

The idea is to prove that, given $\Omega^{\prime} \subset \subset \Omega^{\prime \prime} \subset \subset \Omega$ such that the diameter of $\Omega^{\prime \prime}$ is small enough, there exists $\rho_{0}>0$ such that, if $\rho \leq \rho_{0}, x_{0} \in \Omega^{\prime}$,

$$
\left(\frac{1}{\rho^{N}} \int_{B_{\rho}\left(x_{0}\right)}|\nabla u|^{p_{-}} d x\right)^{1 / p_{-}} \leq C \rho^{\alpha-1}
$$

for some $0<\alpha<1$ and some positive constant C. Then, $u \in C^{\alpha}\left(\Omega^{\prime}\right)$. Here $p_{-}=\min _{\Omega^{\prime \prime}} p$.
In order to get this inequality we use as comparison function the solution $v \in u+W_{0}^{1, p(x)}\left(B_{r}\left(x_{0}\right)\right)$ to the equation $A-B$.
We take $r \leq r_{0}$ with r_{0} small enough so that $B_{r_{0}}\left(x_{0}\right) \subset \Omega^{\prime \prime}$ and the diameter of $\Omega^{\prime \prime}$ small so that r_{0} is small so that this solution exists. Here we are assuming that

$$
-c_{1}^{-1}\left(1+|s|^{r(x)}\right)+\lambda_{0}|\eta|^{p(x)} \leq F(x, s, \eta) \leq c_{1}\left(1+|s|^{\tau(x)}\right)+\Lambda_{0}|\eta|^{p(x)}
$$

with $1<r(x)<\tau(x)$ in Ω and $r \in C(\Omega)$.

From the main inequality and the fact that u is a minimizer of J we get

$$
\begin{aligned}
& \int_{B_{r}\left(x_{0}\right) \cap\{p \geq 2\}}|\nabla u-\nabla v|^{p(x)} d x \leq C r^{N}, \\
& \int_{B_{r}\left(x_{0}\right) \cap\{p<2\}}|\nabla u-\nabla v|^{2}(|\nabla u|+|\nabla v|)^{p(x)-2} d x \leq C r^{N} .
\end{aligned}
$$

From the main inequality and the fact that u is a minimizer of J we get

$$
\begin{aligned}
& \int_{B_{r}\left(x_{0}\right) \cap\{p \geq 2\}}|\nabla u-\nabla v|^{p(x)} d x \leq C r^{N}, \\
& \int_{B_{r}\left(x_{0}\right) \cap\{p<2\}}|\nabla u-\nabla v|^{2}(|\nabla u|+|\nabla v|)^{p(x)-2} d x \leq C r^{N} .
\end{aligned}
$$

Then, we take $\varepsilon>0$ to be chosen and r_{0} small such that $r_{0}^{\varepsilon} \leq 1 / 2$ and let $\rho=r^{1+\varepsilon}$.

From the main inequality and the fact that u is a minimizer of J we get

$$
\begin{aligned}
& \int_{B_{r}\left(x_{0}\right) \cap\{p \geq 2\}}|\nabla u-\nabla v|^{p(x)} d x \leq C r^{N}, \\
& \int_{B_{r}\left(x_{0}\right) \cap\{p<2\}}|\nabla u-\nabla v|^{2}(|\nabla u|+|\nabla v|)^{p(x)-2} d x \leq C r^{N} .
\end{aligned}
$$

Then, we take $\varepsilon>0$ to be chosen and r_{0} small such that $r_{0}^{\varepsilon} \leq 1 / 2$ and let $\rho=r^{1+\varepsilon}$. Then, applying Young's inequality to the integrand we get
$\int_{\{p<2\} \cap B_{\rho}\left(x_{0}\right)}|\nabla u-\nabla v|^{p(x)} d x \leq C_{\theta} r^{N}+C \theta \int_{B_{\rho}\left(x_{0}\right) \cap\{p<2\}}(|\nabla u|+|\nabla v|)^{p(x)}$
So that,
$\int_{B_{\rho}\left(x_{0}\right)}|\nabla u-\nabla v|^{p(x)} d x \leq C_{\theta} r^{N}+C \theta \int_{B_{\rho}\left(x_{0}\right) \cap\{p<2\}}(|\nabla u|+|\nabla v|)^{p(x)} d x$,
and by choosing θ small enough we conclude that,

$$
\int_{B_{\rho}\left(x_{0}\right)}|\nabla u|^{p(x)} d x \leq C r^{N}+C \int_{B_{\rho}\left(x_{0}\right)}|\nabla v|^{p(x)} d x
$$

The aim is to prove that

$$
\sup _{B_{r / 2}\left(x_{0}\right)}|\nabla v| \leq \frac{C M}{r}
$$

where $M=\|v\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)} \leq C\left(\|u\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)}\right)$.

The aim is to prove that

$$
\sup _{B_{r / 2}\left(x_{0}\right)}|\nabla v| \leq \frac{C M}{r}
$$

where $M=\|v\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)} \leq C\left(\|u\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)}\right)$. If this inequality holds, we get

$$
\int_{B_{\rho}\left(x_{0}\right)}|\nabla u|^{p(x)} d x \leq C r^{N}+C \rho^{N} r^{-p_{+}}
$$

Here $p_{+}=\max _{\Omega^{\prime \prime}} p$.

The aim is to prove that

$$
\sup _{B_{r / 2}\left(x_{0}\right)}|\nabla v| \leq \frac{C M}{r}
$$

where $M=\|v\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)} \leq C\left(\|u\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)}\right)$.
If this inequality holds, we get

$$
\int_{B_{\rho}\left(x_{0}\right)}|\nabla u|^{p(x)} d x \leq C r^{N}+C \rho^{N} r^{-p_{+}}
$$

Here $p_{+}=\max _{\Omega^{\prime \prime}} p$.
Hence, if we take $\varepsilon \leq \frac{p_{\text {min }}}{N}$, we have that

$$
\begin{aligned}
& \frac{1}{\rho^{N}} \int_{B_{\rho}\left(x_{0}\right)}|\nabla u|^{p_{-}} d x \leq C_{N}+\frac{1}{\rho^{N}} \int_{B_{\rho}\left(x_{0}\right)}|\nabla u|^{p(x)} d x \\
& \quad \leq C_{N}+C\left(\frac{r}{\rho}\right)^{N}+C r^{-p_{+}} \leq C_{N}+C r^{-\varepsilon N}+C r^{-p_{+}} \leq \mathrm{Cr}^{-p_{+}}=C \rho^{-\frac{p_{+}}{(1+\varepsilon)}}
\end{aligned}
$$

Regularity of nonnegative, bounded minimizers

We conclude that,

$$
\left(\frac{1}{\rho^{N}} \int_{B_{\rho}\left(x_{0}\right)}|\nabla u|^{p_{-}} d x\right)^{1 / p_{-}} \leq C \rho^{-\frac{p_{+}}{p_{-}} \frac{1}{1+\varepsilon}}
$$

Finally, if the diameter of $\Omega^{\prime \prime}$ is small enough there holds that

$$
\frac{p_{+}}{p_{-}} \leq 1+\frac{\varepsilon}{2}
$$

so that,

$$
\left(\frac{1}{\rho^{N}} \int_{B_{\rho}\left(x_{0}\right)}|\nabla u|^{p_{-}} d x\right)^{1 / p_{-}} \leq C \rho^{-\frac{\left(1+\frac{\varepsilon}{2}\right)}{(1+\varepsilon)}}=C \rho^{-(1-\alpha)}
$$

Regularity of nonnegative, bounded minimizers

In order to finish the proof we need to prove that

$$
\sup _{B_{r / 2}\left(x_{0}\right)}|\nabla v| \leq \frac{C M}{r} .
$$

Regularity of nonnegative, bounded minimizers

In order to finish the proof we need to prove that

$$
\sup _{B_{r / 2}\left(x_{0}\right)}|\nabla v| \leq \frac{C M}{r} .
$$

For that purpose we consider the rescaled function $w(x)=\frac{v\left(x_{0}+r x\right)}{M}$ and prove that $|\nabla w| \leq C$ in $B_{1 / 2}$. So that,

$$
\frac{r}{M}|\nabla v| \leq C \quad \text { in } \quad B_{r / 2}\left(x_{0}\right) .
$$

Regularity of nonnegative, bounded minimizers

In order to finish the proof we need to prove that

$$
\sup _{B_{r / 2}\left(x_{0}\right)}|\nabla v| \leq \frac{C M}{r} .
$$

For that purpose we consider the rescaled function $w(x)=\frac{v\left(x_{0}+r x\right)}{M}$ and prove that $|\nabla w| \leq C$ in $B_{1 / 2}$. So that,

$$
\frac{r}{M}|\nabla v| \leq C \quad \text { in } \quad B_{r / 2}\left(x_{0}\right) .
$$

There holds that w is the solution of a rescaled equation

$$
\operatorname{div} \bar{A}(x, w, \nabla w)=\bar{B}(x, w, \nabla w) \quad \text { in } \quad B_{1}
$$

where

$$
\bar{A}(x, s, \eta)=A\left(x_{0}+r x, M s, \frac{M}{r} \eta\right), \quad \bar{B}(x, s, \eta)=r B\left(x_{0}+r x, M s, \frac{M}{r} \eta\right) .
$$

Regularity of nonnegative, bounded minimizers

The problem is that \bar{A} and \bar{B} do not satisfy ellipticity and regularity hypotheses uniform in r and M.

Regularity of nonnegative, bounded minimizers

The problem is that \bar{A} and \bar{B} do not satisfy ellipticity and regularity hypotheses uniform in r and M.
So, we let

$$
\widetilde{A}(x, s, \eta)=\left(\frac{r}{M}\right)^{p_{-}-1} \bar{A}(x, s, \eta), \quad \widetilde{B}(x, s, \eta)=\left(\frac{r}{M}\right)^{p_{-}-1} \bar{B}(x, s, \eta),
$$

and observe that $w \in W^{1, \bar{p}(\cdot)}\left(B_{1}\right) \cap L^{\infty}\left(B_{1}\right)$ satisfies

$$
\operatorname{div} \widetilde{A}(x, w, \nabla w)=\widetilde{B}(x, w, \nabla w) \text { in } B_{1},
$$

where $\bar{p}(x)=p\left(x_{0}+r x\right)$, and this equation is under the hypotheses of the paper by Fan on the $C^{1, \alpha}$ regularity. And, we are done.

Regularity of nonnegative, bounded minimizers

The proof of the Lipschitz continuity is much more involved. It is performed through a contradiction argument. So we have to deal with sequences of solutions. Moreover, within the proof we have to perform 2 rescalings.

I will not talk about this proof. If someone is interested, the paper has been published in Mathematics in Engineering (October, 2020) (volume in honor of Sandro Salsa).

Thank you for your attention

Examples

Some examples of application of our results are:

$$
F(x, s, \eta)=G(x, s, \eta)+f(x, s)
$$

with
(1) $f \in L^{\infty}$ and $f \in C_{s}^{2}$.

Examples

Some examples of application of our results are:

$$
F(x, s, \eta)=G(x, s, \eta)+f(x, s)
$$

with
(1) $f \in L^{\infty}$ and $f \in C_{s}^{2}$.
(2) $-c_{1}\left(1+|s|^{r(x)}\right) \leq f(x, s) \leq c_{1}\left(1+|s|^{\tau(x)}\right)$ with $r(x)<\tau(x)$.

Examples

Some examples of application of our results are:

$$
F(x, s, \eta)=G(x, s, \eta)+f(x, s)
$$

with
(1) $f \in L^{\infty}$ and $f \in C_{s}^{2}$.
(2) $-c_{1}\left(1+|s|^{r(x)}\right) \leq f(x, s) \leq c_{1}\left(1+|s|^{\tau(x)}\right)$ with $r(x)<\tau(x)$.
(3) $f(x, \cdot)$ nonincreasing in $(-\infty, 0]$ and nondecreasing in $[0,+\infty)$.

Examples

Some examples of application of our results are:

$$
F(x, s, \eta)=G(x, s, \eta)+f(x, s)
$$

with
(1) $f \in L^{\infty}$ and $f \in C_{s}^{2}$.
(2) $-c_{1}\left(1+|s|^{r(x)}\right) \leq f(x, s) \leq c_{1}\left(1+|s|^{\tau(x)}\right)$ with $r(x)<\tau(x)$.
(3) $f(x, \cdot)$ nonincreasing in $(-\infty, 0]$ and nondecreasing in $[0,+\infty)$.
(4) $f_{s s} \geq 0$.

Examples

Some examples of application of our results are:

$$
F(x, s, \eta)=G(x, s, \eta)+f(x, s)
$$

with
(1) $f \in L^{\infty}$ and $f \in C_{s}^{2}$.
(2) $-c_{1}\left(1+|s|^{r(x)}\right) \leq f(x, s) \leq c_{1}\left(1+|s|^{\tau(x)}\right)$ with $r(x)<\tau(x)$.
(3) $f(x, \cdot)$ nonincreasing in $(-\infty, 0]$ and nondecreasing in $[0,+\infty)$.
(4) $f_{s s} \geq 0$.
(5) $\left|f_{s}(x, s)\right| \leq \Lambda_{0}\left(1+|s|^{\tau(x)}\right)$ in $\Omega \times \mathbb{R}$.

Examples

Some examples of application of our results are:

$$
F(x, s, \eta)=G(x, s, \eta)+f(x, s)
$$

with
(1) $f \in L^{\infty}$ and $f \in C_{s}^{2}$.
(2) $-c_{1}\left(1+|s|^{r(x)}\right) \leq f(x, s) \leq c_{1}\left(1+|s|^{\tau(x)}\right)$ with $r(x)<\tau(x)$.
(3) $f(x, \cdot)$ nonincreasing in $(-\infty, 0]$ and nondecreasing in $[0,+\infty)$.
(4) $f_{s s} \geq 0$.
(5) $\left|f_{s}(x, s)\right| \leq \Lambda_{0}\left(1+|s|^{\tau(x)}\right)$ in $\Omega \times \mathbb{R}$.

Examples

Some examples of application of our results are:

$$
F(x, s, \eta)=G(x, s, \eta)+f(x, s)
$$

with
(1) $f \in L^{\infty}$ and $f \in C_{s}^{2}$.
(2) $-c_{1}\left(1+|s|^{r(x)}\right) \leq f(x, s) \leq c_{1}\left(1+|s|^{\tau(x)}\right)$ with $r(x)<\tau(x)$.
(3) $f(x, \cdot)$ nonincreasing in $(-\infty, 0]$ and nondecreasing in $[0,+\infty)$.
(1) $f_{s s} \geq 0$.
(0) $\left|f_{s}(x, s)\right| \leq \Lambda_{0}\left(1+|s|^{\tau(x)}\right)$ in $\Omega \times \mathbb{R}$.

For example,

$$
f(x, s)=b(x)\left(1+s^{2}\right)^{\frac{\tau(x)}{2}}
$$

with $0 \leq b \in L^{\infty}(\Omega)$

Examples

- $G(x, s, \eta)=a(x, s) \frac{| |^{p(x)}}{p(x)}$ with

Examples

- $G(x, s, \eta)=a(x, s) \frac{| |^{p(x)}}{p(x)}$ with

Examples

- $G(x, s, \eta)=a(x, s) \frac{| |^{p(x)}}{p(x)}$ with
(1) $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_{s}^{2}$.

Examples

- $G(x, s, \eta)=a(x, s) \frac{| |^{p(x)}}{p(x)}$ with
(1) $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_{s}^{2}$.
(2) $0<a_{0} \leq a(x, s) \leq a_{1}<\infty$.

Examples

- $G(x, s, \eta)=a(x, s) \frac{| |^{p(x)}}{p(x)}$ with
(1) $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_{s}^{2}$.
(2) $0<a_{0} \leq a(x, s) \leq a_{1}<\infty$.
(3) $\left|a_{s}(x, s)\right| \leq a_{2}<\infty$ in $\Omega \times \mathbb{R}$.

Examples

- $G(x, s, \eta)=a(x, s) \frac{| |^{p(x)}}{p(x)}$ with
(1) $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_{s}^{2}$.
(2) $0<a_{0} \leq a(x, s) \leq a_{1}<\infty$.
(3) $\left|a_{s}(x, s)\right| \leq a_{2}<\infty$ in $\Omega \times \mathbb{R}$.
(4) $\left(a(x, s)^{1-\gamma(x)}\right)_{s s} \leq 0$ with $\gamma(x)=\frac{2 p(x)}{\min \{1, p(x)-1\}}>1$.

Examples

- $G(x, s, \eta)=a(x, s) \frac{| |^{p(x)}}{p(x)}$ with
(1) $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_{s}^{2}$.
(2) $0<a_{0} \leq a(x, s) \leq a_{1}<\infty$.
(3) $\left|a_{s}(x, s)\right| \leq a_{2}<\infty$ in $\Omega \times \mathbb{R}$.
(4) $\left(a(x, s)^{1-\gamma(x)}\right)_{s s} \leq 0$ with $\gamma(x)=\frac{2 p(x)}{\min \{1, p(x)-1\}}>1$.

Examples

- $G(x, s, \eta)=a(x, s) \frac{|\eta|^{p(x)}}{p(x)}$ with
(1) $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_{s}^{2}$.
(2) $0<a_{0} \leq a(x, s) \leq a_{1}<\infty$.
(3) $\left|a_{s}(x, s)\right| \leq a_{2}<\infty$ in $\Omega \times \mathbb{R}$.
(4) $\left(a(x, s)^{1-\gamma(x)}\right)_{s s} \leq 0$ with $\gamma(x)=\frac{2 p(x)}{\min \{1, p(x)-1\}}>1$.

If the minimizer u lies between 0 and M, condition (4) only needs to hold for $s \in[0, M]$.

Examples

- $G(x, s, \eta)=a(x, s) \frac{| |^{p(x)}}{p(x)}$ with
(1) $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_{s}^{2}$.
(2) $0<a_{0} \leq a(x, s) \leq a_{1}<\infty$.
(3) $\left|a_{s}(x, s)\right| \leq a_{2}<\infty$ in $\Omega \times \mathbb{R}$.
(4) $\left(a(x, s)^{1-\gamma(x)}\right)_{s s} \leq 0$ with $\gamma(x)=\frac{2 p(x)}{\min \{1, p(x)-1\}}>1$.

If the minimizer u lies between 0 and M, condition (4) only needs to hold for $s \in[0, M]$.
For instance, if the boundary datum $\varphi \in[0, M]$ and condition (4) above holds for $s \in[0, M]$ and the others hold for s in a neighborhood of $[0, M]$, there holds that the minimizer u moves in that range and it is locally Lipschitz continuous in Ω.

Examples

A possible example would be

$$
a(x, s)= \begin{cases}(1+s)^{-q(x)} & \text { if }-1 / 2 \leq s \leq M+1, \\ 2^{q(x)} & \text { if } s \leq-1 / 2, \\ (2+M)^{-q(x)} & \text { if } s \geq M+1,\end{cases}
$$

with $q \in L^{\infty}(\Omega)$ a Hölder continuous function such that $0<q(x)<\frac{1}{\gamma(x)-1}$.

Examples

A possible example would be

$$
a(x, s)= \begin{cases}(1+s)^{-q(x)} & \text { if }-1 / 2 \leq s \leq M+1, \\ 2^{q(x)} & \text { if } s \leq-1 / 2, \\ (2+M)^{-q(x)} & \text { if } s \geq M+1,\end{cases}
$$

with $q \in L^{\infty}(\Omega)$ a Hölder continuous function such that $0<q(x)<\frac{1}{\gamma(x)-1}$.
With this choice, a minimizer always exists, it lies between 0 and M and it is locally Lipschitz continuous.

Examples

- $G(x, s, \eta)=a(x) \widetilde{G}\left(|\eta|^{p(x)}\right)$ with $\widetilde{G} \in C^{2}([0, \infty))$,

$$
\begin{aligned}
c_{0} & \leq \widetilde{G}^{\prime}(t) \leq C_{0} \\
0 & \leq \widetilde{G}^{\prime \prime}(t) \leq \frac{C_{0}}{1+t} \quad c_{0}, C_{0} \text { positive constants. }
\end{aligned}
$$

and $0<a_{0} \leq a(x) \leq a_{1}<\infty$ and Hölder continuous.

Examples

- $G(x, s, \eta)=a(x) \widetilde{G}\left(|\eta|^{p(x)}\right)$ with $\widetilde{G} \in C^{2}([0, \infty))$,

$$
\begin{aligned}
c_{0} & \leq \widetilde{G}^{\prime}(t) \leq C_{0} \\
0 & \leq \widetilde{G}^{\prime \prime}(t) \leq \frac{C_{0}}{1+t} \quad c_{0}, C_{0} \text { positive constants. }
\end{aligned}
$$

and $0<a_{0} \leq a(x) \leq a_{1}<\infty$ and Hölder continuous.

Examples

- $G(x, s, \eta)=a(x) \widetilde{G}\left(|\eta|^{p(x)}\right)$ with $\widetilde{G} \in C^{2}([0, \infty))$,

$$
\begin{aligned}
c_{0} & \leq \widetilde{G}^{\prime}(t) \leq C_{0} \\
0 & \leq \widetilde{G}^{\prime \prime}(t) \leq \frac{C_{0}}{1+t} \quad c_{0}, C_{0} \text { positive constants. }
\end{aligned}
$$

and $0<a_{0} \leq a(x) \leq a_{1}<\infty$ and Hölder continuous.
Also

- $G(x, s, \eta)=(A(x) \eta \cdot \eta)|\eta|^{p(x)-2}$ with A uniformly positive definite and bounded matrix.

