Lipschitz continuity of nonnegative minimizers of functionals of Bernoulli type with nonstandard growth

C. Lederman, N. Wolanski

Monday's nonstandard seminar June 7, 2021

I will comment on regularity results for nonnegative local minimizers of functionals

$$J(\mathbf{v}) = \int_{\Omega} F(x, \mathbf{v}(x), \nabla \mathbf{v}(x)) + \lambda(x) \chi_{\{\mathbf{v} > 0\}} \, dx.$$

I will comment on regularity results for nonnegative local minimizers of functionals

$$J(\mathbf{v}) = \int_{\Omega} F(\mathbf{x}, \mathbf{v}(\mathbf{x}), \nabla \mathbf{v}(\mathbf{x})) + \lambda(\mathbf{x}) \chi_{\{\mathbf{v} > 0\}} \, d\mathbf{x}.$$

As the results are of a local nature, I will assume without loss of generality that $\Omega \in \mathbb{R}^N$ is smooth.

I will comment on regularity results for nonnegative local minimizers of functionals

$$J(\mathbf{v}) = \int_{\Omega} F(\mathbf{x}, \mathbf{v}(\mathbf{x}), \nabla \mathbf{v}(\mathbf{x})) + \lambda(\mathbf{x}) \chi_{\{\mathbf{v} > 0\}} \, d\mathbf{x}.$$

As the results are of a local nature, I will assume without loss of generality that $\Omega \in \mathbb{R}^N$ is smooth. Here $0 < \lambda(x) \in L^{\infty}$ and *F* is of p(x) growth in the gradient variable.

I will comment on regularity results for nonnegative local minimizers of functionals

$$J(\mathbf{v}) = \int_{\Omega} F(\mathbf{x}, \mathbf{v}(\mathbf{x}), \nabla \mathbf{v}(\mathbf{x})) + \lambda(\mathbf{x}) \chi_{\{\mathbf{v} > 0\}} \, d\mathbf{x}.$$

As the results are of a local nature, I will assume without loss of generality that $\Omega \in \mathbb{R}^N$ is smooth.

Here $0 \le \lambda(x) \in L^{\infty}$ and *F* is of p(x) growth in the gradient variable. The idea we had in mind was to see how far could we generalize the case

$$F(x,s,\eta) = \frac{|\eta|^{p(x)}}{p(x)} + b(x)s$$

 $b \in L^{\infty}$ that we had studied previously.

In that simpler case, if $0 < \lambda_1 \le \lambda(x)$, $1 < p_{min} \le p(x) \le p_{max} < \infty$ and *p* Hölder continuous we proved,

• Any nonegative local minimizer *u* is locally Lipschtiz continous.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In that simpler case, if $0 < \lambda_1 \le \lambda(x)$, $1 < p_{min} \le p(x) \le p_{max} < \infty$ and *p* Hölder continuous we proved,

• Any nonegative local minimizer *u* is locally Lipschtiz continous.

A (10) A (10)

• $\Delta_{p(x)}u := \operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) = b \text{ in } \{u > 0\}.$

In that simpler case, if $0 < \lambda_1 \le \lambda(x)$, $1 < p_{min} \le p(x) \le p_{max} < \infty$ and *p* Hölder continuous we proved,

- Any nonegative local minimizer u is locally Lipschtiz continous.
- $\Delta_{p(x)}u := \operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) = b \text{ in } \{u > 0\}.$
- If moreover *p* is Lipschtiz continuous, ∂{u > 0} is a C^{1,α} surface but for a set of null N − 1−dimensional Hausdorff measure.

In that simpler case, if $0 < \lambda_1 \le \lambda(x)$, $1 < p_{min} \le p(x) \le p_{max} < \infty$ and *p* Hölder continuous we proved,

- Any nonegative local minimizer u is locally Lipschtiz continous.
- $\Delta_{p(x)}u := \operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) = b \text{ in } \{u > 0\}.$
- If moreover *p* is Lipschtiz continuous, ∂{u > 0} is a C^{1,α} surface but for a set of null N − 1−dimensional Hausdorff measure.

•
$$|\nabla u(x)| = \left(\frac{p(x)}{p(x)-1}\lambda(x)\right)^{\frac{1}{p(x)}}$$
 on the regular part of $\partial \{u > 0\}$.

This last result shows that Lipschitz continuity is the optimal regularity one can expect.

In order to get existence of minimizers with given boundary data $\varphi \in W^{1,p(x)}(\Omega)$ we assume that $F \in C_s \cap C_n^1$ and

 $-c_1^{-1}(1+|s|^q) + \lambda_0 |\eta|^{p(x)} \le F(x,s,\eta) \le c_1(1+|s|^{\tau(x)}) + \Lambda_0 |\eta|^{p(x)}$

with $1 < q < \min_{\Omega} \tau(x)$ and positive constants c_1, λ_0 and Λ_0 . Here

$$au(x) = p^*(x) = rac{Np(x)}{N-p(x)}$$
 if $p_{max} < N$,

 $au(x) \in L^{\infty}, \ au(x) \ge p(x) \quad if \quad p_{min} > N,$

 $\tau(x) = p(x)$ if $p_{min} \le N \le p_{max}$.

э

Existence is proved for any $0 \leq \lambda(x) \in L^{\infty}$.

We also get existence of minimizers under a small oscillation hypothesis on p(x). This result allows to get existence for the functional set in small subdomains $\Omega' \subset \Omega$.

We also get existence of minimizers under a small oscillation hypothesis on p(x). This result allows to get existence for the functional set in small subdomains $\Omega' \subset \Omega$.

In fact, we assume that

 $-c_1^{-1}(1+|s|^{r(x)})+\lambda_0|\eta|^{p(x)} \leq F(x,s,\eta) \leq c_1(1+|s|^{\tau(x)})+\Lambda_0|\eta|^{p(x)}$

with $1 < r(x) \le \tau(x) - 2\delta$ in $\Omega' \subset \Omega$ with $\delta > 0$ such that $\max_{\Omega'} \tau - \min_{\Omega'} \tau < \delta$, and positive constants c_1, λ_0 and Λ_0 .

We also get existence of minimizers under a small oscillation hypothesis on p(x). This result allows to get existence for the functional set in small subdomains $\Omega' \subset \Omega$.

In fact, we assume that

 $-c_1^{-1}(1+|s|^{r(x)})+\lambda_0|\eta|^{p(x)} \leq F(x,s,\eta) \leq c_1(1+|s|^{\tau(x)})+\Lambda_0|\eta|^{p(x)}$

with $1 < r(x) \le \tau(x) - 2\delta$ in $\Omega' \subset \Omega$ with $\delta > 0$ such that $\max_{\Omega'} \tau - \min_{\Omega'} \tau < \delta$, and positive constants c_1, λ_0 and Λ_0 .

Observe that this hypothesis always holds if $r(x) < \tau(x)$ in Ω , r(x) and $\tau(x)$ are continuous and the diameter of Ω' is small enough.

We also get existence of minimizers under a small oscillation hypothesis on p(x). This result allows to get existence for the functional set in small subdomains $\Omega' \subset \Omega$.

In fact, we assume that

 $-c_1^{-1}(1+|s|^{r(x)})+\lambda_0|\eta|^{p(x)} \leq F(x,s,\eta) \leq c_1(1+|s|^{\tau(x)})+\Lambda_0|\eta|^{p(x)}$

with $1 < r(x) \le \tau(x) - 2\delta$ in $\Omega' \subset \Omega$ with $\delta > 0$ such that $\max_{\Omega'} \tau - \min_{\Omega'} \tau < \delta$, and positive constants c_1, λ_0 and Λ_0 .

Observe that this hypothesis always holds if $r(x) < \tau(x)$ in Ω , r(x) and $\tau(x)$ are continuous and the diameter of Ω' is small enough. Given $u \in W^{1,p(x)}(\Omega)$, these assumptions allow to get uniform $u + W_0^{1,p(x)}(\Omega')$ estimates for any minimizing sequence. And we prove that there exists a minimizer $v \in u + W_0^{1,p(x)}(\Omega')$ for any $0 \le \lambda(x) \in L^{\infty}$.

Throughout this talk *p* is assumed to be Hölder contiuous.

Throughout this talk *p* is assumed to be Hölder contiuous.

As usual, under some regularity assumptions of *F*, if $\lambda(x) \equiv 0$, any minimizer is a solution to

$$\operatorname{div} A(x, v(x), \nabla v(x)) = B(x, v(x), \nabla v(x)) \quad \text{in} \quad \Omega',$$
$$v = u \qquad \qquad \text{on} \quad \partial \Omega',$$

where $A(x, s, \eta) = \nabla_{\eta} F(x, s, \eta)$, $B(x, s, \eta) = F_s(x, s, \eta)$.

Throughout this talk *p* is assumed to be Hölder contiuous.

As usual, under some regularity assumptions of *F*, if $\lambda(x) \equiv 0$, any minimizer is a solution to

$$\operatorname{div} A(x, v(x), \nabla v(x)) = B(x, v(x), \nabla v(x)) \quad \text{in} \quad \Omega',$$
$$v = u \qquad \qquad \text{on} \quad \partial \Omega',$$

where $A(x, s, \eta) = \nabla_{\eta} F(x, s, \eta)$, $B(x, s, \eta) = F_s(x, s, \eta)$.

Our next assumptions are those set by Fan (JDE, 2007) for the local $C^{1,\alpha}$ regularity of bounded weak solutions.

$$\begin{split} A(x,s,0) &= 0, \\ \sum_{i,j} \frac{\partial A_i}{\partial \eta_j}(x,s,\eta)\xi_i\xi_j \geq \lambda_0 |\eta|^{p(x)-2} |\xi|^2, \\ \sum_{i,j} \left| \frac{\partial A_i}{\partial \eta_j}(x,s,\eta) \right| \leq \Lambda_0 |\eta|^{p(x)-2}, \\ \left| A(x_1,s,\eta) - A(x_2,s,\eta) \right| \leq \Lambda_0 |x_1 - x_2|^{\beta} \left(|\eta|^{p(x_1)-1} + |\eta|^{p(x_2)-1} \right) \left(1 + |\log|\eta|| \right), \\ \left| A(x,s_1,\eta) - A(x,s_2,\eta) \right| \leq \Lambda_0 |s_1 - s_2| |\eta|^{p(x)-1}. \\ \left| B(x,s,\eta) \right| \leq \Lambda_0 \left(1 + |\eta|^{p(x)} + |s|^{\tau(x)} \right), \end{split}$$

From the assumptions on A it is easy to see that

 $|A(x, s, \eta)| \leq \bar{\alpha}(p_{\min})N\Lambda_0|\eta|^{p(x)-1}.$

 $A(x, s, \eta) \cdot \eta \geq \alpha(p_{\max})\lambda_0|\eta|^{p(x)}.$

∃ ► < ∃ ►</p>

э

Under the assumptions above, Fan (JDE 2007) proved that bounded solutions to the equation are locally $C^{1,\alpha}$.

Under the assumptions above, Fan (JDE 2007) proved that bounded solutions to the equation are locally $C^{1,\alpha}$.

Moreover, if the growth of *B* is

 $|B(x, s, \eta)| \le \Lambda_0(1 + |\eta|^{p(x)-1} + |s|^{p(x)-1})$

there holds that weak solutions to the equation are locally bounded and, if the domain Ω' is smooth and the boundary datum $u \in L^{\infty}(\Omega')$ Fan and Zhao (Nonlinear Anal. 1999) proved that the weak solution $v \in L^{\infty}(\Omega')$ with norm bounded in terms of the universal constants, $\|v\|_{W^{1,p(x)}(\Omega')}$ and $\|u\|_{L^{\infty}(\Omega')}$. Observe that, $F(x, s, \eta) = a(x, s) \frac{|\eta|^{p(x)}}{p(x)} + f(x, s)$ implies that

$$A(x,s,\eta) = a(x,s)|\eta|^{p(x)-2}\eta$$

and

$$B(x,s,\eta) = a_s(x,s)\frac{|\eta|^{p(x)}}{p(x)} + f_s(x,s).$$

In this case, the growth assumption of Fan-Zhao is not verified.

Observe that, $F(x, s, \eta) = a(x, s) \frac{|\eta|^{p(x)}}{p(x)} + f(x, s)$ implies that

$$A(x,s,\eta) = a(x,s)|\eta|^{p(x)-2}\eta$$

and

$$B(x,s,\eta) = a_s(x,s)\frac{|\eta|^{p(x)}}{p(x)} + f_s(x,s).$$

In this case, the growth assumption of Fan-Zhao is not verified. And, if $F(x, s, \eta) = G(x, \eta) + f(x, s)$,

 $A(x, s, \eta) = \nabla_{\eta} G(x, \eta)$

and

 $B(x, s, \eta) = f_s(x, s).$

A very important inequality for minimization problems in $W^{1,p}$ with p constant is the following. Let $u \in W^{1,p}(\Omega')$ and $v \in u + W^{1,p}_0(\Omega')$ the solution to $\Delta_p v = 0$ in Ω' . Then,

$$\int_{\Omega'} |\nabla u|^p - |\nabla v|^p \, dx \ge c_0 \begin{cases} \int_{\Omega'} |\nabla u - \nabla v|^p \, dx & \text{if } p \ge 2, \\ \int_{\Omega'} |\nabla u - \nabla v|^2 (|\nabla u| + |\nabla v|)^{p-2} \, dx & \text{if } p < 2. \end{cases}$$

These inequalities can be used to prove that convergente sequences $\{v_n\}$ of solutions with boundary data $\{u_n\}$ that are minimizers with $\lambda_n \rightarrow 0$, are such that their limits coincide.

These inequalities have been generalized to the case $F(x, s, \eta) = a(x) \frac{|\eta|^{p(x)}}{p(x)} + b(x)s$ in our previous paper. There holds,

$$\begin{split} \int_{\Omega'} a(x) \Big(\frac{|\nabla u|^{p(x)}}{p(x)} - \frac{|\nabla v|^{p(x)}}{p(x)} \Big) + b(x) \big(u(x) - v(x) \big) \, dx \\ &\geq c_0 \Big[\int_{\{p(x) \ge 2\}} |\nabla u - \nabla v|^{p(x)} \, dx \\ &\quad + \int_{\{p(x) < 2\}} |\nabla u - \nabla v|^2 (|\nabla u| + |\nabla v|)^{p(x) - 2} \, dx \Big]. \end{split}$$

The corresponding inequality does not hold for a general F without further assumptions.

Our assumption is

$$2|A_{s}(x,s,\eta)\cdot\xi w| \leq \frac{1}{2}\sum_{i,j}\frac{\partial A_{i}}{\partial \eta_{j}}(x,s,\eta)\xi_{i}\xi_{j} + B_{s}(x,s,\eta)w^{2}, \quad (\mathsf{H})$$

イロト イヨト イヨト

for every $\eta, \xi \in \mathbb{R}^N$, $s, w \in \mathbb{R}$, $x \in \Omega$.

Our assumption is

$$2|A_{s}(x,s,\eta)\cdot\xi w| \leq \frac{1}{2}\sum_{i,j}\frac{\partial A_{i}}{\partial \eta_{j}}(x,s,\eta)\xi_{i}\xi_{j} + B_{s}(x,s,\eta)w^{2}, \quad (\mathsf{H})$$

for every $\eta, \xi \in \mathbb{R}^N$, $s, w \in \mathbb{R}$, $x \in \Omega$. Under assumption (H), for every $u \in W^{1,p(\cdot)}(\Omega)$ and $v \in W^{1,p(\cdot)}(\Omega')$ such that

$$\begin{cases} \operatorname{div} A(x, v, \nabla v) = B(x, v, \nabla v) & \text{in } \Omega', \\ v = u & \text{on } \partial \Omega', \end{cases}$$

there holds that,

$$\begin{split} \int_{\Omega'} \left(F(x, u, \nabla u) - F(x, v, \nabla v) \right) dx \geq \\ & \frac{1}{2} \alpha \lambda_0 \Big(\int_{\Omega' \cap \{ p(x) \geq 2 \}} |\nabla u - \nabla v|^{p(x)} dx \\ & + \int_{\Omega' \cap \{ p(x) < 2 \}} \Big(|\nabla u| + |\nabla v| \Big)^{p(x) - 2} |\nabla u - \nabla v|^2 dx \Big), \end{split}$$

• Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.

• Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.
- If moreover, B(x,0,0) ≡ 0, v(x) ≡ M is a supersolution to the equation if M > 0 and a subsolution if M < 0.

イロト イ理ト イヨト イヨト

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.
- If moreover, B(x,0,0) ≡ 0, v(x) ≡ M is a supersolution to the equation if M > 0 and a subsolution if M < 0.

イロト イ理ト イヨト イヨト

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.
- If moreover, $B(x, 0, 0) \equiv 0$, $v(x) \equiv M$ is a supersolution to the equation if M > 0 and a subsolution if M < 0.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.

- **(1))) (1)))**

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.
- If moreover, $B(x, 0, 0) \equiv 0$, $v(x) \equiv M$ is a supersolution to the equation if M > 0 and a subsolution if M < 0.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.

- **(1))) (1)))**

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.
- If moreover, $B(x, 0, 0) \equiv 0$, $v(x) \equiv M$ is a supersolution to the equation if M > 0 and a subsolution if M < 0.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if B(x,0,0) ≡ 0 and the boundary datum u is bounded, there holds that the solution v satisfies that ||v||_{L∞(Ω')} ≤ ||u||_{L∞(Ω')}.

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.
- If moreover, $B(x, 0, 0) \equiv 0$, $v(x) \equiv M$ is a supersolution to the equation if M > 0 and a subsolution if M < 0.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if B(x,0,0) ≡ 0 and the boundary datum u is bounded, there holds that the solution v satisfies that ||v||_{L∞(Ω')} ≤ ||u||_{L∞(Ω')}.

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.
- If moreover, $B(x, 0, 0) \equiv 0$, $v(x) \equiv M$ is a supersolution to the equation if M > 0 and a subsolution if M < 0.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if B(x,0,0) ≡ 0 and the boundary datum u is bounded, there holds that the solution v satisfies that ||v||_{L∞(Ω')} ≤ ||u||_{L∞(Ω')}.
- With the growth assumption of Fan and Zhao, the solution *w* with boundary datum *M* = ||*u*||_{L∞(Ω')} is a bounded in terms of *M* and ||*w*||_{W^{1,p(x)}(Ω')}.

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.
- If moreover, $B(x, 0, 0) \equiv 0$, $v(x) \equiv M$ is a supersolution to the equation if M > 0 and a subsolution if M < 0.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if B(x,0,0) ≡ 0 and the boundary datum u is bounded, there holds that the solution v satisfies that ||v||_{L∞(Ω')} ≤ ||u||_{L∞(Ω')}.
- With the growth assumption of Fan and Zhao, the solution *w* with boundary datum *M* = ||*u*||_{L∞(Ω')} is a bounded in terms of *M* and ||*w*||_{W^{1,p(x)}(Ω')}.

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.
- If moreover, $B(x, 0, 0) \equiv 0$, $v(x) \equiv M$ is a supersolution to the equation if M > 0 and a subsolution if M < 0.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if B(x,0,0) ≡ 0 and the boundary datum u is bounded, there holds that the solution v satisfies that ||v||_{L∞(Ω')} ≤ ||u||_{L∞(Ω')}.
- With the growth assumption of Fan and Zhao, the solution *w* with boundary datum $M = ||u||_{L^{\infty}(\Omega')}$ is a bounded in terms of *M* and $||w||_{W^{1,p(x)}(\Omega')}$. But, with constant boundary data we can see from the proof of the minimization argument that this last norm can be bounded in terms of *M* and universal constants.

- Observe that assumption (*H*) always holds if $A = A(x, \eta)$ and $B_s \ge 0$.
- Also, if (*H*) holds, necessarily $B_s \ge 0$.
- If moreover, B(x,0,0) ≡ 0, v(x) ≡ M is a supersolution to the equation if M > 0 and a subsolution if M < 0.
- With ideas similar to those leading to the main inequality we can prove a comparison principle between sub and supersolutions.
- Hence, if B(x, 0, 0) ≡ 0 and the boundary datum u is bounded, there holds that the solution v satisfies that ||v||_{L∞(Ω')} ≤ ||u||_{L∞(Ω')}.
- With the growth assumption of Fan and Zhao, the solution w with boundary datum $M = ||u||_{L^{\infty}(\Omega')}$ is a bounded in terms of M and $||w||_{W^{1,p(x)}(\Omega')}$. But, with constant boundary data we can see from the proof of the minimization argument that this last norm can be bounded in terms of M and universal constants. So that, there holds that $||v||_{L^{\infty}(\Omega')} \leq ||w||_{L^{\infty}(\Omega')} \leq C(||u||_{L^{\infty}(\Omega')})$.

Recall that, under some growth assumptions on *F*, there exists a minimizer *u* of J(v) with boundary datum $\varphi \in W^{1,p(x)}(\Omega)$.

Recall that, under some growth assumptions on *F*, there exists a minimizer *u* of J(v) with boundary datum $\varphi \in W^{1,p(x)}(\Omega)$. If moreover, $-M_2 \leq \varphi \leq M_1$ with $M_1 > 0$, $M_2 \geq 0$ and for instance,

 $F(x, s, \eta) = G(x, s, \eta) + f(x, s)$ with G, f measurable functions

Recall that, under some growth assumptions on *F*, there exists a minimizer *u* of J(v) with boundary datum $\varphi \in W^{1,p(x)}(\Omega)$. If moreover, $-M_2 \leq \varphi \leq M_1$ with $M_1 > 0$, $M_2 \geq 0$ and for instance,

 $F(x, s, \eta) = G(x, s, \eta) + f(x, s)$ with G, f measurable functions

 $G \ge 0 \text{ in } \Omega imes \mathbb{R} imes \mathbb{R}^N, \quad G(x, s, \eta) = 0 \iff \eta = 0,$

Recall that, under some growth assumptions on *F*, there exists a minimizer *u* of J(v) with boundary datum $\varphi \in W^{1,p(x)}(\Omega)$. If moreover, $-M_2 \leq \varphi \leq M_1$ with $M_1 > 0$, $M_2 \geq 0$ and for instance,

 $F(x, s, \eta) = G(x, s, \eta) + f(x, s)$ with G, f measurable functions

$$G \ge 0$$
 in $\Omega \times \mathbb{R} \times \mathbb{R}^N$, $G(x, s, \eta) = 0 \iff \eta = 0$,

 $f(x, \cdot)$ nonincreasing in $(-\infty, 0]$ and nondecreasing in $[0, +\infty)$, there holds that $-M_2 \le u \le M_1$ in Ω .

In fact, both $w_1 = u - (u - M_1)^+$ and $w_2 = u + (u + M_2)^-$ are admissible functions. Moreover,

 $\{w_1 = u - (u - M_1)^+ > 0\} = \{u > 0\}$ and $\{w_2 = u + (u + M_2)^- > 0\} = \{u > 0\}.$

In fact, both $w_1 = u - (u - M_1)^+$ and $w_2 = u + (u + M_2)^-$ are admissible functions. Moreover,

$$\{w_1 = u - (u - M_1)^+ > 0\} = \{u > 0\}$$
 and
 $\{w_2 = u + (u + M_2)^- > 0\} = \{u > 0\}.$

So that on the one hand,

$$0 \leq \int_{\Omega} F(x, w_1, \nabla w_1) - F(x, u, \nabla u) = \int_{u > M_1} F(x, M_1, 0) - F(x, u, \nabla u)$$

=
$$\int_{u > M_1} f(x, M_1) - f(x, u) - \int_{u > M_1} G(x, u, \nabla u)$$

$$\leq -\int_{u > M_1} G(x, u, \nabla u) \leq 0.$$

Hence, $G(x, u, \nabla u) = 0$ in $\{u > M_1\}$. So that, $\nabla (u - M_1)^+ = 0$ in Ω . As $(u - M_1)^+ = 0$ on $\partial \Omega$, we deduce that $u \le M_1$ in Ω . And, proceeding in a similar way we find that $u \ge -M_2$.

One first observation is that a local minimizer is a subsolution to the equation

div $A(x, u(x), \nabla u(x)) \ge B(x, u(x)\nabla u(x))$ in Ω .

The reason is that for every $0 \le \phi \in C_0^{\infty}(\Omega)$, $\{u - \varepsilon \phi > 0\} \subset \{u > 0\}$.

< 回 > < 三 > < 三 >

One first observation is that a local minimizer is a subsolution to the equation

div $A(x, u(x), \nabla u(x)) \ge B(x, u(x)\nabla u(x))$ in Ω .

The reason is that for every $0 \le \phi \in C_0^{\infty}(\Omega)$, $\{u - \varepsilon \phi > 0\} \subset \{u > 0\}$. Hence,

 $0 \geq \int_{\Omega} F(x, u(x), \nabla u(x)) - F(x, u(x) - \varepsilon \phi(x), \nabla u(x) - \varepsilon \nabla \phi(x)) \, dx.$

Proceeding as usual we get that for every $0 \le \phi \in C_0^{\infty}(\Omega)$,

$$0 \geq \int_{\Omega} A(x, u(x), \nabla u(x)) \nabla \phi(x) + B(x, u(x), \nabla u(x)) \phi(x) \, dx.$$

On the other hand,

div $A(x, u(x), \nabla u(x)) = B(x, u(x)\nabla u(x))$ in $\{u > 0\}^{\circ}$.

イロト イ団ト イヨト イヨト

On the other hand,

div $A(x, u(x), \nabla u(x)) = B(x, u(x)\nabla u(x))$ in $\{u > 0\}^{\circ}$.

In fact, if $0 \le \phi \in C_0^{\infty}(\{u > 0\}^\circ)$, we have that $\{u + \varepsilon \phi > 0\} = \{u > 0\}$.

3

On the other hand,

div $A(x, u(x), \nabla u(x)) = B(x, u(x)\nabla u(x))$ in $\{u > 0\}^{\circ}$.

In fact, if $0 \le \phi \in C_0^{\infty}(\{u > 0\}^\circ)$, we have that $\{u + \varepsilon \phi > 0\} = \{u > 0\}$. Proceeding as above we get,

 $0 \geq \int_{\Omega} F(x, u(x), \nabla u(x)) - F(x, u(x) + \varepsilon \phi(x), \nabla u(x) + \varepsilon \nabla \phi(x)) \, dx.$

On the other hand,

div $A(x, u(x), \nabla u(x)) = B(x, u(x)\nabla u(x))$ in $\{u > 0\}^{\circ}$.

In fact, if $0 \le \phi \in C_0^{\infty}(\{u > 0\}^\circ)$, we have that $\{u + \varepsilon \phi > 0\} = \{u > 0\}$. Proceeding as above we get,

 $0 \geq \int_{\Omega} F(x, u(x), \nabla u(x)) - F(x, u(x) + \varepsilon \phi(x), \nabla u(x) + \varepsilon \nabla \phi(x)) \, dx.$

So that for every $0 \le \phi \in C_0^{\infty}(\{u > 0\}^\circ)$,

 $0 \leq \int_{\Omega} A(x, u(x), \nabla u(x)) \nabla \phi(x) + B(x, u(x), \nabla u(x)) \phi(x) \, dx.$

 Our first regularity result is the Hölder continuity of nonnegative bounded local minimizers.

 Our first regularity result is the Hölder continuity of nonnegative bounded local minimizers.

- Our first regularity result is the Hölder continuity of nonnegative bounded local minimizers.
- A first conclusion is that such a minimizer is a solution to the equation in its positivity set.

- Our first regularity result is the Hölder continuity of nonnegative bounded local minimizers.
- A first conclusion is that such a minimizer is a solution to the equation in its positivity set.

- Our first regularity result is the Hölder continuity of nonnegative bounded local minimizers.
- A first conclusion is that such a minimizer is a solution to the equation in its positivity set.
- I will give some idea of the proof. In particular, in order to show one use of the main inequality.

The idea is to prove that, given $\Omega' \subset \subset \Omega'' \subset \subset \Omega$ such that the diameter of Ω'' is small enough, there exists $\rho_0 > 0$ such that, if $\rho \leq \rho_0$, $x_0 \in \Omega'$,

$$\left(rac{1}{
ho^N}\int_{B_
ho(x_0)}|
abla u|^{
ho_-}\,dx
ight)^{1/
ho_-}\leq C
ho^{lpha-1}$$

for some $0 < \alpha < 1$ and some positive constant *C*.Then, $u \in C^{\alpha}(\Omega')$. Here $p_{-} = \min_{\Omega''} p$.

The idea is to prove that, given $\Omega' \subset \subset \Omega'' \subset \subset \Omega$ such that the diameter of Ω'' is small enough, there exists $\rho_0 > 0$ such that, if $\rho \leq \rho_0$, $x_0 \in \Omega'$,

$$\left(rac{1}{
ho^N}\int_{B_
ho(x_0)}|
abla u|^{p_-}\,dx
ight)^{1/p_-}\leq C
ho^{lpha-1}$$

for some $0 < \alpha < 1$ and some positive constant *C*.Then, $u \in C^{\alpha}(\Omega')$. Here $p_{-} = \min_{\Omega''} p$.

In order to get this inequality we use as comparison function the solution $v \in u + W_0^{1,p(x)}(B_r(x_0))$ to the equation A - B.

The idea is to prove that, given $\Omega' \subset \subset \Omega'' \subset \subset \Omega$ such that the diameter of Ω'' is small enough, there exists $\rho_0 > 0$ such that, if $\rho \leq \rho_0$, $x_0 \in \Omega'$,

$$\left(rac{1}{
ho^N}\int_{B_
ho(x_0)}|
abla u|^{
ho_-}\,dx
ight)^{1/
ho_-}\leq C
ho^{lpha-1}$$

for some $0 < \alpha < 1$ and some positive constant *C*.Then, $u \in C^{\alpha}(\Omega')$. Here $p_{-} = \min_{\Omega''} p$.

In order to get this inequality we use as comparison function the solution $v \in u + W_0^{1,p(x)}(B_r(x_0))$ to the equation A - B.

We take $r \leq r_0$ with r_0 small enough so that $B_{r_0}(x_0) \subset \Omega''$ and the diameter of Ω'' small so that r_0 is small so that this solution exists.

The idea is to prove that, given $\Omega' \subset \subset \Omega'' \subset \subset \Omega$ such that the diameter of Ω'' is small enough, there exists $\rho_0 > 0$ such that, if $\rho \leq \rho_0$, $x_0 \in \Omega'$,

$$\left(rac{1}{
ho^N}\int_{B_
ho(x_0)}|
abla u|^{
ho_-}\,dx
ight)^{1/
ho_-}\leq C
ho^{lpha-1}$$

for some $0 < \alpha < 1$ and some positive constant *C*.Then, $u \in C^{\alpha}(\Omega')$. Here $p_{-} = \min_{\Omega''} p$.

In order to get this inequality we use as comparison function the solution $v \in u + W_0^{1,p(x)}(B_r(x_0))$ to the equation A - B.

We take $r \leq r_0$ with r_0 small enough so that $B_{r_0}(x_0) \subset \Omega''$ and the diameter of Ω'' small so that r_0 is small so that this solution exists. Here we are assuming that

 $-c_{1}^{-1}(1+|s|^{r(x)}) + \lambda_{0}|\eta|^{p(x)} \leq F(x,s,\eta) \leq c_{1}(1+|s|^{\tau(x)}) + \Lambda_{0}|\eta|^{p(x)}$ with $1 < r(x) < \tau(x)$ in Ω and $r \in C(\Omega)$. From the main inequality and the fact that u is a minimizer of J we get

$$\begin{split} &\int_{B_r(x_0)\cap\{p\geq 2\}}|\nabla u-\nabla v|^{p(x)}\,dx\leq Cr^N,\\ &\int_{B_r(x_0)\cap\{p< 2\}}|\nabla u-\nabla v|^2(|\nabla u|+|\nabla v|)^{p(x)-2}\,dx\leq Cr^N. \end{split}$$

From the main inequality and the fact that u is a minimizer of J we get

$$\begin{split} &\int_{B_r(x_0)\cap\{p\geq 2\}}|\nabla u-\nabla v|^{p(x)}\,dx\leq Cr^N,\\ &\int_{B_r(x_0)\cap\{p< 2\}}|\nabla u-\nabla v|^2(|\nabla u|+|\nabla v|)^{p(x)-2}\,dx\leq Cr^N. \end{split}$$

Then, we take $\varepsilon > 0$ to be chosen and r_0 small such that $r_0^{\varepsilon} \le 1/2$ and let $\rho = r^{1+\varepsilon}$.

イロン イ理 とく ヨン イヨン

3

From the main inequality and the fact that u is a minimizer of J we get

$$\int_{B_r(x_0)\cap\{p\geq 2\}} |\nabla u - \nabla v|^{p(x)} dx \le Cr^N,$$

$$\int_{B_r(x_0)\cap\{p< 2\}} |\nabla u - \nabla v|^2 (|\nabla u| + |\nabla v|)^{p(x)-2} dx \le Cr^N.$$

Then, we take $\varepsilon > 0$ to be chosen and r_0 small such that $r_0^{\varepsilon} \le 1/2$ and let $\rho = r^{1+\varepsilon}$. Then, applying Young's inequality to the integrand we get

$$\int_{\{p<2\}\cap B_{\rho}(x_0)} |\nabla u - \nabla v|^{p(x)} dx \leq C_{\theta} r^N + C\theta \int_{B_{\rho}(x_0)\cap\{p<2\}} (|\nabla u| + |\nabla v|)^{p(x)}$$

So that,

 $\int_{B_{\rho}(x_0)} |\nabla u - \nabla v|^{\rho(x)} dx \leq C_{\theta} r^N + C\theta \int_{B_{\rho}(x_0) \cap \{\rho < 2\}} (|\nabla u| + |\nabla v|)^{\rho(x)} dx,$

and by choosing θ small enough we conclude that,

$$\int_{B_{\rho}(x_0)} |\nabla u|^{\rho(x)} dx \leq Cr^N + C \int_{B_{\rho}(x_0)} |\nabla v|^{\rho(x)} dx,$$

The aim is to prove that

$$\sup_{B_{r/2}(x_0)} |\nabla v| \leq \frac{CM}{r},$$

where $M = \|v\|_{L^{\infty}(B_r(x_0))} \leq C(\|u\|_{L^{\infty}(B_r(x_0))}).$

The aim is to prove that

$$\sup_{B_{r/2}(x_0)} |\nabla v| \leq \frac{CM}{r},$$

where $M = \|v\|_{L^{\infty}(B_r(x_0))} \leq C(\|u\|_{L^{\infty}(B_r(x_0))})$. If this inequality holds, we get

.....

J

$$\int_{B_{\rho}(x_0)} |\nabla u|^{\rho(x)} dx \leq Cr^N + C\rho^N r^{-\rho_+}.$$

イロト イ団ト イヨト イヨ

Here $p_+ = \max_{\Omega''} p$.

The aim is to prove that

$$\sup_{B_{r/2}(x_0)} |\nabla v| \leq \frac{CM}{r},$$

where $M = \|v\|_{L^{\infty}(B_r(x_0))} \leq C(\|u\|_{L^{\infty}(B_r(x_0))})$. If this inequality holds, we get

$$\int_{B_{\rho}(x_0)} |\nabla u|^{\rho(x)} dx \leq Cr^N + C\rho^N r^{-
ho_+}.$$

Here $p_+ = \max_{\Omega''} p$. Hence, if we take $\varepsilon \leq \frac{p_{\min}}{N}$, we have that

$$\begin{split} \frac{1}{\rho^N} \int_{B_\rho(x_0)} |\nabla u|^{p_-} \, dx &\leq C_N + \frac{1}{\rho^N} \int_{B_\rho(x_0)} |\nabla u|^{p(x)} \, dx \\ &\leq C_N + C \Big(\frac{r}{\rho}\Big)^N + Cr^{-p_+} \leq C_N + Cr^{-\varepsilon N} + Cr^{-p_+} \leq Cr^{-p_+} = C\rho^{-\frac{p_+}{(1+\varepsilon)}} \end{split}$$

We conclude that,

$$\left(\frac{1}{\rho^N}\int_{B_{\rho}(x_0)}|\nabla u|^{\rho_-}\,dx\right)^{1/\rho_-}\leq C\rho^{-\frac{\rho_+}{\rho_-}\frac{1}{1+\varepsilon}}.$$

Finally, if the diameter of Ω'' is small enough there holds that

$$rac{oldsymbol{
ho}_+}{oldsymbol{
ho}_-} \leq 1 + rac{arepsilon}{2},$$

so that,

$$\left(\frac{1}{\rho^{N}}\int_{B_{\rho}(x_{0})}|\nabla u|^{p_{-}}\,dx\right)^{1/p_{-}}\leq C\rho^{-\frac{(1+\frac{p}{2})}{(1+\varepsilon)}}=C\rho^{-(1-\alpha)}.$$

In order to finish the proof we need to prove that

イロト イ理ト イヨト イヨト

In order to finish the proof we need to prove that

$$\sup_{B_{r/2}(x_0)} |\nabla v| \leq \frac{CM}{r}.$$

For that purpose we consider the rescaled function $w(x) = \frac{v(x_0+rx)}{M}$ and prove that $|\nabla w| \leq C$ in $B_{1/2}$. So that,

$$\frac{r}{M}|\nabla v| \leq C \quad \text{in} \quad B_{r/2}(x_0).$$

In order to finish the proof we need to prove that

$$\sup_{B_{r/2}(x_0)} |\nabla v| \leq \frac{CM}{r}.$$

For that purpose we consider the rescaled function $w(x) = \frac{v(x_0+rx)}{M}$ and prove that $|\nabla w| \le C$ in $B_{1/2}$. So that,

$$\frac{r}{M}|\nabla v| \leq C \quad \text{in} \quad B_{r/2}(x_0).$$

There holds that w is the solution of a rescaled equation

$$\operatorname{div}\bar{A}(x,w,\nabla w) = \bar{B}(x,w,\nabla w)$$
 in B_1

where

$$\bar{A}(x, s, \eta) = A(x_0 + rx, Ms, \frac{M}{r}\eta)$$

 $\bar{B}(x,s,\eta)=rB(x_0+rx,Ms,\frac{M}{r}\eta).$

The problem is that \overline{A} and \overline{B} do not satisfy ellipticity and regularity hypotheses uniform in *r* and *M*.

Regularity of nonnegative, bounded minimizers

The problem is that \overline{A} and \overline{B} do not satisfy ellipticity and regularity hypotheses uniform in *r* and *M*. So, we let

$$\widetilde{A}(x,s,\eta) = \left(\frac{r}{M}\right)^{p_{-}-1} \overline{A}(x,s,\eta), \qquad \widetilde{B}(x,s,\eta) = \left(\frac{r}{M}\right)^{p_{-}-1} \overline{B}(x,s,\eta),$$

and observe that $w \in W^{1,\bar{p}(\cdot)}(B_1) \cap L^{\infty}(B_1)$ satisfies

$$\operatorname{div}\widetilde{A}(x, w, \nabla w) = \widetilde{B}(x, w, \nabla w)$$
 in B_1 ,

where $\bar{p}(x) = p(x_0 + rx)$, and this equation is under the hypotheses of the paper by Fan on the $C^{1,\alpha}$ regularity. And, we are done.

Regularity of nonnegative, bounded minimizers

The proof of the Lipschitz continuity is much more involved. It is performed through a contradiction argument. So we have to deal with sequences of solutions. Moreover, within the proof we have to perform 2 rescalings.

I will not talk about this proof. If someone is interested, the paper has been published in Mathematics in Engineering (October, 2020) (volume in honor of Sandro Salsa).

Thank you for your attention

Some examples of application of our results are:

 $F(x, s, \eta) = G(x, s, \eta) + f(x, s)$

with

• $f \in L^{\infty}$ and $f \in C_s^2$.

Some examples of application of our results are:

$$F(x, s, \eta) = G(x, s, \eta) + f(x, s)$$

< 🗇 🕨 < 🖃 >

- $f \in L^{\infty}$ and $f \in C_s^2$.
- $\ \, @ \ \, -c_1(1+|s|^{r(x)})\leq f(x,s)\leq c_1(1+|s|^{\tau(x)}) \text{ with } r(x)<\tau(x).$

Some examples of application of our results are:

 $F(x, s, \eta) = G(x, s, \eta) + f(x, s)$

- $f \in L^{\infty}$ and $f \in C_s^2$.
- $c_1(1+|s|^{r(x)}) \le f(x,s) \le c_1(1+|s|^{\tau(x)}) \text{ with } r(x) < \tau(x).$
- f(x, ·) nonincreasing in $(-\infty, 0]$ and nondecreasing in $[0, +\infty)$.

Some examples of application of our results are:

 $F(x, s, \eta) = G(x, s, \eta) + f(x, s)$

- $f \in L^{\infty}$ and $f \in C_s^2$.
- $\ \, @ \ \, -c_1(1+|s|^{r(x)})\leq f(x,s)\leq c_1(1+|s|^{\tau(x)}) \text{ with } r(x)<\tau(x).$
- f(x, ·) nonincreasing in (-∞, 0] and nondecreasing in [0, +∞).
 f_{ss} ≥ 0.

Some examples of application of our results are:

 $F(x, s, \eta) = G(x, s, \eta) + f(x, s)$

- $f \in L^{\infty}$ and $f \in C_s^2$.
- $\ \, @ \ \, -c_1(1+|s|^{r(x)}) \leq f(x,s) \leq c_1(1+|s|^{\tau(x)}) \text{ with } r(x) < \tau(x).$
- **3** $f(x, \cdot)$ nonincreasing in $(-\infty, 0]$ and nondecreasing in $[0, +\infty)$.
- **4** $f_{ss} \ge 0.$

Some examples of application of our results are:

 $F(x, s, \eta) = G(x, s, \eta) + f(x, s)$

- $f \in L^{\infty}$ and $f \in C_s^2$.
- $\ \, @ \ \, -c_1(1+|s|^{r(x)}) \leq f(x,s) \leq c_1(1+|s|^{\tau(x)}) \text{ with } r(x) < \tau(x).$
- **3** $f(x, \cdot)$ nonincreasing in $(-\infty, 0]$ and nondecreasing in $[0, +\infty)$.
- **4** $f_{ss} \ge 0.$

Some examples of application of our results are:

 $F(x, s, \eta) = G(x, s, \eta) + f(x, s)$

with

•
$$f \in L^{\infty}$$
 and $f \in C_s^2$

- $\ \, @ \ \, -c_1(1+|s|^{r(x)})\leq f(x,s)\leq c_1(1+|s|^{\tau(x)}) \text{ with } r(x)<\tau(x).$
- **③** $f(x, \cdot)$ nonincreasing in $(-\infty, 0]$ and nondecreasing in $[0, +\infty)$.
- $f_{ss} \geq 0.$
- $| f_s(x,s) | \leq \Lambda_0(1+|s|^{\tau(x)}) \text{ in } \Omega \times \mathbb{R}.$

For example,

$$f(x,s) = b(x)(1+s^2)^{\frac{\tau(x)}{2}}$$

with $0 \leq b \in L^{\infty}(\Omega)$

•
$$G(x, s, \eta) = a(x, s) \frac{|\eta|^{p(x)}}{p(x)}$$
 with

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

•
$$G(x, s, \eta) = a(x, s) \frac{|\eta|^{p(x)}}{p(x)}$$
 with

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

• $G(x, s, \eta) = a(x, s) \frac{|\eta|^{p(x)}}{p(x)}$ with • $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_s^2$.

• $G(x, s, \eta) = a(x, s) \frac{|\eta|^{p(x)}}{p(x)}$ with • $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_s^2$. • $0 < a_0 \le a(x, s) \le a_1 < \infty$.

• $G(x, s, \eta) = a(x, s) \frac{|\eta|^{p(x)}}{p(x)}$ with • $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_s^2$. • $0 < a_0 \le a(x, s) \le a_1 < \infty$. • $|a_s(x, s)| \le a_2 < \infty$ in $\Omega \times \mathbb{R}$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $G(x, s, \eta) = a(x, s) \frac{|\eta|^{p(x)}}{p(x)}$ with • $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_{s}^{2}$. • $0 < a_{0} \le a(x, s) \le a_{1} < \infty$. • $|a_{s}(x, s)| \le a_{2} < \infty$ in $\Omega \times \mathbb{R}$. • $(a(x, s)^{1-\gamma(x)})_{ss} \le 0$ with $\gamma(x) = \frac{2p(x)}{\min\{1, p(x) - 1\}} > 1$.

• $G(x, s, \eta) = a(x, s) \frac{|\eta|^{p(x)}}{p(x)}$ with • $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_{s}^{2}$. • $0 < a_{0} \le a(x, s) \le a_{1} < \infty$. • $|a_{s}(x, s)| \le a_{2} < \infty$ in $\Omega \times \mathbb{R}$. • $(a(x, s)^{1-\gamma(x)})_{ss} \le 0$ with $\gamma(x) = \frac{2p(x)}{\min\{1, p(x) - 1\}} > 1$.

• $G(x, s, \eta) = a(x, s) \frac{|\eta|^{p(x)}}{p(x)}$ with 1 $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_s^2$. 2 $0 < a_0 \le a(x, s) \le a_1 < \infty$. 3 $|a_s(x, s)| \le a_2 < \infty$ in $\Omega \times \mathbb{R}$. 4 $(a(x, s)^{1-\gamma(x)})_{ss} \le 0$ with $\gamma(x) = \frac{2p(x)}{\min\{1, p(x)-1\}} > 1$.

If the minimizer u lies between 0 and M, condition (4) only needs to hold for $s \in [0, M]$.

< 🗇 🕨 < 🖃 >

• $G(x, s, \eta) = a(x, s) \frac{|\eta|^{p(x)}}{p(x)}$ with 1 $a \in C^{\alpha}(\Omega \times \mathbb{R}) \cap C_s^2$. 2 $0 < a_0 \le a(x, s) \le a_1 < \infty$. 3 $|a_s(x, s)| \le a_2 < \infty$ in $\Omega \times \mathbb{R}$. 4 $(a(x, s)^{1-\gamma(x)})_{ss} \le 0$ with $\gamma(x) = \frac{2p(x)}{\min\{1, p(x) - 1\}} > 1$.

If the minimizer u lies between 0 and M, condition (4) only needs to hold for $s \in [0, M]$.

For instance, if the boundary datum $\varphi \in [0, M]$ and condition (4) above holds for $s \in [0, M]$ and the others hold for s in a neighborhood of [0, M], there holds that the minimizer u moves in that range and it is locally Lipschitz continuous in Ω .

A possible example would be

$$a(x,s) = \begin{cases} (1+s)^{-q(x)} & \text{if } -1/2 \le s \le M+1, \\ 2^{q(x)} & \text{if } s \le -1/2, \\ (2+M)^{-q(x)} & \text{if } s \ge M+1, \end{cases}$$

with $q \in L^{\infty}(\Omega)$ a Hölder continuous function such that $0 < q(x) < \frac{1}{\gamma(x)-1}$.

A possible example would be

$$a(x,s) = \begin{cases} (1+s)^{-q(x)} & \text{if } -1/2 \le s \le M+1, \\ 2^{q(x)} & \text{if } s \le -1/2, \\ (2+M)^{-q(x)} & \text{if } s \ge M+1, \end{cases}$$

with $q \in L^{\infty}(\Omega)$ a Hölder continuous function such that $0 < q(x) < \frac{1}{\gamma(x)-1}$.

With this choice, a minimizer always exists, it lies between 0 and M and it is locally Lipschitz continuous.

• $G(x, s, \eta) = a(x)\widetilde{G}(|\eta|^{p(x)})$ with $\widetilde{G} \in C^2([0, \infty))$, $c_0 \leq \widetilde{G}'(t) \leq C_0,$ $0 \leq \widetilde{G}''(t) \leq \frac{C_0}{1+t}$ c_0, C_0 positive constants.

▲帰▶ ▲臣▶ ▲臣

and $0 < a_0 \le a(x) \le a_1 < \infty$ and Hölder continuous.

• $G(x, s, \eta) = a(x)\widetilde{G}(|\eta|^{p(x)})$ with $\widetilde{G} \in C^2([0, \infty))$, $c_0 \leq \widetilde{G}'(t) \leq C_0,$ $0 \leq \widetilde{G}''(t) \leq \frac{C_0}{1+t}$ c_0, C_0 positive constants.

▲帰▶ ▲臣▶ ▲臣

and $0 < a_0 \le a(x) \le a_1 < \infty$ and Hölder continuous.

• $G(x, s, \eta) = a(x)\widetilde{G}(|\eta|^{p(x)})$ with $\widetilde{G} \in C^2([0, \infty))$, $c_0 \leq \widetilde{G}'(t) \leq C_0$, $0 \leq \widetilde{G}''(t) \leq \frac{C_0}{1+t}$ c_0, C_0 positive constants.

and $0 < a_0 \le a(x) \le a_1 < \infty$ and Hölder continuous.

Also

G(x, s, η) = (A(x)η ⋅ η)|η|^{p(x)-2} with A uniformly positive definite and bounded matrix.