Regularity results for a class of obstacle problems with generalized Orlicz growth

Mikyoung Lee

Pusan National University

Based on joint work with Arttu Karppinen

Monday's Nonstandard Seminar 2020/21
Warsaw (on-line), February 22, 2021

Introduction

Let $\Omega \subset \mathbb{R}^{n}(n \geqslant 2)$ be open and bounded. We consider local minimizers of the functional

$$
\mathcal{K}_{\psi}^{\varphi}(\Omega) \ni u \mapsto \int_{\Omega} \varphi(x,|\nabla u|) d x
$$

where the class

$$
\mathcal{K}_{\psi}^{\varphi}(\Omega):=\left\{u \in W^{1, \varphi}(\Omega) \mid u \geqslant \psi \text { a.e. in } \Omega\right\}
$$

for a fixed function $\psi: \Omega \rightarrow[-\infty, \infty)$ which is called the obstacle.

Introduction

- We consider the functional

$$
\mathcal{F}(u, \Omega):=\int_{\Omega} F(x, \nabla u) d x
$$

- (Standard) p-growth:

$$
F(x, z) \approx|z|^{p}, 1<p<\infty
$$

- General growth - the class of functions depending only on z :

$$
F(x, z) \approx \psi(|z|)
$$

- Non-autonomous functionals - the classes of functions whose growth or ellipticity depend on the x-variable:
$p(x)$-growth : $F(x, z) \approx|z|^{p(x)}$
Double phase: $F(x, z) \approx|z|^{p}+a(x)|z|^{q}, \ldots$
Generalized Orlicz growth: $F(x, z) \approx \varphi(x,|z|)$

Standard growth

We consider the regularity of minimizers of the functional

$$
\int_{\Omega} F(x, \nabla u) d x
$$

- Standard p-growth case (Giaquinta-Giusti, 1983)

$$
\begin{aligned}
& F: \Omega \times \mathbb{R}^{n} \rightarrow {[0, \infty) \text { satisfies } } \\
& \qquad\left\{\begin{array}{l}
z \mapsto F(x, z) \text { is } C^{2}, 1<p<\infty \\
\nu|z|^{p} \leqslant F(x, z) \leqslant L\left(1+|z|^{p}\right), \\
\nu|z|^{p-2}|\lambda|^{2} \leqslant F_{z z}(x, z) \lambda \cdot \lambda \leqslant L|z|^{p-2}|\lambda|^{2} \\
|F(x, z)-F(y, z)| \leqslant \omega(|x-y|)\left(1+|z|^{p}\right)
\end{array}\right.
\end{aligned}
$$

- (De Giorgi's method) $u \in C_{\text {loc }}^{0, \alpha}(\Omega)$ for some $\alpha \in(0,1)$.
- $\lim _{r \rightarrow 0^{+}} \omega(r)=0 \Longrightarrow u \in C_{\operatorname{loc}}^{0, \alpha}(\Omega)$ for any $\alpha \in(0,1)$.
- $\omega(r) \lesssim r^{\beta}$ for some $\beta>0 \Longrightarrow u \in C_{\text {loc }}^{1, \alpha}(\Omega)$ for some $\alpha \in(0,1)$.

Non-standard growth

We consider the regularity of minimizers of the functional

$$
\int_{\Omega} F(x, \nabla u) d x .
$$

- Functionals with (p, q)-growth conditions introduced by Marcellini (1989):

$$
F: \Omega \times \mathbb{R}^{n} \rightarrow[0, \infty) \text { satisfies }
$$

$$
\left\{\begin{array}{l}
z \mapsto F(x, z) \text { is } C^{2}, 1<p \leqslant q \\
\nu|z|^{p} \leqslant F(x, z) \leqslant L\left(1+|z|^{q}\right), \\
\nu|z|^{p-2}|\lambda|^{2} \leqslant F_{z z}(x, z) \lambda \cdot \lambda \leqslant L|z|^{q-2}|\lambda|^{2} .
\end{array}\right.
$$

- When $F(x, z) \equiv \varphi(x,|z|)$,

$$
\left\{\begin{array}{l}
t \mapsto \varphi(x, t) \text { is } C^{2}, 1<p \leqslant q \\
p-1 \leqslant \frac{t \varphi^{\prime \prime}(x, t)}{\varphi^{\prime}(x, t)} \leqslant q-1\left(\Longleftrightarrow t \varphi^{\prime \prime}(x, t) \approx \varphi^{\prime}(x, t)\right)
\end{array}\right.
$$

Non-standard growth

We consider minimizers of the functionals with generalized Orlicz growth

$$
W^{1, \varphi}(\Omega) \ni u \mapsto \int_{\Omega} F(x, \nabla u) d x
$$

where $F: \Omega \times \mathbb{R}^{n} \rightarrow[0, \infty)$ satisfies

$$
\left\{\begin{array}{l}
z \mapsto F(x, z) \text { is } C^{2}, \\
\nu \varphi(x,|z|) \leqslant F(x, z) \leqslant L \varphi(x,|z|), \\
\nu \frac{\varphi^{\prime}(x,|z|)}{|z|}|\lambda|^{2} \leqslant F_{z z}(x, z) \lambda \cdot \lambda \leqslant L \frac{\varphi^{\prime}(x,|z|)}{|z|}|\lambda|^{2} .
\end{array}\right.
$$

Generalized Orlicz function

- We say that $\varphi: \Omega \times[0, \infty) \rightarrow[0, \infty]$ is a Φ-prefunction if the following hold:
(i) For every $t \in[0, \infty)$ the function $x \mapsto \varphi(x, t)$ is measurable.
(ii) For every $x \in \Omega$ the function $t \mapsto \varphi(x, t)$ is non-decreasing.
(iii) $\lim _{t \rightarrow 0^{+}} \varphi(x, t)=\varphi(x, 0)=0$ and $\lim _{t \rightarrow \infty} \varphi(x, t)=\infty$ for every $x \in \Omega$.
- A Φ-prefunction is a weak Φ-function, denoted by $\varphi \in \Phi_{w}(\Omega)$, if the following hold:
(iv) The function $t \mapsto \frac{\varphi(x, t)}{t}$ is almost increasing in $(0, \infty)$ for every $x \in \Omega$.
(v) The function $t \mapsto \varphi(x, t)$ is left-continuous for every $x \in \Omega$.

Here, almost increasing means that $g(s) \leqslant L g(t)$ when $t>s$ for some $L \geqslant 1$.
cf. almost decreasing means that $g(t) \leqslant L g(s)$ when $t>s$ for some $L \geqslant 1$.

- Harjulehto, Hästö: Orlicz spaces and generalized Orlicz spaces, 2019.

Conditions on φ

Let $\varphi: \Omega \times[0, \infty) \rightarrow[0, \infty)$ and $\gamma>0$. We say that φ satisfies
(alnc) $)_{\gamma}$ if $t \mapsto \frac{\varphi(x, t)}{t^{\gamma}}$ is almost increasing with constant $L \geqslant 1$ uniformly in $x \in \Omega$.
(aDec) $)_{\gamma}$ if $t \mapsto \frac{\varphi(x, t)}{t^{\gamma}}$ is almost decreasing with constant $L \geqslant 1$ uniformly in $x \in \Omega$.
When $L=1$, $(\mathrm{alnc})_{\gamma}=(\operatorname{lnc})_{\gamma},(\mathrm{aDec})_{\gamma}=(\mathrm{Dec})_{\gamma}$.
(A0) if there exists $L \geqslant 1$ such that $L^{-1} \leqslant \varphi(x, 1) \leqslant L$ for every $x \in \Omega$.

- Assumption

$$
\begin{aligned}
& p-1 \leqslant \frac{t \varphi^{\prime \prime}(x, t)}{\varphi^{\prime}(x, t)} \leqslant q-1 \\
& \Longleftrightarrow t \varphi^{\prime \prime}(x, t) \approx \varphi^{\prime}(x, t) \\
& \Longleftrightarrow \varphi^{\prime} \text { satisfies }(\operatorname{lnc})_{p-1} \text { and }(\mathrm{Dec})_{q-1} \\
& \Longrightarrow \varphi \text { satisfies }(\operatorname{lnc})_{p} \text { and }(\mathrm{Dec})_{q}
\end{aligned}
$$

Non-standard growth

- Let u be a minimizer of the functional

$$
\int_{\Omega} \varphi(x,|\nabla u|) d x
$$

where $\varphi(x, t)=a(x) \psi(t)$ satisfies Orlicz growth:

$$
\left\{\begin{array}{l}
\psi \text { is } C^{2}, \\
0<\nu \leqslant a(\cdot) \leqslant L, \\
t \psi^{\prime \prime}(t) \approx \psi^{\prime}(t)
\end{array}\right.
$$

- $u \in C_{\mathrm{loc}}^{0, \alpha}(\Omega)$ for some $\alpha \in(0,1)$.
- $\lim _{r \rightarrow 0^{+}} \omega(r)=0\left(a \in C^{0}\right) \Longrightarrow u \in C_{\text {loc }}^{0, \alpha}(\Omega)$ for any $\alpha \in(0,1)$.
- $\omega(r) \lesssim r^{\beta}$ for some $\beta>0\left(a \in C^{\beta}\right) \Longrightarrow u \in C_{\text {loc }}^{1, \alpha}(\Omega)$ for some $\alpha \in(0,1)$.
- Lieberman (1991),

Conditions on φ

We say that φ satisfies
(A1) if there exists $L \geqslant 1$ such that, for every ball $B_{r} \Subset \Omega$

$$
\varphi_{B_{r}}^{+}(t) \leqslant L \varphi_{B_{r}}^{-}(t) \quad \text { when } \quad \varphi_{B_{r}}^{-}(t) \in\left[1, \frac{1}{\left|B_{r}\right|}\right] \text {. }
$$

(A1-n) if there exists $L \geqslant 1$ such that, for every ball $B_{r} \in \Omega$

$$
\varphi_{B_{r}}^{+}(t) \leqslant L \varphi_{B_{r}}^{-}(t) \quad \text { when } \quad t^{n} \in\left[1, \frac{1}{\left|B_{r}\right|}\right] .
$$

Here, $\varphi_{B_{r}}^{+}(t):=\sup _{x \in B_{r}} \varphi(x, t), \varphi_{B_{r}}^{-}(t):=\inf _{x \in B_{r}} \varphi(x, t)$.

Non-standard growth

- Let u be a minimizer of the functional

$$
\int_{\Omega} \varphi(x,|\nabla u|) d x .
$$

- Variable exponent case: $\varphi(x, t)=t^{p(x)} w(x)$ (A0) $w \approx 1$
(alnc) $\inf p>1$
(aDec) $\sup p<\infty$
(A1) p is locally log-Hölder continuous.
(A1-n) p is locally log-Hölder continuous.
- Double phase case : $\varphi(x, t)=t^{p}+a(x) t^{q}$ (A0) $a \in L^{\infty}$
(alnc) $p>1$
(aDec) $q<\infty$
(A1) $a \in C^{0, \beta}, q \leqslant p+\frac{p}{n} \beta$
(A1-n) $a \in C^{0, \beta}, q \leqslant p+\beta$

Non-standard growth

- $p(x)$-growth case: $\varphi(x, t)=t^{p(x)}$
- $\lim _{r \rightarrow 0} \omega_{p}(r) \log \left(\frac{1}{r}\right)=L<\infty \Longrightarrow u \in C_{\text {loc }}^{0, \alpha}(\Omega)$ for some $\alpha \in(0,1)$.
- $\lim _{r \rightarrow 0} \omega_{p}(r) \log \left(\frac{1}{r}\right)=0 \Longrightarrow u \in C_{\text {loc }}^{0, \alpha}(\Omega)$ for any $\alpha \in(0,1)$.
- $\omega_{p}(r) \lesssim r^{\beta}$ for some $\beta>0 \Longrightarrow u \in C_{\text {loc }}^{1, \alpha}(\Omega)$ for some $\alpha \in(0,1)$.
- Acerbi-Coscia-Mingione (1999, 2001),
- Double phase case: $\varphi(x, t)=t^{p}+a(x) t^{q}$
with $1<p \leqslant q<\infty, a \in C^{0, \beta}(\Omega)$ for some $\beta \in(0,1]$.
- Either $\frac{q}{p} \leqslant 1+\frac{\beta}{n}$ or $u \in L^{\infty}$ and $q \leqslant p+\beta$
$\Longrightarrow u \in C_{\text {loc }}^{0, \alpha}(\Omega)$ for some $\alpha \in(0,1)$.
$-\frac{q}{p} \leqslant 1+\frac{\beta}{n} \Longrightarrow u \in C_{\text {loc }}^{1, \alpha}(\Omega)$ for some $\alpha \in(0,1)$.
- Baroni-Colombo-Mingione $(2015,2018), \ldots$

Conditions on φ

We say that φ satisfies
(A1) if there exists $L \geqslant 1$ such that, for every ball $B_{r} \Subset \Omega$

$$
\varphi_{B_{r}}^{+}(t) \leqslant L \varphi_{B_{r}}^{-}(t) \quad \text { when } \quad \varphi_{B_{r}}^{-}(t) \in\left[1, \frac{1}{\left|B_{r}\right|}\right]
$$

(VA1) if there exists a non-decreasing continuous function $\omega:[0, \infty) \rightarrow[0,1]$ with $\omega(0)=0$ such that for any small $B_{r} \Subset \Omega$,

$$
\varphi_{B_{r}}^{+}(t) \leqslant(1+\omega(r)) \varphi_{B_{r}}^{-}(t) \quad \text { when } \quad \varphi_{B_{r}}^{-}(t) \in\left[\omega(r), \frac{1}{\left|B_{r}\right|}\right]
$$

(wVA1) if for any $\varepsilon>0$, there exists a non-decreasing continuous function $\omega=\omega_{\varepsilon}:[0, \infty) \rightarrow[0,1]$ with $\omega(0)=0$ such that for any small ball $B_{r} \Subset \Omega$,

$$
\varphi_{B_{r}}^{+}(t) \leqslant(1+\omega(r)) \varphi_{B_{r}}^{-}(t)+\omega(r) \quad \text { when } \quad \varphi_{B_{r}}^{-}(t) \in\left[\omega(r), \frac{1}{\left|B_{r}\right|^{1-\varepsilon}}\right]
$$

- (VA1) $\Longrightarrow(w \vee A 1) \Longrightarrow(\mathrm{A} 1)$.
- Double phase case : $\varphi(x, t)=t^{p}+a(x) t^{q}, \quad a \in C^{0, \beta}$
$\star \frac{q}{p}<1+\frac{\beta}{n} \Longrightarrow($ VA1 $)$ holds with $\omega(r) \lesssim r^{\gamma}$ and $\gamma=\beta-\frac{n(q-p)}{p}>0$.
$\star \frac{q}{p}=1+\frac{\beta}{n} \Longrightarrow$ (VA1) does not hold. φ needs (wVA1).

Unconstrained case

Let u be a minimizer of the functional

$$
\int_{\Omega} \varphi(x,|\nabla u|) d x .
$$

- Generalized Orlicz case
- Harjulehto-Hästö-Toivanen (2017), Harjulehto-Hästö-L (to appear)

Either φ satisfies (A1), or that $u \in L^{\infty}$ and φ satisfies (A1-n)
$\Longrightarrow u \in C_{\text {loc }}^{0, \alpha}(\Omega)$ for some $\alpha \in(0,1)$.

- Hästö-Ok (to appear)
(i) φ satisfies (wVA1) $\Longrightarrow u \in C_{\text {loc }}^{0, \alpha}(\Omega)$ for all $\alpha \in(0,1)$.
(ii) φ satisfies $(w$ VA1 $)$ and $\omega(r) \lesssim r^{\beta}$ for some $\beta>0$
$\Longrightarrow u \in C_{l o c}^{1, \alpha}(\Omega)$ for some $\alpha \in(0,1)$.

Obstacle problem

Let $\Omega \subset \mathbb{R}^{n}(n \geqslant 2)$ be open and bounded. We consider local minimizers of the functional

$$
\mathcal{K}_{\psi}^{\varphi}(\Omega) \ni u \mapsto \int_{\Omega} \varphi(x,|\nabla u|) d x
$$

where the class

$$
\mathcal{K}_{\psi}^{\varphi}(\Omega):=\left\{u \in W^{1, \varphi}(\Omega) \mid u \geqslant \psi \text { a.e. in } \Omega\right\}
$$

for a fixed function $\psi: \Omega \rightarrow[-\infty, \infty)$ which is called the obstacle.

Hölder type regularity

- Standard p-growth case : Michael, Ziemer, Choe, Lewis, Fuchs, Mingione, Mu, Ok, Lindqvist, Benassi, Caselli
- $p(x)$-growth case : Eleuteri, Habermann, Hästö, Harjulehto, Lukkari, Marola, Byun, Oh, Ok,
- Double phase case: De Filippis, Chlebicka,

Solution

Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded.

- We consider local minimizers of the functional

$$
\mathcal{K}_{\psi}^{\varphi}(\Omega) \ni u \mapsto \int_{\Omega} \varphi(x,|\nabla u|) d x
$$

where the class $\mathcal{K}_{\psi}^{\varphi}(\Omega):=\left\{u \in W^{1, \varphi}(\Omega) \mid u \geqslant \psi\right.$ a.e. in $\left.\Omega\right\}$ for a function $\psi: \Omega \rightarrow[-\infty, \infty)$ called the obstacle.

- If $\varphi \in \Phi_{w}(\Omega) \cap C^{1}([0, \infty))$, we say that a function $u \in \mathcal{K}_{\psi}^{\varphi}(\Omega)$ is a solution to the $\mathcal{K}_{\psi}^{\varphi}(\Omega)$-obstacle problem if it satisfies

$$
\int_{\Omega}\left(\frac{\partial_{t} \varphi(x,|\nabla u|)}{|\nabla u|} \nabla u\right) \cdot \nabla(\eta-u) d x \geqslant 0
$$

for all $\eta \in \mathcal{K}_{\psi}^{\varphi}(\Omega)$ with $\operatorname{supp}(\eta-u) \subset \Omega$, which is equivalent to

$$
\int_{\Omega}\left(\frac{\partial_{t} \varphi(x,|\nabla u|)}{|\nabla u|} \nabla u\right) \cdot \nabla \eta d x \geqslant 0
$$

for all $\eta \in W^{1, \varphi}(\Omega)$ with a compact support and $\eta \geqslant \psi-u$ a.e. in Ω.

Main result

```
Theorem (Karppinen-L. submitted)
Let }\varphi\in\mp@subsup{\Phi}{w}{}(\Omega)\mathrm{ satisfy (alnc), (aDec), (A0) and (A1). Suppose that the obstacle
\psi \in C _ { \mathrm { loc } } ^ { 0 , \beta } ( \Omega ) \text { for some } \beta \in ( 0 , 1 ) \text { . Then } u \in C _ { \mathrm { loc } } ^ { 0 , \alpha } ( \Omega ) \text { for some } \alpha \in ( 0 , 1 ) \text { .}
```

- (A1) condition: There exists $L \geqslant 1$ such that, for every ball $B_{r} \Subset \Omega$

$$
\varphi_{B_{r}}^{+}(t) \leqslant \varphi_{B_{r}}^{-}(t) \quad \text { when } \quad \varphi_{B_{r}}^{-}(t) \in\left[1, \frac{1}{\left|B_{r}\right|}\right] \text {. }
$$

- The proof is based on constructing classical Harnack's inequality. The supremum estimates of the solution are proved via Caccioppoli type energy estimate and unconstrained results. The standard arguments provide the weak Harnack inequality.

Sketch of Proof

Step1 Supremum bounds

- u satisfies the Caccioppoli type inequality

$$
\int_{A(\ell, r)} \varphi\left(x,\left|\nabla(u-\ell)_{+}\right|\right) d x \lesssim \int_{A(\ell, 2 r)} \varphi\left(x, \frac{(u-\ell)_{+}}{r}\right) d x
$$

for any $\ell \geqslant 0$, where $A(k, r):=Q_{r} \cap\{u>k\}$.

- Then if $\psi \in W^{1, \varphi}(\Omega) \cap L_{\text {loc }}^{\infty}(\Omega)$ and $\theta \in\left[\frac{1}{2}, 1\right)$, we have

$$
\begin{equation*}
\underset{Q_{\theta r}}{\operatorname{ess} \sup }(u-\ell)_{+} \lesssim(1-\theta)^{-4 n q^{2}}\left[\left(f_{Q_{r}}(u-\ell)_{+}^{q} d x\right)^{1 / q}+\left|(u-\ell)_{Q_{r / 2}}\right|\right]+r \tag{1}
\end{equation*}
$$

for any $Q_{2 r} \subset \Omega$ and $\ell \geqslant \sup _{Q_{2 r}} \psi$, provided that $\varrho_{L \varphi\left(Q_{2 r}\right)}(|\nabla u|) \leqslant 1$. The term $\left|(u-\ell)_{Q_{r / 2}}\right|$ can be omitted if $u-\ell$ is non-negative almost everywhere in $Q_{2 r}$. Furthermore, if $u \in L^{\infty}\left(Q_{r}\right)$ satisfies (1) without the term $\left|(u-\ell)_{Q_{r / 2}}\right|$, then

$$
\underset{Q_{r / 2}}{\operatorname{ess} \sup }(u-\ell)_{+} \lesssim\left(f_{Q_{r}}(u-\ell)_{+}^{h} d x\right)^{\frac{1}{h}}+r
$$

for any $h \in(0, \infty)$.

Sketch of Proof

Step2 Infimum bounds

- Since solution to an obstacle problem is also a superminimizer, the standard arguments provide the following weak Harnack inequality:
Suppose that $u \in W_{\text {loc }}^{1, \varphi}(\Omega)$ is a non-negative solution of the $\mathcal{K}_{\psi}^{\varphi}(\Omega)$-obstacle problem. Then there exists $h_{0}>0$ such that

$$
\left(f_{Q_{r}} u^{h_{0}} d x\right)^{\frac{1}{h_{0}}} \lesssim \underset{Q_{r / 2}}{\operatorname{essinf} u+r}
$$

$$
\text { when } Q_{2 r} \subset \Omega \text { and } \varrho_{L \varphi\left(Q_{2 r}\right)}(|\nabla u|) \leqslant 1
$$

Step3 Combining the supremum and infimum bounds, we obtain Harnack's inequality and then it implies the oscillation decay estimates

$$
\operatorname{osc}(u, r / 4) \leqslant \frac{C}{C+1} \operatorname{osc}(u, r)+c r^{\beta}
$$

which means the Hölder continuity of u.

Main result

Theorem (Karppinen-L. submitted)

- Let $\varphi(x, \cdot) \in C^{1}([0, \infty))$ for any $x \in \Omega$ with φ^{\prime} satisfying (A0), (Inc) $)_{p-1}$, (Dec) ${ }_{q-1}$ for some $1<p \leqslant q$. Suppose $\psi \in C_{\text {loc }}^{1, \beta}(\Omega)$ for some $\beta \in(0,1)$.
(i) If φ satisfies (wVA1), then $u \in C_{\text {loc }}^{0, \alpha}(\Omega)$ for any $\alpha \in(0,1)$.
(ii) If φ satisfies ($w V A 1$) and

$$
\omega(r) \lesssim r^{\delta_{\varepsilon}} \text { for all } r \in(0,1] \text { and for some } \delta_{\varepsilon}>0,
$$

then $u \in C_{\text {loc }}^{1, \alpha}(\Omega)$ for some $\alpha \in(0,1)$.

- (wVA1) condition: For any $\varepsilon>0$, there exists a non-decreasing continuous function $\omega=\omega_{\varepsilon}:[0, \infty) \rightarrow[0,1]$ with $\omega(0)=0$ such that for any small ball $B_{r} \Subset \Omega$,

$$
\varphi_{B_{r}}^{+}(t) \leqslant(1+\omega(r)) \varphi_{B_{r}}^{-}(t)+\omega(r) \quad \text { when } \quad \varphi_{B_{r}}^{-}(t) \in\left[\omega(r), \frac{1}{\left|B_{r}\right|^{1-\varepsilon}}\right]
$$

cf Double phase case : $\varphi(x, t)=t^{p}+a(x) t^{q}, \quad a \in C^{0, \beta}$
$* \frac{q}{p} \leqslant 1+\frac{\beta}{n} \Longrightarrow($ WVA1 $)$ holds with $\omega(r) \lesssim r^{\delta_{\varepsilon}}$ and $\delta_{\varepsilon}=\beta-\frac{n(1-\varepsilon)(q-p)}{p}>0$.

Sketch of Proof

Step1 Higher Integrability:

- There exists $\sigma_{0} \in(0,1)$ such that $\varphi(\cdot,|\nabla u|) \in L^{1+\sigma_{0}}\left(B_{r}\right)$, and for any $\sigma \in\left(0, \sigma_{0}\right]$,

$$
\begin{aligned}
& f_{B_{r}} \varphi(x,|\nabla u|)^{1+\sigma} d x \\
& \leqslant c_{1}\left[\left(f_{B_{2 r}} \varphi(x,|\nabla u|) d x\right)^{1+\sigma}+f_{B_{2 r}} \varphi(x,|\nabla \psi|)^{1+\sigma} d x+1\right]
\end{aligned}
$$

for some $c_{1}=c_{1}(n, p, q, L)>0$.

- It is proved by Gehring's lemma with Sobolev-Poincaré inequality:
* For $1 \leqslant s<\frac{n}{n-1}$, there exists $\beta>0$ such that

$$
\left(\int_{B_{r}} \varphi\left(x, \frac{\beta|u|}{r}\right)^{s} d x\right)^{\frac{1}{s}} \leqslant \int_{B_{r}} \varphi(x,|\nabla u|) d x+\frac{\left|\{\nabla u \neq 0\} \cap B_{r}\right|}{\left|B_{r}\right|}
$$

for any $u \in W_{0}^{1,1}\left(B_{r}\right)$ with $\|\nabla u\|_{\varphi}<1$. If additionally $1 \leqslant s \leqslant p$, then

$$
f_{B_{r}} \varphi\left(x, \beta \frac{\left|u-u_{B_{r}}\right|}{r}\right) d x \leqslant\left(\int_{B_{r}} \varphi(x,|\nabla u|)^{\frac{1}{s}} d x\right)^{s}+1
$$

for any $u \in W^{1,1}\left(B_{r}\right)$ with $\|\nabla u\|_{\varphi^{1 / s}}<1$.

Sketch of Proof

- From the higher Integrability, we obtain the reverse Hölder type estimates:

For every $t \in(0,1]$, there exists $c_{t}=c_{t}\left(c_{2}, t, q\right)>0$ such that

$$
\begin{aligned}
& \left(f_{B_{r}} \varphi(x,|\nabla u|)^{1+\sigma_{0}} d x\right)^{1 /\left(1+\sigma_{0}\right)} \\
& \leqslant c_{t}\left[\left(f_{B_{2 r}} \varphi(x,|\nabla u|)^{t} d x\right)^{1 / t}+\left(f_{B_{2 r}} \varphi(x,|\nabla \psi|)^{1+\sigma_{0}} d x\right)^{1 /\left(1+\sigma_{0}\right)}+1\right]
\end{aligned}
$$

Additionally,

$$
\begin{aligned}
& f_{B_{r}} \varphi(x,|\nabla u|) d x \leqslant\left(f_{B_{r}} \varphi(x,|\nabla u|)^{1+\sigma_{0}} d x\right)^{1 /\left(1+\sigma_{0}\right)} \\
& \leqslant c\left[\varphi_{B_{2 r}}^{-}\left(f_{B_{2 r}}|\nabla u| d x\right)+\left(f_{B_{2 r}} \varphi(x,|\nabla \psi|)^{1+\sigma_{0}} d x\right)^{1 /\left(1+\sigma_{0}\right)}+1\right]
\end{aligned}
$$

where $c \geqslant 1$ depends on c_{2}, q and L.

Sketch of Proof

Step2 Comparison functions

- For comparison argument, we shall use the regularized Orlicz function $\tilde{\varphi}$ constructed from a generalized Orlicz function φ, which was introduced by Hästö-Ok (to appear in JEMS).
- We define the regularized Orlicz function $\tilde{\varphi}$ by

$$
\tilde{\varphi}(t):=\int_{0}^{\infty} \varphi_{B_{2 r}}(t \sigma) \eta_{r}(\sigma-1) d \sigma=\int_{0}^{\infty} \varphi_{B_{2 r}}(s) \eta_{r t}(s-t) d s
$$

with $\tilde{\varphi}(0):=0$ for $\eta \in C_{0}^{\infty}(\mathbb{R})$ with $\eta \geqslant 0, \operatorname{supp} \eta \subset(0,1)$ and $\|\eta\|_{1}=1$ where $\eta_{r}(t):=\frac{1}{r} \eta\left(\frac{t}{r}\right)$.

Here,

$$
\varphi_{B_{2 r}}(t):=\int_{0}^{t} \tau_{B_{2 r}}(s) d s
$$

with

$$
\tau_{B_{2 r}}(t):= \begin{cases}\varphi^{\prime}\left(x_{0}, t_{1}\right)\left(\frac{t}{t_{1}}\right)^{p-1}, & \text { if } 0 \leqslant t<t_{1} \\ \varphi^{\prime}\left(x_{0}, t\right) & \text { if } t_{1} \leqslant t \leqslant t_{2} \\ \varphi^{\prime}\left(x_{0}, t_{2}\right)\left(\frac{t}{t_{2}}\right)^{p-1}, & \text { if } t_{2}<t<\infty\end{cases}
$$

where $t_{1}:=\left(\varphi_{B_{2 r}}^{-}\right)^{-1}(\omega(2 r)) \quad$ and $\quad t_{2}:=\left(\varphi_{B_{2 r}}\right)^{-1}\left(\left|B_{2 r}\right|^{-1}\right)$.

Sketch of Proof

Step2 Comparison functions

- The regularized Orlicz function $\tilde{\varphi}$ satisfies the following properties:
(i) $\varphi_{B_{2 r}}(t) \leqslant \tilde{\varphi}(t) \leqslant(1+c r) \varphi_{B_{2 r}}(t)$ for all $t>0$ with $c>0$ depending only on q, and $0 \leqslant \tilde{\varphi}(t)-\varphi\left(x_{0}, t\right) \leqslant c r \varphi^{-}(t)+c \omega(2 r) \leqslant c \varphi^{-}(t)$ for all $t \in\left[t_{1}, t_{2}\right]$;
(ii) $\tilde{\varphi} \in C^{1}([0, \infty))$ and it satisfies $(\operatorname{lnc})_{p},(\mathrm{Dec})_{q}$ and $(\mathrm{A} 0)$, and $\tilde{\varphi}^{\prime}$ satisfies (Inc) p_{p-1} and (Dec) q_{q-1} and (A0). In particular $\tilde{\varphi}^{\prime}(t) \approx t \tilde{\varphi}^{\prime \prime}(t)$ for all $t>0$;
(iii) $\tilde{\varphi}(t) \leqslant c \varphi(x, t)$ for all $(x, t) \in B_{2 r} \times[1, \infty)$, and so $\tilde{\varphi}(t) \lesssim \varphi(x, t)+1$ for all $(x, t) \in B_{2 r} \times[0, \infty)$.

Step3 - Consider the unique weak solution $w \in W^{1, \tilde{\varphi}}\left(B_{r}\right)$ of

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\frac{\tilde{\varphi}^{\prime}(|\nabla w|)}{|\nabla w|} \nabla w\right) & =-\operatorname{div}\left(\frac{\tilde{\varphi}^{\prime}(|\nabla \psi|)}{|\nabla \psi|} \nabla \psi\right) & & \text { in } \quad B_{r} \\
w & =u & & \text { on } \quad \partial B_{r}
\end{aligned}\right.
$$

and the unique weak solution $v \in W^{1, \tilde{\varphi}}\left(B_{r}\right)$ of

$$
\left\{\begin{array}{rlll}
-\operatorname{div}\left(\frac{\tilde{\varphi}^{\prime}(|\nabla v|)}{|\nabla v|} \nabla v\right) & =0 & \text { in } & B_{r} \\
v & = & w & \text { on } \\
\partial B_{r} .
\end{array}\right.
$$

Sketch of Proof

- Consider the unique weak solution $v \in W^{1, \tilde{\varphi}}\left(B_{r}\right)$ of

$$
\left\{\begin{array}{rlll}
-\operatorname{div}\left(\frac{\tilde{\varphi}^{\prime}(|\nabla v|)}{|\nabla v|} \nabla v\right) & = & 0 & \text { in } \\
v & = & B_{r} \\
& \text { on } & \partial B_{r} .
\end{array}\right.
$$

Remark As v is the solution of the $\tilde{\varphi}$-Laplacian equation, it is known to have $C^{1, \alpha_{0}}$-regularity for some $\alpha_{0} \in(0,1)$ (Lieberman, 1991):
For any $B\left(x_{0}, \varrho\right) \subset B_{r}$ and $\tau \in(0,1)$, we have

$$
\begin{gathered}
\sup _{B\left(x_{0}, \varrho / 2\right)}|\nabla v| \leqslant c f_{B\left(x_{0}, \varrho\right)}|\nabla v| d x, \\
f_{B\left(x_{0}, \tau \varrho\right)}\left|\nabla v-(\nabla v)_{B\left(x_{0}, \tau \varrho\right)}\right| d x \leqslant c \tau^{\alpha_{0}} f_{B\left(x_{0}, \varrho\right)}|\nabla v| d x .
\end{gathered}
$$

- Energy estimates for w and v :

$$
\begin{aligned}
& f_{B_{r}} \tilde{\varphi}(|\nabla w|) d x \leqslant c\left(f_{B_{r}} \tilde{\varphi}(|\nabla u|) d x+1\right) \\
& f_{B_{r}} \tilde{\varphi}(|\nabla v|) d x \leqslant c\left(f_{B_{r}} \tilde{\varphi}(|\nabla u|) d x+1\right)
\end{aligned}
$$

Sketch of Proof

Step3 • We have

$$
\left(f_{B_{r}} \varphi(x,|\nabla u|)^{1+\sigma_{0}} d x\right)^{\frac{1}{1+\sigma_{0}}} \lesssim \tilde{\varphi}\left(f_{B_{2 r}}|\nabla u| d x\right)+1
$$

by using the reverse Hölder type estimates, and

$$
f_{B_{r}} \varphi(x,|\nabla w|) d x \lesssim\left(f_{B_{r}} \varphi(x,|\nabla u|)^{1+\frac{\sigma_{0}}{2}} d x+1\right)^{\frac{2}{2+\sigma_{0}}}
$$

by using Calderón-Zygmund type estimates:
\star for the solution $w \in W^{1, \tilde{\varphi}}\left(B_{r}\right)$ of

$$
\begin{gathered}
\left\{\begin{array}{cll}
-\operatorname{div}\left(\frac{\tilde{\varphi}^{\prime}(|\nabla w|)}{|\nabla w|} \nabla w\right) & =-\operatorname{div}\left(\frac{\tilde{\varphi}^{\prime}(|\nabla \psi|)}{|\nabla \psi|} \nabla \psi\right) & \text { in } \left.\begin{array}{c}
B_{r}, \\
w
\end{array}\right) \quad u \quad \text { on } \quad \partial B_{r},
\end{array}\right. \\
\|\varphi(|\nabla w|)\|_{L^{\theta}\left(B_{r}\right)} \leqslant c\left(\|\varphi(|\nabla \psi|)\|_{L^{\theta}\left(B_{r}\right)}+\|\varphi(|\nabla u|)\|_{L^{\theta}\left(B_{r}\right)}\right)
\end{gathered}
$$

for any $\theta \in \Phi_{w}\left(B_{r}\right)$ satisfying (A0), (A1), (alnc) $p_{p_{1}}$ and (aDec) $q_{q_{1}}$ with constant $L \geqslant 1$ and $1<p_{1} \leqslant q_{1}$.

Sketch of Proof

Step4 By using the previous estimates, we obtain

$$
\begin{aligned}
& \int_{B_{r}}|\nabla u-\nabla w| d x \leqslant c\left(\omega(2 r)^{p / q}+r^{\gamma}+r^{\beta}\right)^{\frac{1}{2 q}}\left(\int_{B_{2 r}}|\nabla u| d x+1\right) \\
& \text { for some } \gamma=(n, p, q, L) \in(0,1) \text {. } \\
& f_{B_{r}}|\nabla w-\nabla v| d x \leqslant c r^{\frac{\beta}{2 q}}\left(f_{B_{2 r}}|\nabla u| d x+1\right) \\
& f_{B_{r}}|\nabla v| d x \lesssim f_{B_{2 r}}|\nabla u|+1 d x
\end{aligned}
$$

Then combining above estimates,

$$
\begin{aligned}
\int_{B_{\varrho}}|\nabla u| d x & \lesssim \int_{B_{r}}|\nabla u-\nabla w| d x+\int_{B_{r}}|\nabla w-\nabla v| d x+\int_{B_{\varrho}}|\nabla v| d x \\
& \lesssim \omega_{0}(r) \int_{B_{2 r}}|\nabla u|+1 d x+\varrho^{n} \sup _{B_{r / 2}}|\nabla v| \\
& \lesssim \omega_{0}\left(r_{0}\right) \int_{B_{2 r}}|\nabla u|+1 d x+\varrho^{n} \int_{B_{r}}|\nabla v| d x \\
& \lesssim\left(\omega_{0}\left(r_{0}\right)+\left(\frac{\varrho}{r}\right)^{n}\right) \int_{B_{2 r}}|\nabla u| d x+r^{n}
\end{aligned}
$$

Sketch of Proof

- Then we have that for any $\mu \in(0, n)$,

$$
\int_{B_{\varrho}}|\nabla u| d x \lesssim\left(\frac{\varrho}{r_{0}}\right)^{n-\mu}\left(\int_{B_{r_{0}}}|\nabla u| d x+r_{0}^{n-\mu}\right)
$$

for all $B_{\varrho} \subset \Omega^{\prime}$ with $\varrho \in\left(0, r_{0}\right)$.

- Thus, we take $1-\mu=\alpha$ to obtain that $u \in C_{\text {loc }}^{0, \alpha}\left(\Omega^{\prime}\right)$ by Morrey type embedding.

Sketch of Proof

$$
\begin{aligned}
& f_{B_{\varrho}}\left|\nabla u-(\nabla u)_{B_{\varrho}}\right| d x \leqslant 2 f_{B_{\varrho}}\left|\nabla u-(\nabla v)_{B_{\varrho}}\right| d x \\
& \leqslant 2 f_{B_{\varrho}}|\nabla u-\nabla w| d x+2 f_{B_{\varrho}}|\nabla w-\nabla v| d x+2 f_{B_{\varrho}}\left|\nabla v-(\nabla v)_{B_{\varrho}}\right| d x \\
& \lesssim\left(\frac{r}{\varrho}\right)^{n} f_{B_{r}}|\nabla u-\nabla w| d x+\left(\frac{r}{\varrho}\right)^{n} f_{B_{r}}|\nabla w-\nabla v| d x+\left(\frac{\varrho}{r}\right)^{\alpha_{0}} f_{B_{r / 2}}|\nabla v| d x \\
& \lesssim\left(\frac{r}{\varrho}\right)^{n}\left(\omega(2 r)^{p / q}+r^{\gamma}+r^{\beta}\right)^{\frac{1}{2 q}}\left(f_{B_{2 r}}|\nabla u| d x+1\right)+\left(\frac{\varrho}{r}\right)^{\alpha_{0}} f_{B_{r / 2}}|\nabla v| d x \\
& \lesssim\left(r^{\delta_{0}}\left(\frac{r}{\varrho}\right)^{n}+\left(\frac{\varrho}{r}\right)^{\alpha_{0}}\right)\left(f_{B_{2 r}}|\nabla u| d x+1\right) \leqslant c_{\mu} r^{-\mu}\left(r^{\delta_{0}}\left(\frac{r}{\varrho}\right)^{n}+\left(\frac{\varrho}{r}\right)^{\alpha_{0}}\right),
\end{aligned}
$$

where $\delta_{0}:=\frac{1}{2 q} \min \left\{\frac{\delta p}{q}, \gamma, \beta\right\}$.

- Thus, we obtain that $u \in C_{\text {loc }}^{1, \alpha}\left(\Omega^{\prime}\right)$ with $\alpha=\frac{\alpha_{0} \delta_{0}}{4 n+2 \delta_{0}}$ by Campanato type embedding.

Thank you.

