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Outline of the seminar

The aim of the seminar is to show that the solutions to variational problems with
non-standard growth conditions satisfy a corresponding variational inequality without
any smallness assumptions on the gap between growth and coercitivity exponents

Our results rely on techniques based on Convex Analysis that consist in establish-
ing duality formulas and pointwise relations between minimizers and corresponding
dual maximizers, for suitable approximating problems, that are preserved passing to
the limit

In this respect we are able to show that the right class of competitors are the functions
with �nite energy in agreement with the unconstrained results

Joint project with Prof. A. Passarelli di Napoli 1

1M. E., A. Passarelli di Napoli, preprint arXiv:2010.02964 (2020)
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Outline of the seminar

• Motivation

• The model problem

• Statement of the main results

• Dual formulation of the obstacle problem

• Proof of the main result
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Motivation

More than 30 years ago, the celebrated papers by Marcellini 2 opened the way to
the study of the regularity properties of minimizers of integral functionals with non-
standard growth conditions

Since then, many contributions appeared in several directions and many problems
have been solved; however not all the questions have been addressed in an exhaustive
way, in particular for what concerns the obstacle problems

It is well known that, for both constrained and unconstrained minimization problems,
the regularity of the solutions often comes from the fact that are also extremals, i.e.
they solve a corresponding variational inequality or equality

2 P. Marcellini: Regularity of minimizers of integrals of the calculus of variations with
nonstandard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), no. 3, 267�284

P. Marcellini: Regularity and existence of solutions of elliptic equations with p, q-growth
conditions, J. Di�erential Equations, 90 (1991), no. 1, 1�30
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Motivation

Actually, in the recent paper 3 the authors, concerning the question of Lipschitz
continuity for minimizers of the obstacle problem, were forced to deal with the relation
between minima and extremals, in the sense of solutions to a corresponding variational
inequality

In that speci�c situation, this problem has been solved due to a suitable higher
di�erentiability result and imposing a smallness condition on the gap between the
coercivity and the growth exponent of the lagrangian

We decided to deal with the question in the full generality

3 M. Caselli, M. Eleuteri, A. Passarelli di Napoli: Regularity results for a class of obstacle
problems with p, q growth conditions, ESAIM COCV, (2021) to appear.
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The unconstrained case

Already for unconstrained minimizers with non-standard growth, the relation between
extremals and minima is an issue that required a careful investigation

Indeed, a direct derivation of such a relation can be obtained in a trivial way only if
the gap between the growth and the ellipticity exponent satis�es a suitable smallness
condition.

Otherwise, using a regularization procedure and convex duality theory, much stronger
results have been obtained by Carozza, Kristensen and Passarelli di Napoli for un-
constrained minimizers 4

As far as we know, such investigation has not been carried out for constrained mini-
mizers

We aim to �nd conditions so that the solutions to variational obstacle problems with
non standard growth conditions satisfy a corresponding variational inequality

4 M. Carozza, J. Kristensen, A. Passarelli di Napoli: Regularity of minimizers of autonomous
convex variational integrals, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XIII (2014), 1065-1089

M. Carozza, J. Kristensen, A. Passarelli di Napoli: On the validity of the Euler Lagrange
system, Comm. Pure Appl. Anal., 14 (1) (2018), 51-62
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The model problem
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The model problem

More precisely, let us consider a class to variational obstacle problems of the form

min

{∫
Ω

F (Dz) : z ∈ KF
ψ(Ω)

}
,

where Ω is a bounded open set of Rn, n ≥ 2

The function ψ : Ω→ [−∞,+∞), called obstacle, is such that

F (Dψ) ∈ L1(Ω)

and the class KF
ψ(Ω) is de�ned as

KF
ψ(Ω) :=

{
z ∈ u0 + W 1,p

0 (Ω) : z ≥ ψ a.e. in Ω, F (Dz) ∈ L1(Ω)
}
,

where u0 is a �xed boundary value such that

F (Du0) ∈ L1(Ω)

To avoid trivialities, in what follows we shall assume that KF
ψ(Ω) is not empty
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The assumptions

We shall consider integrands F : Rn → R of class C1 and satisfying the following
growth and strict convexity assumptions:

`|ξ|p ≤ F (ξ) ≤ L (1 + |ξ|q) (H1)

ν |Vp(ξ)− Vp(η)|2 ≤ F (ξ)− F (η)− 〈F ′(η), ξ − η〉 (H2)

for all ξ, η ∈ Rn, for 0 < ` < L, ν > 0 and 1 < p ≤ q < ∞ and where we used the
customary notation

Vp(ξ) = (1 + |ξ|2)
p−2
4 ξ.

To simplify the statement of our main result, we shall assume that the integrand F
satis�es a sort of ∆2 condition, i.e.

F (λ ξ) ≤ C(λ)F (ξ) (H3),

for every real positive λ > 1 and every ξ ∈ Rn

Actually, without (H3), our result holds true supposing that F (cDu0) ∈ L1(Ω), for
some constant c > 1
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A remark

Let us notice that, by replacing u0 by ũ0 = max{u0, ψ}, we may assume, without
loss of generality, that the boundary value function u0 is such that u0 ∈ KF

ψ(Ω)

Indeed ũ0 = (ψ − u0)+ + u0 so ũ0 ≥ ψ

Moreover, since
0 ≤ (ψ − u0)+ ≤ (u − u0)+ ∈W 1,p

0 (Ω),

the function (ψ − u0)+, and hence u − ũ0, belongs to W 1,p
0 (Ω)

Finally our assumptions on u0 and ψ imply F (Dũ0) ∈ L1(Ω). Indeed∫
Ω

F (Dũ0) dx =

∫
Ω∩{u0≥ψ}

F (Du0) dx +

∫
Ω∩{u0<ψ}

F (Dψ) dx

≤
∫

Ω

(
F (Du0) + F (Dψ)

)
dx < +∞,
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Indeed ũ0 = (ψ − u0)+ + u0 so ũ0 ≥ ψ
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The case of standard growth conditions

It is worth mentioning that if G is a C1 function satisfying (H1) (growth) and (H2)
(strict convexity) with p = q , i.e. G satis�es standard p−growth conditions, the

minimization problem reduces to

min

{∫
Ω

G(Dz) : z ∈ Kψ(Ω)

}
,

where
Kψ(Ω) :=

{
z ∈ u0 + W 1,p

0 (Ω) : z ≥ ψ a.e. in Ω
}

and the assumptions F (Dψ),F (Du0) ∈ L1(Ω) reduce in turn to ψ, u0 ∈W 1,p(Ω)

In this case, because of the standard growth conditions, it is well known that, if
u ∈ u0 +W 1,p

0 (Ω) is a solution to the minimization problem, then the corresponding
variational inequality ∫

Ω

〈G ′(Du),Dz − Du〉 dx ≥ 0

holds true, for every z ∈ Kψ(Ω)
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Assumptions

On the other hand, if u ∈ Kψ(Ω) and ϕ ≥ 0, with ϕ ∈ C∞0 (Ω), then u +ϕ ∈ Kψ(Ω)
and thus, if u is a solution to the minimization problem

min

{∫
Ω

G(Dz) : z ∈ Kψ(Ω)

}
,

then also the following inequality holds∫
Ω

〈G ′(Du),Dϕ〉 dx ≥ 0

for all ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

Our goal is to show that the solutions to obstacle problems with non standard growth
conditions solve the corresponding variational inequalities, without any restriction on

the gap q
p

Moreover we will show that the right class of competitors are the functions with �nite
energy and that, in case of standard growth conditions, this coincides with Kψ(Ω)
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Statement of the results
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The main result

Theorem

Let F : Rn → R be a C1 function satisfying

`|ξ|p ≤ F (ξ) ≤ L (1 + |ξ|q) (H1)

ν |Vp(ξ)− Vp(η)|2 ≤ F (ξ)− F (η)− 〈F ′(η), ξ − η〉 (H2)

F (λ ξ) ≤ C(λ)F (ξ) (H3)

Assume moreover that
F (Dψ),F (u0) ∈ L1(Ω)

Suppose �nally that u ∈ KF
ψ(Ω) is the solution to the obstacle problem

min

{∫
Ω

F (Dz) : z ∈ KF
ψ(Ω)

}
,

where

KF
ψ(Ω) :=

{
z ∈ u0 + W 1,p

0 (Ω) : z ≥ ψ a.e. in Ω, F (Dz) ∈ L1(Ω)
}
,
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The main result

Theorem

Then
F ∗(F ′(Du)) ∈ L1(Ω) 〈F ′(Du),Du〉 ∈ L1(Ω)

and
divF ′(Du) ≤ 0

in the distributional sense

Moreover the following variational inequality∫
Ω

〈F ′(Du),Dz − Du〉 ≥ 0

also holds for all z ∈ KF
ψ(Ω) such that F (±Dz) ∈ L1(Ω)
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A key example

It is worth noticing that, if there exists f : [0,+∞)→ [0,+∞) such that

F (ξ) = f (|ξ|),

then assumption F (±Dz) ∈ L1(Ω) is trivially satis�ed

On the other hand, in order to have F (±Dz) ∈ L1(Ω) satis�ed for every z ∈ KF
ψ(Ω),

it su�ces to assume that F (ξ) = F (−ξ)

Under this assumption F (ξ) needs not to depend on the length of ξ nor to be the
sum of its components ξi

Indeed, an example of F (ξ) satisfying our assumptions is 5

F (ξ) = |ξ1 − ξ2|q + |ξ1 + ξ2|p logα(1 + |ξ1|) ξ ∈ R2,

with 2 ≤ p ≤ q

5A. Cianchi: A fully anisotropic Sobolev inequality, Paci�c J. Math, 196 (2) (2000), 283-294
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A regularity result

In case the gap q
p
satis�es a suitable smallness assumption and if the gradient of the

obstacle Dψ ∈W 1,q
loc (Ω), we are able to prove that the solution to problem

min

{∫
Ω

F (Dz) : z ∈ Kψ(Ω)

}
,

where
Kψ(Ω) :=

{
z ∈ u0 + W 1,p

0 (Ω) : z ≥ ψ a.e. in Ω
}

solves the corresponding variational inequality without any regularity on the boundary

datum u0

Moreover, we can prove that the solution to this minimization problem locally belongs
to W 1,q

loc (Ω)

This result is particularly important in order to prevent the Lavrentiev phenomenon
that may occurr in the case of anisotropic growth conditions 6

6L. Esposito, F. Leonetti, G. Mingione: Sharp regularity for functionals with (p, q) growth, J.
Di�erential Equations, 204, (2004), 5�55.
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A regularity result

Theorem

Let F : Rn → R be a C1 function satisfying

`|ξ|p ≤ F (ξ) ≤ L (1 + |ξ|q) (H1)

ν |Vp(ξ)− Vp(η)|2 ≤ F (ξ)− F (η)− 〈F ′(η), ξ − η〉 (H2)

F (λ ξ) ≤ C(λ)F (ξ) (H3)

Assume that
Dψ ∈W 1,q

loc (Ω)

and let u ∈ Kψ(Ω) be the solution to the obstacle problem

min

{∫
Ω

F (Dz) : z ∈ Kψ(Ω)

}
,

Suppose �nally that

1 < p ≤ q <
np

n − 1
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A regularity result

Theorem

Then u is such that

F ∗(F ′(Du)) ∈ L1loc(Ω) 〈F ′(Du),Du〉 ∈ L1loc(Ω)

and
divF ′(Du) ≤ 0

locally, in the distributional sense

Moreover u ∈W 1,q
loc (Ω)

Note that in case 7

np

n − 1
≤ q < p∗

and Dψ ∈W 1,q
loc (Ω), then u belongs to W 1,r

loc (Ω) for all r < p̄ being

p̄ :=
np

n − p
p−1

(
1− n

(
1
p
− 1

q

))
7M. Carozza, J. Kristensen, A. Passarelli di Napoli: Regularity of minimizers of autonomous

convex variational integrals, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XIII (2014), 1065-1089
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A few words about the techniques

Let's mention a few words about the techniques employed

Our Lagrangian F is suitably approximated by strictly convex and uniformly elliptic
integrands Fk

The minimizers of Fk , say uk , strongly converge in W 1,p to the minimizer u of original
obstacle problem

To every such minimizer uk we can associate the solutions of certain dual maximiza-
tion problems in the sense of Convex Analysis, for divergence-measure �elds
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A few words about the techniques

These duality formulas and pointwise relations between minimizers and dual maxi-
mizers are preserved in passing to the limit

Such estimates will provide conditions in order for the variational inequality to hold
for a constrained minimizer

The statement and the proofs of our results are the natural counterpart of those in
the unconstrained setting

Our main tool is a suitable version of Anzellotti type pairing, involving general
divergence-measure �elds and speci�c representation of Sobolev functions (this re-
duces to integration by part formula once the correct summability is required on the
�elds involved)
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Dual formulation of the obstacle problem
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Dual formulation of the obstacle problem

Let us establish the dual formulation of obstacle problems with standard growth
conditions, extending classical ideas of Kohn and Temam and Anzellotti 8

Given a convex continuous function F : Rn → R, its polar (or Fenchel conjugate) is
de�ned by

F ∗(ζ) := sup
ξ∈Rn

(〈ζ, ξ〉 − F (ξ)) ∀ ζ ∈ Rn. (1)

The function F ∗ : Rn → R is convex and, if F satis�es a p, q−growth condition,
then F ∗ has q′, p′− growth, i.e. there exist constants c(L), c(`) such that

c(L)|ζ|q
′
≤ F ∗(ζ) ≤ c(`)|ζ|p

′
∀ ζ ∈ Rn.

8 R.V. Kohn, R. Temam: Dual spaces of stresses and strains, with applications to Hencky
plasticity, Appl. Math. Optim., 10 (1) (1983), 1-35.

G. Anzellotti: Pairing between measures and bounded functions and compensated
compactness, Ann. Mat. Pura Appl., 135 (4) (1984), 293-318.

C. Scheven, T. Schmidt: On the dual formulation of obstacle problems for the total variation
and the area functional, Ann. I. H. Poincaré, 35 (2018), 1175-1207.

C. Scheven, T. Schmidt: BV supersolutions to equation of 1-Laplace and minimal surface type,
J. Di�er. Equ., 261 (2016), 1904-1932.
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Dual formulation of the obstacle problem

One can check that the bipolar integrand F ∗∗ := (F ∗)∗ equals F at ξ if and only if
F is lower semicontinuous and convex at ξ, as it is the case here

From the de�nition of polar function directly follows the Young-type (or Fenchel)
inequality

〈ζ, ξ〉 ≤ F ∗(ζ) + F ∗∗(ξ)

for all ζ, ξ ∈ Rn

Notice that, for a given ξ, we have equality in the Fenchel inequality precisely for
ζ ∈ ∂F ∗∗(ξ), the subgradient of F ∗∗ at ξ

In particular, when F is C1, for every ξ ∈ Rn, we have equality in the Fenchel
inequality precisely for ζ = F ′(ξ)

Actually, it holds the following

F (ξ) + F ∗(F ′(ξ)) = 〈F ′(ξ), ξ〉,

for every ξ ∈ Rn
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Dual formulation of the obstacle problem

Now, we consider for any p > 1

Sp′

− (Ω) = {σ ∈ Lp′(Ω) : divσ ≤ 0 in D′(Ω)},

where as usual p′ = p
p−1 and, for u0 ∈W 1,p(Ω),U ∈ Lp(Ω) we introduce a measure

[[σ,DU]]u0 on Ω by setting

[[σ,DU]]u0 =

∫
Ω

(U − u0) d(−divσ) +

∫
Ω

〈σ,Du0〉 dx .

For U ∈ u0+W 1,p
0 (Ω), the measure [[σ,DU]]u0 corresponds to the function 〈σ,DU〉 ∈

L1(Ω) as it follows from the well known integration by parts formula∫
Ω

ϕd(−divσ) =

∫
Ω

〈σ,Dϕ〉 dx ,

for every ϕ ∈W 1,p
0 (Ω)
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Dual formulation of the obstacle problem

Theorem

Let G : Rn → R be a C1, strictly convex function satisfying

`p (|ξ|p − 1) ≤ G(ξ) ≤ Lp(1 + |ξ|p),

for all ξ ∈ Rn and an exponent p > 1. Then

min
v∈Kψ(Ω)

∫
Ω

G(Dv) dx = max
σ∈Sp′
− (Ω)

(
[[σ,Dψ]]u0 −

∫
Ω

G∗(σ) dx

)
where we recall that

Kψ(Ω) :=
{
z ∈ u0 + W 1,p

0 (Ω) : z ≥ ψ a.e. in Ω
}

If moreover u ∈ Kψ(Ω) is the solution to

min

{∫
Ω

G(Dz) : z ∈ Kψ(Ω)

}
,

then ∫
Ω

G(Du) dx = [[G ′(Du),Dψ]]u0 −
∫

Ω

G∗(G ′(Du)) dx .
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Dual formulation of the obstacle problem: idea of the proof

Step 1:

min
v∈Kψ(Ω)

∫
Ω

G(Dv) dx ≥ max
σ∈Sp′
− (Ω)

(
[[σ,Dψ]]u0 −

∫
Ω

G∗(σ) dx

)

• we use the fact that if σ ∈ Sp′

− (Ω) then −divσ is a non-negative Radon measure,
so for every v ∈ Kψ(Ω) ∫

Ω

(v − ψ)d(−divσ) ≥ 0

Step 2:

min
v∈Kψ(Ω)

∫
Ω

G(Dv) dx ≤ max
σ∈Sp′
− (Ω)

(
[[σ,Dψ]]u0 −

∫
Ω

G∗(σ) dx

)
• We use

G(Du) + G∗(G ′(Du)) = 〈G ′(Du),Du〉,

and exploit the fact that u solution to the minimization problem, satis�es the corre-
sponding variational inequality
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Proof of the main result
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The main result

Theorem

Let F : Rn → R be a C1 function satisfying

`|ξ|p ≤ F (ξ) ≤ L (1 + |ξ|q) (H1)

ν |Vp(ξ)− Vp(η)|2 ≤ F (ξ)− F (η)− 〈F ′(η), ξ − η〉 (H2)

F (λ ξ) ≤ C(λ)F (ξ) (H3)

Assume moreover that
F (Dψ),F (u0) ∈ L1(Ω)

Suppose �nally that u ∈ KF
ψ(Ω) is the solution to the obstacle problem

min

{∫
Ω

F (Dz) : z ∈ KF
ψ(Ω)

}
,

where

KF
ψ(Ω) :=

{
z ∈ u0 + W 1,p

0 (Ω) : z ≥ ψ a.e. in Ω, F (Dz) ∈ L1(Ω)
}
,
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The main result

Theorem

Then
F ∗(F ′(Du)) ∈ L1(Ω) 〈F ′(Du),Du〉 ∈ L1(Ω)

and
divF ′(Du) ≤ 0

in the distributional sense

Moreover the following variational inequality∫
Ω

〈F ′(Du),Dz − Du〉 ≥ 0

also holds for all z ∈ KF
ψ(Ω) such that F (±Dz) ∈ L1(Ω)
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Strategy of the proof

Step 1: we construct a sequence of obstacle problems with standard growth condition
for which the dual problem is given by the previous theorem

Step 2: we prove that the sequence of approximating minimizers converges to the
solution to the original problem

Step 3: we prove that the sequence of dual maximizers converges to a �eld whose
divergence is a non positive Radon measure

Step 4: we establish the validity of the variational inequality
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Step 1: approximation

Let Fk be the sequence of Lagrangians obtained applying a suitable approximation
lemma to the integrand F and let uk ∈ Kψ(Ω) be the solution to the obstacle problem

min
w∈Kψ(Ω)

∫
Ω

Fk(Dw) dx

and let
σk := F ′k(Duk) ∈ Sp′

− (Ω)

be the solution to the dual problem, i.e. σk is such that

max
σ∈Sp′
− (Ω)

{
[[σ,Dψ]]u0 −

∫
Ω

F ∗k (σ) dx

}
= [[σk ,Dψ]]u0 −

∫
Ω

F ∗k (σk) dx ,

where F ∗k denotes the polar function of Fk . Then we have∫
Ω

Fk(Duk) dx = [[σk ,Dψ]]u0 −
∫

Ω

F ∗k (σk) dx

holds for all k ∈ N and∫
Ω

〈σk ,Dϕ− Duk〉 dx ≥ 0 ∀ϕ ∈ Kψ(Ω) and ∀ k ∈ N.
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Step 2: passage to the limit (minimizers)

Our next purpose is to prove that uk → u strongly inW 1,p(Ω), where u is the solution
to the obstacle problem to our original problem

To this aim we exploit:

• the growth condition on Fk , the minimality of uk and the re�exivity of W 1,p to
show that uk weakly converge to some v

• the fact that the set Kψ(Ω) is closed and convex to state that v ∈ Kψ(Ω)

• the lower semicontinuity of some Fk0 , the monotonicity of Fk , the monotone con-
vergence theorem to show that actually v ∈ Kψ(Ω)

• the minimality of u in the class Kψ(Ω) as well as the monotone convergence theorem
to prove that u = v

• assumption (H2) (strict convexity) to show that uk strongly converge to u in W 1,p
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Step 3: passage to the limit (dual maximizers)

At this point the assumptions given from the approximation lemma yield

σk = F ′k(Duk)→ F ′(Du) locally uniformly as k →∞

It follows in particular that F ′k(Duk) → F ′(Du) in measure on Ω and so passing to
the limit in the equality

〈σk ,Duk〉 = F ∗k (σk) + Fk(Duk),

we recover, with σ = F ′(Du), the pointwise extremality relation

〈F ′(Du),Du〉 = F ∗(F ′(Du)) + F (Du)
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Step 3: pointwise extremality relation

Once from the previous passage we established the pointwise extremality relation

〈F ′(Du),Du〉 = F ∗(F ′(Du)) + F (Du)

we want to prove that 〈F ′(Du),Du〉 ∈ L1(Ω) and F ∗(F ′(Du)) ∈ L1(Ω)

To this aim we derived the bound∫
Ω

F ∗(σk) dx ≤ C

∫
Ω

F (Du0) dx

Since we already observed that σk → F ′(Du) locally uniformly and F ∗(σk) ≥ 0 for
every k, by Fatou's lemma and by previous estimate∫

Ω

F ∗(F ′(Du)) dx ≤ lim inf
k→+∞

∫
Ω

F ∗(σk) dx ≤ C

∫
Ω

F (Du0) dx .

Thus
F ∗(F ′(Du)) ∈ L1(Ω).

whence
〈F ′(Du),Du〉 ∈ L1(Ω).

since F (Du) ∈ L1(Ω) by the de�nition of minimizer
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Step 3: the limit �eld is a non positive Radon measure

We prove that div σ ≤ 0 in the distributional sense

To this aim we exploit:

• the fact that in view of the (q′, p′)−growth of F ∗(σ) and of F ∗k (σk) we are able

to deduce a bound for the term
∫

Ω
|F ′(Du)|q

′
dx and thus the fact σk → σ a.e. up

to a subsequence

• The minimality of uk yields the validity of the following variational inequality∫
Ω

〈σk ,Dη〉 dx ≥ 0 for all η ∈ C∞0 (Ω), η ≥ 0,

and so, by the weak convergence of σk to σ in Lq′(Ω), passing to the limit as k →∞
in previous inequality, also∫

Ω

〈σ,Dη〉 dx ≥ 0 for all η ∈ C∞0 (Ω), η ≥ 0
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Step 4: the validity of the variational inequality

We have that
|〈σk ,Dz〉| ≤ 2F ∗k (σk) + F (Dz) + F (−Dz),

Moreover∫
Ω

|〈σk ,Dz〉| dx ≤
∫

Ω

F ∗k (σk) +

∫
Ω

F (Dz) dx +

∫
Ω

F (−Dz) dx

≤ C

(∫
Ω

F (Du0) dx +

∫
Ω

F (Dz) dx +

∫
Ω

F (−Dz) dx

)
.

thus, by our assumptions, the sequence 〈σk ,Dz〉 is equi-integrable

Using that 〈σk ,Dz〉 → 〈σ,Dz〉 a.e., Vitali's convergence Theorem implies

〈σk ,Dz〉 → 〈σ,Dz〉 strongly in L1(Ω)
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Step 4: the validity of the variational inequality

At this point, we start from the variational inequality∫
Ω

〈σk ,Dz − Duk〉 dx ≥ 0 for all z ∈ KF
ψ(Ω),

since KF
ψ(Ω) ⊂ Kψ(Ω), writing it as∫

Ω

〈σk ,Dz〉 dx ≥
∫

Ω

〈σk ,Duk〉 dx for all z ∈ KF
ψ(Ω)

and taking the liminf as k → +∞ in previous equality, we get

lim inf
k→+∞

∫
Ω

〈σk ,Dz〉 dx ≥ lim inf
k→+∞

∫
Ω

〈σk ,Duk〉 dx

So we conclude by using the fact that∫
Ω

〈σ,Du〉 dx ≤ lim inf
k→+∞

∫
Ω

〈σk ,Duk〉 dx .

and the consequence of Vitali's convergence Theorem, namely

〈σk ,Dz〉 → 〈σ,Dz〉 strongly in L1(Ω)

and we �nally get the thesis∫
Ω

〈σ,Dz〉 dx ≥
∫

Ω

〈σ,Du〉 dx for all z ∈ KF
ψ(Ω) such that F (±Dz) ∈ L1(Ω)
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Thank you very much for the attention!

Thank you very much for the attention!
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