Regularity estimates for nonlinear parabolic equations with measure data on nonsmooth domains

Jung-Tae Park
Korea Institute for Advanced Study (KIAS), Seoul, Korea
Monday's Nonstandard Seminar 2020/21

April 12, 2021
Joint work with Sun-Sig Byun (SNU) and Pilsoo Shin (KGU)

Parabolic measure data problems

- Consider the Cauchy-Dirichlet problem with measure data

$$
\left\{\begin{align*}
u_{t}-\operatorname{div} \mathbf{a}(D u, x, t)=\mu & \text { in } \Omega_{T}, \tag{P}\\
u=0 & \text { on } \partial_{p} \Omega_{T},
\end{align*}\right.
$$

where $D u:=D_{x} u, \Omega$ is a nonsmooth bounded domain of $\mathbb{R}^{n}, n \geq 2$, and $\Omega_{T}:=\Omega \times(0, T)$ with $\partial_{p} \Omega_{T}:=(\partial \Omega \times(0, T)) \cup(\Omega \times\{0\})$.

- μ is a signed Radon measure on Ω_{T} with finite mass. Here we assume that μ is defined in \mathbb{R}^{n+1} by considering the zero extension to $\mathbb{R}^{n+1} \backslash \Omega_{T}$; that is,

$$
|\mu|\left(\Omega_{T}\right)=|\mu|\left(\mathbb{R}^{n+1}\right)<\infty
$$

Parabolic measure data problems with p-growth

- A typical model of (P) is parabolic p-Laplacian, $\mathbf{a}(\xi, x, t)=|\xi|^{p-2} \xi$;

$$
u_{t}-\Delta_{p} u:=u_{t}-\operatorname{div}(\underbrace{|D u|^{p-2}}_{\text {diffusion coefficient }} \quad D u)=\mu
$$

■ $p>2$: slow diffusion, degenerate equation

- $p<2$: fast diffusion, singular equation

■ $p=2$: random diffusion, non-degenerate (heat) equation

- The nonlinearity $\mathbf{a}(\xi, x, t): \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ satisfies the following growth and ellipticity conditions:

$$
\left\{\begin{array}{l}
|\xi|\left|D_{\xi} \mathbf{a}(\xi, x, t)\right|+|\mathbf{a}(\xi, x, t)| \leq \Lambda_{1}|\xi|^{p-1}, \\
\Lambda_{0}|\xi|^{p-2}|\eta|^{2} \leq\left\langle D_{\xi} \mathbf{a}(\xi, x, t) \eta, \eta\right\rangle
\end{array} \quad\left(p>\frac{2 n}{n+1}\right)\right.
$$

for every $\eta, \xi, x \in \mathbb{R}^{n}, t \in \mathbb{R}$, and for some constants $\Lambda_{0}, \Lambda_{1}>0$.

Goal

- Goal. Global gradient estimates for a solution to the problem (P) as follows:

$$
\int_{\Omega_{T}}|D u|^{q} d x d t \lesssim \int_{\Omega_{T}} \mathcal{M}_{1}(\mu)^{d q} d x d t+1 \quad \text { for } \quad 0<\forall q<\infty
$$

where $d=d(n, p) \geq 1$.
■ $\mathcal{M}_{\alpha}(\mu)$ is the parabolic fractional maximal function of order α for μ,

$$
\mathcal{M}_{\alpha}(\mu)(x, t):=\sup _{r>0} \frac{r^{\alpha}|\mu|\left(Q_{r}(x, t)\right)}{r^{n+2}} \quad \text { for }(x, t) \in \mathbb{R}^{n} \times \mathbb{R}
$$

where $Q_{r}(x, t):=B_{r}(x) \times\left(t-r^{2}, t+r^{2}\right)$.

Goal

■ Goal. Global gradient estimates for a solution to the problem (P) as follows:

$$
\int_{\Omega_{T}}|D u|^{q} d x d t \lesssim \int_{\Omega_{T}} \mathcal{M}_{1}(\mu)^{d q} d x d t+1 \quad \text { for } \quad 0<\forall q<\infty
$$

where $d=d(n, p) \geq 1$.

- To derive the above estimates, we find

1 a notion of solution
2 minimal assumption on the operator a (ξ, x, t)
3 minimal assumption on the boundary of Ω

Motivation

■ Consider

$$
u_{t}-\operatorname{div}\left(|D u|^{p-2} D u\right)=\delta_{0} \quad \text { in } \mathbb{R}^{n} \times \mathbb{R},
$$

where δ_{0} is the Dirac delta function charging the origin.

- The Barenblatt solution is

$$
u(x, t)= \begin{cases}t^{-n \theta}\left[c(n, p)-\frac{p-2}{p} \theta^{\frac{1}{p-1}}\left(\frac{|x|}{t^{\theta}}\right)^{\frac{p}{p-1}}\right]_{+}^{\frac{p-1}{p-2}} & \text { if } p \neq 2 \& t>0, \\ (4 \pi t)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4 t}} & \text { if } p=2 \& t>0 \\ 0 & \text { if } t \leq 0,\end{cases}
$$

where $\theta:=\frac{1}{n(p-2)+p}>0\left(\Longleftrightarrow p>\frac{2 n}{n+1}\right)$.
■ $u \in L^{q}\left(\mathbb{R} ; W^{1, q}\left(\mathbb{R}^{n}\right)\right)$ for $q<p-\frac{n}{n+1}$, i.e., $u \notin L^{p}\left(\mathbb{R} ; W^{1, p}\left(\mathbb{R}^{n}\right)\right)$.

- $u \in L^{1}\left(\mathbb{R} ; W^{1,1}\left(\mathbb{R}^{n}\right)\right) \Longleftrightarrow p-\frac{n}{n+1}>1 \Longleftrightarrow p>2-\frac{1}{n+1}\left(>\frac{2 n}{n+1}\right)$.

■ $u \notin L^{1}\left(\mathbb{R} ; W^{1,1}\left(\mathbb{R}^{n}\right)\right) \Longleftrightarrow \frac{2 n}{n+1}<p \leq 2-\frac{1}{n+1}$.

p-parabolic capacity

■ Let $p>1$ and $Q \subset \Omega_{T}$. The p-(parabolic) capacity of Q is defined by

$$
\operatorname{cap}_{p}(Q):=\inf \left\{\|u\|_{W}: u \in W, u \geq \chi_{Q} \text { a.e. in } \Omega_{T}\right\}
$$

where $W:=\left\{u \in L^{p}(0, T ; V): u_{t} \in L^{p^{\prime}}\left(0, T ; V^{\prime}\right)\right\}$ endowed with

$$
\|u\|_{W}:=\|u\|_{L^{p}(0, T ; V)}+\left\|u_{t}\right\|_{L^{p^{\prime}}\left(0, T ; V^{\prime}\right)} .
$$

Here $V:=W_{0}^{1, p}(\Omega) \cap L^{2}(\Omega)$ and V^{\prime} is the dual space of V.

Decomposition of measure

$\mathfrak{M}_{b}\left(\Omega_{T}\right):=\left\{\right.$ all signed Radon measures on Ω_{T} with finite mass $\}$. $\mathfrak{M}_{a}\left(\Omega_{T}\right):=\left\{\mu \in \mathfrak{M}_{b}\left(\Omega_{T}\right): \mu\right.$ is absolutely continuous w.r.t p-capacity $\}$. $\mathfrak{M}_{s}\left(\Omega_{T}\right):=\left\{\mu \in \mathfrak{M}_{b}\left(\Omega_{T}\right): \mu\right.$ has support on a set of zero p-capacity $\}$.

■ For $\mu \in \mathfrak{M}_{b}\left(\Omega_{T}\right)$,

$$
\begin{gathered}
\mu=\mu_{a}+\mu_{s}, \quad \mu_{a} \in \mathfrak{M}_{a}\left(\Omega_{T}\right), \quad \mu_{s} \in \mathfrak{M}_{s}\left(\Omega_{T}\right) \\
\mu_{a} \in \mathfrak{M}_{a}\left(\Omega_{T}\right) \Longleftrightarrow \mu_{a}=f+g_{t}+\operatorname{div} G
\end{gathered}
$$ where $f \in L^{1}\left(\Omega_{T}\right), g \in L^{p}(0, T ; V)$ and $G \in L^{p^{\prime}}\left(\Omega_{T}\right)$.

A notion of weak gradient

- Let us define the truncation operator

$$
T_{k}(s):=\max \{-k, \min \{k, s\}\} \quad \text { for any } k>0 \text { and } s \in \mathbb{R} .
$$

$■$ If u is a measurable function defined in Ω_{T}, finite a.e., such that $T_{k}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ for any $k>0$, then there exists a unique measurable function U such that $D T_{k}(u)=U \chi_{\{|u|<k\}}$ a.e. in Ω_{T} for all $k>0$.

- In this case, $D u:=U$. If $u \in L^{1}\left(0, T ; W_{0}^{1,1}(\Omega)\right)$, then it coincides with the usual weak gradient.

Renormalized solution

Definition (Petitta \& Porretta '15)

Let $p>1$ and $\mu=\mu_{a}+\mu_{s}$. A function $u \in L^{1}\left(\Omega_{T}\right)$ is a renormalized solution of the problem (P) if $T_{k}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ for every $k>0$ and the following property holds: for any $k>0$ there exist sequences of nonnegative measures $\nu_{k}^{+}, \nu_{k}^{-} \in \mathfrak{M}_{a}\left(\Omega_{T}\right)$ such that

$$
\nu_{k}^{+} \rightarrow \mu_{s}^{+}, \nu_{k}^{-} \rightarrow \mu_{s}^{-} \quad \text { tightly as } k \rightarrow \infty
$$

and

$$
-\int_{\Omega_{T}} T_{k}(u) \varphi_{t} d x d t+\int_{\Omega_{T}}\left\langle\mathbf{a}\left(D T_{k}(u), x, t\right), D \varphi\right\rangle d x d t=\int_{\Omega_{T}} \varphi d \mu_{k}
$$

for every $\varphi \in W \cap L^{\infty}\left(\Omega_{T}\right)$ with $\varphi(\cdot, T)=0$, where $\mu_{k}:=\mu_{a}+\nu_{k}^{+}-\nu_{k}^{-} \in \mathfrak{M}_{a}\left(\Omega_{T}\right)$.

- $\mu_{s}=\mu_{s}^{+}-\mu_{s}^{-}$, where μ_{s}^{+}and μ_{s}^{-}are the positive and negative parts, respectively.

■ We say that a sequence $\left\{\nu_{k}\right\} \subset \mathfrak{M}_{b}\left(\Omega_{T}\right)$ converges tightly to $\nu \in \mathfrak{M}_{b}\left(\Omega_{T}\right)$ if

$$
\lim _{k \rightarrow \infty} \int_{\Omega_{T}} \varphi d \nu_{k}=\int_{\Omega_{T}} \varphi d \nu \quad \forall \varphi \in C_{b}\left(\Omega_{T}\right)
$$

Various notions of solutions

■ Very weak solution, Distributional solution, Duality solution, ...
■ Renormalized solution

- DiPerna \& Lions '89
- Dal Maso \& Murat \& Orsina \& Prignet '99
- Petitta '08
- Petitta \& Ponce \& Porretta '11
- Petitta \& Porretta '15, \ldots

■ Entropy solution

- Bénilan \& Boccardo \& Gallouët \& Gariepy \& Pierre \& Vázquez '95
- Boccardo \& Gallouët \& Orsina '96
- Prignet '97, \ldots

■ SOLA (Solution Obtained by Limits of Approximations)
■ Boccardo \& Gallouët '89, '92

- Dall'Aglio '96
- Boccardo \& Dall'Aglio \& Gallouët \& Orsina '97, ...

Small BMO assumption

- Let $R>0$ and $\delta \in\left(0, \frac{1}{8}\right)$. The vector field a satisfies

$$
\sup _{t_{1}, t_{2} \in \mathbb{R}} \sup _{0<r \leq R} \sup _{y \in \mathbb{R}^{n}} f_{t_{1}}^{t_{2}} f_{B_{r}(y)} \Theta\left(\mathbf{a}, B_{r}(y)\right)(x, t) d x d t \leq \delta
$$

where

$$
\Theta\left(\mathbf{a}, B_{r}(y)\right)(x, t):=\sup _{\xi \in \mathbb{R}^{n} \backslash\{0\}}\left|\frac{\mathbf{a}(\xi, x, t)}{|\xi|^{p-1}}-f_{B_{r}(y)} \frac{\mathbf{a}(\xi, s, t)}{|\xi|^{p-1}} d s\right| .
$$

- The map $x \mapsto \frac{\mathbf{a}(\xi, x, t)}{|\xi|^{p-1}}$ is of Bounded Mean Oscillation (BMO) such that its BMO seminorm is less than or equal to δ, uniformly in ξ and t.

■ $L^{\infty} \subset \mathrm{BMO} \subset L^{q}$ for any $q<\infty$.

Reifenberg flat domain

■ Let $R>0$ and $\delta \in\left(0, \frac{1}{8}\right)$. The domain Ω is (δ, R)-Reifenberg flat, that is, for each $x_{0} \in \partial \Omega$ and each $r \in(0, R)$, there exists a coordinate system $\left\{y_{1}, \cdots, y_{n}\right\}$ such that in this new coordinate system, the origin is x_{0} and

$$
B_{r} \cap\left\{y_{n}>\delta r\right\} \subset B_{r} \cap \Omega \subset B_{r} \cap\left\{y_{n}>-\delta r\right\} .
$$

Reifenberg flat domain (cont.)

- This domain includes C^{1} domain, Lipschitz domain with a small Lipschitz constant, and so on.
- This domain also satisfies the measure density condition:

$$
\sup _{0<r \leq R} \sup _{y \in \Omega} \frac{\left|B_{r}(y)\right|}{\left|\Omega \cap B_{r}(y)\right|} \leq\left(\frac{2}{1-\delta}\right)^{n}
$$

Global Calderón-Zygmund type estimates 1

$$
(P)\left\{\begin{aligned}
u_{t}-\operatorname{div} \mathbf{a}(D u, x, t) & =\mu \\
& \\
& \text { in } \Omega_{T}, \\
u & =0
\end{aligned} \quad \text { on } \partial_{p} \Omega_{T}, \quad\left(p>\frac{2 n}{n+1}\right)\right.
$$

■ Assume that (\mathbf{a}, Ω) is (δ, R)-vanishing. $\left(\Longleftrightarrow x \mapsto \frac{\mathbf{a}(\xi, x, t)}{|\xi|^{p-1}}\right.$ is δ-small BMO and Ω is (δ, R)-Reifenberg flat)

Theorem (Byun \& P. \& Shin '21, P. \& Shin submitted)

Let u be a renormalized solution of (P). For $p \geq 2$, we have

$$
\int_{\Omega_{T}}|D u|^{q} d x d t \lesssim\left(\int_{\Omega_{T}}\left[\mathcal{M}_{1}(\mu)\right]^{q} d x d t\right)^{\frac{(n+2)(p-1)}{(n+1) p-n}}+1 \quad \text { for } \quad 0<\forall q<\infty
$$

For $\frac{2 n}{n+1}<p \leq 2$, we have

$$
\int_{\Omega_{T}}|D u|^{q} d x d t \lesssim \int_{\Omega_{T}}\left[\mathcal{M}_{1}(\mu)\right]^{\frac{2 q}{n+1) p-2 n}} d x d t+1 \quad \text { for } \quad 0<\forall q<\infty .
$$

- For elliptic problems, see Mingione '11, Phuc '14, Nguyen \& Phuc '19.

Global Calderón-Zygmund type estimates 2

- Assume that the following decomposition holds:

$$
\mu=\mu_{0} \otimes f
$$

where μ_{0} is a finite signed Radon measure on Ω and $f \in L^{\frac{q}{p-1}}(0, T)$.

- Assume that (\mathbf{a}, Ω) is (δ, R)-vanishing.

Theorem (Byun \& P. \& Shin '21, P. \& Shin submitted)

Let u be a renormalized solution of (P). For $p \geq 2$, we have
$\int_{\Omega_{T}}|D u|^{q} d x d t \lesssim\left(\int_{\Omega_{T}}\left[\mathcal{M}_{1}\left(\mu_{0}\right) f\right]^{\frac{q}{p-1}} d x d t\right)^{\frac{(n+2)(p-1)^{2}}{(n+1) p-n}}+1$ for $p-1<\forall q<\infty$
For $\frac{2 n}{n+1}<p \leq 2$, we have

$$
\int_{\Omega_{T}}|D u|^{q} d x d t \lesssim \int_{\Omega_{T}}\left[\mathcal{M}_{1}\left(\mu_{0}\right) f\right]^{\frac{q}{p-1}} d x d t+1 \quad \text { for } p-1<\forall q<\infty
$$

Known results for parabolic measure data problems

■ Calderón-Zygmund type estimates
■ Nguyen '15: linear problems

- Byun \& P. '18: $p=2$
- Byun \& P. \& Shin, '21: $p>2-\frac{1}{n+1}$

■ P. \& Shin, submitted: $\frac{2 n}{n+1}<p \leq 2-\frac{1}{n+1}$
■ Pointwise potential estimates

- Duzaar \& Mingione '11: $p=2$
- Kuusi \& Mingione '13, '14: $p>2-\frac{1}{n+1}$
- P. \& Shin, in preparation: $\frac{2 n}{n+1}<p \leq 2-\frac{1}{n+1}$

■ Marcinkiewicz estimates

- Baroni '14, Bui \& Duong '18: $p \geq 2$
- Baroni '17: $2-\frac{1}{n+1}<p<2$
- P., in preparation: $\frac{2 n}{n+1}<p \leq 2-\frac{1}{n+1}$
- In this talk, we only focus on when $\frac{2 n}{n+1}<p \leq 2-\frac{1}{n+1}$.

Idea of proof

- Our proof consists of comparison estimates via approximation arguments and covering argument.

■ We obtain comparison estimates under intrinsic cylinders.

■ Covering argument is based on maximal function technique, introduced by Caffarelli \& Peral '98, developed in Byun \& Palagachev \& Shin '20.

* Maximal function free technique (Acerbi \& Mingione '07).

Intrinsic scaling

- Dimensional analysis

We denote by $[\omega]$ the dimension of the quantity ω (e.g. $[\tau]$ is time, $[\rho]$ is a length). Consider $v_{t}=\operatorname{div}\left(|D v|^{p-2} D u\right)$. Then we have dimension

$$
\frac{[v]}{[\tau]}=\frac{[v]^{p-1}}{[\rho]^{p}} \Rightarrow[\tau]=[v]^{2-p}[\rho]^{p}=\left(\frac{[v]}{[\rho]}\right)^{2-p}[\rho]^{2}=\lambda^{2-p}[\rho]^{2},
$$

provided that $\lambda:=[v] /[\rho](=[D v])$.
■ Intrinsic parabolic cylinders: for $\lambda>0$,

$$
Q_{\rho}^{\lambda}\left(x_{0}, t_{0}\right):=B_{\rho}\left(x_{0}\right) \times \underbrace{\left(t_{0}-\lambda^{2-p} \rho^{2}, t_{0}+\lambda^{2-p} \rho^{2}\right)}_{=: I_{\rho}^{\lambda}\left(t_{0}\right)} .
$$

If $p=2$ or $\lambda=1$, then $Q_{\rho}^{\lambda}\left(x_{0}, t_{0}\right)=Q_{\rho}\left(x_{0}, t_{0}\right)$.
■ The concept of intrinsic scaling means that the size of cylinders depends on the solution itself (introduced by DiBenedetto).

Comparison estimates

$$
\left\{\begin{align*}
u_{t}-\operatorname{div} \mathbf{a}(D u, x, t)=\mu & \text { in } \Omega_{T} \tag{P}\\
u=0 & \text { on } \partial_{p} \Omega_{T}
\end{align*}\right.
$$

Let w be the weak solution of the homogeneous problem

$$
\left\{\begin{align*}
w_{t}-\operatorname{div} \mathbf{a}(D w, x, t)=0 & \text { in } K_{8 r}^{\lambda}\left(x_{0}, t_{0}\right), \tag{w}\\
w=u & \text { on } \partial_{p} K_{8 r}^{\lambda}\left(x_{0}, t_{0}\right) .
\end{align*}\right.
$$

- $K_{8 r}^{\lambda}\left(x_{0}, t_{0}\right):=Q_{8 r}^{\lambda}\left(x_{0}, t_{0}\right) \cap \Omega_{\mathfrak{T}}$, where $\Omega_{\mathfrak{T}}:=\Omega \times(-\infty, T)$.
- Suppose that (\mathbf{a}, Ω) is (δ, R)-vanishing for some $R>0$, where $\delta \in\left(0, \frac{1}{8}\right)$ is to be determined later. Fix any $\lambda>0,\left(x_{0}, t_{0}\right) \in \Omega_{\mathfrak{T}}$ and $0<r \leq \frac{R}{8}$ satisfying

$$
B_{8 r}\left(x_{0}\right) \cap\left\{x_{n}>0\right\} \subset B_{8 r}\left(x_{0}\right) \cap \Omega \subset B_{8 r}\left(x_{0}\right) \cap\left\{x_{n}>-16 \delta r\right\} .
$$

- From now on, for simplicity, we omit the center $\left(x_{0}, t_{0}\right)$ of $K_{8 r}^{\lambda}\left(x_{0}, t_{0}\right)$.

Higher integrability

Lemma (Bögelein \& Parviainen '10)

Let $\frac{2 n}{n+2}<p \leq 2$. There exist constants $\sigma=\sigma\left(n, \Lambda_{0}, \Lambda_{1}, p, \theta\right) \in(0,1)$ and $c=c\left(n, \Lambda_{0}, \Lambda_{1}, p, \theta\right) \geq 1$ such that

$$
f_{K_{4 r}^{\lambda}}|D w|^{p(1+\sigma)} d x d t \leq c \lambda^{p(1+\sigma)}\left[\left(\lambda^{-\theta} f_{K_{\delta r}^{\lambda}}|D w|^{\theta} d x d t\right)^{\frac{p(1+0 \sigma)}{p-p 0+\partial \theta}}+1\right]
$$

for every $\frac{(2-p) n}{2}<\theta \leq p$, where $\mathfrak{d}:=\frac{2 p}{(n+2) p-2 n}$.

- In an interior case, see Kinnunen \& Lewis '00.
- The lower bound of θ comes from $p-p \mathfrak{d}+\mathfrak{d} \theta>0$ (scaling deficit!).
- For elliptic equations with p-growth $(p>1)$, there has no scaling deficit (see Giusti's book).

Comparison estimates below L^{1} spaces

Lemma (Comparison estimate between (P) and $\left(P_{w}\right)$)

Let $\frac{3 n+2}{2 n+2}<p \leq 2-\frac{1}{n+1}$. There exists a constant $c=c\left(n, \Lambda_{0}, p, \theta\right) \geq 1$ such that

$$
\begin{aligned}
\left(f_{K_{8 r}^{\lambda}}|D u-D w|^{\theta} d x d t\right)^{\frac{1}{\theta}} \leq & c\left[\frac{|\mu|\left(K_{8 r}^{\lambda}\right)}{\left|K_{8 r}^{\lambda}\right|^{\frac{n+1}{n+2}}}\right]^{\frac{n+2}{(n+1) p-n}} \\
& +c\left[\frac{|\mu|\left(K_{8 r}^{\lambda}\right)}{\left\lvert\, K_{8 r}^{\lambda} \frac{\frac{n+1}{n+1}}{n+2}\right.}\right]\left(f_{K_{8 r}^{\lambda}}|D u|^{\theta} d x d t\right)^{\frac{(2-p)(n+1)}{\theta(n+2)}}
\end{aligned}
$$

for any constant θ such that $\frac{n+2}{2(n+1)}<\theta<p-\frac{n}{n+1} \leq 1$.

- For $p>2-\frac{1}{n+1}$, see Kuusi \& Mingione '13, '14.
- For elliptic comparison estimate (with $\frac{3 n-2}{2 n-1}<p \leq 2-\frac{1}{n}$), see Nguyen \& Phuc '19.

Outline of proof $(1 / 5)$

- For any fixed $\varepsilon, \tilde{\varepsilon}$ with $\varepsilon>\tilde{\varepsilon}^{1-\gamma}>0$, choose a test function

$$
\varphi_{1}= \pm \min \left\{1, \max \left\{\frac{(u-w)_{ \pm}^{1-\gamma}-\tilde{\varepsilon}^{1-\gamma}}{\varepsilon-\tilde{\varepsilon}^{1-\gamma}}, 0\right\}\right\} \zeta(t), \quad(0 \leq \gamma<1)
$$

where $\zeta \in C^{\infty}(\mathbb{R})$ is nonincreasing with $0 \leq \zeta \leq 1$ and $\zeta(t)=0$ for $t \geq \tau$.

■ $(u-w)_{ \pm}^{-\gamma} \leq \tilde{\varepsilon}^{-\gamma}$ in the set $\left\{\tilde{\varepsilon}<(u-w)_{ \pm}<\varepsilon^{\frac{1}{1-\gamma}}\right\}$.

Outline of proof $(2 / 5)$

- Weak formulation

$$
\underbrace{\int_{K_{8 r}^{\lambda}}(u-w)_{t} \varphi_{1} d x d t}_{:=I_{1}}+\underbrace{\int_{K_{8 r}^{\lambda}}\left\langle\mathbf{a}(D u, x, t)-\mathbf{a}(D w, x, t), D \varphi_{1}\right\rangle d x d t}_{\geq 0 \text { by monotonicity }}=\underbrace{\int_{K_{8 r}^{\lambda}} \varphi_{1} d \mu}_{\leq|\mu|\left(K_{8 r}^{\lambda}\right)} .
$$

- The integration by parts gives

$$
I_{1}=\int_{K_{8 r}^{\lambda}}\left[\int_{\tilde{\varepsilon}}^{(u-w)_{ \pm}} \min \left\{1, \frac{s^{1-\gamma}-\tilde{\varepsilon}^{1-\gamma}}{\varepsilon-\tilde{\varepsilon}^{1-\gamma}}\right\} d s\right]\left(-\zeta_{t}\right) d x d t \geq 0
$$

■ Letting $\tilde{\varepsilon} \rightarrow 0$, we have

$$
\int_{K_{8 r}^{\lambda}}\left[\int_{0}^{(u-w)_{ \pm}} \min \left\{1, \frac{s^{1-\gamma}}{\varepsilon}\right\} d s\right]\left(-\zeta_{t}\right) d x d t \leq|\mu|\left(K_{8 r}^{\lambda}\right)
$$

■ Letting $\varepsilon \rightarrow 0$ and letting ζ approximate the characteristic function $\chi_{(-\infty, \tau)}$, we derive

$$
\begin{equation*}
\sup _{\tau \in I_{8 r}^{\lambda}} \int_{\Omega_{8 r} \times\{\tau\}}|u-w| d x \leq|\mu|\left(K_{8 r}^{\lambda}\right) . \tag{1}
\end{equation*}
$$

Outline of proof $(3 / 5)$

■ Choose another test function

$$
\varphi_{2}=\frac{\varphi_{1}}{\left(\alpha^{1-\gamma}+(u-w)_{ \pm}^{1-\gamma}\right)^{\xi-1}}
$$

where $0 \leq \gamma<1, \alpha>0$ and $\xi>1$ are to be determined later.

- Weak formulation

$$
\underbrace{\int_{K_{8 r}^{\lambda}}(u-w)_{t} \varphi_{2} d x d t}_{\leq \alpha^{(1-\gamma)(1-\xi)|\mu|\left(K_{8 r}^{\lambda}\right)}}+\underbrace{\int_{K_{8 r}^{\lambda}}\left\langle\mathbf{a}(D u, x, t)-\mathbf{a}(D w, x, t), D \varphi_{2}\right\rangle d x d t}_{:=I_{2}}=\underbrace{\int_{K_{8 r}^{\lambda}} \varphi_{2} d \mu}_{\leq \alpha^{(1-\gamma)(1-\xi)|\mu|\left(K_{8 r}^{\lambda}\right)}}
$$

- From calculations of I_{2}, we derive

$$
\begin{equation*}
\int_{K_{8 r}^{\lambda}} \frac{|u-w|^{-\gamma}\left(|D u|^{2}+|D w|^{2}\right)^{\frac{p-2}{2}}|D u-D w|^{2}}{\left(\alpha^{1-\gamma}+|u-w|^{1-\gamma}\right)^{\xi}} d x d t \leq c \frac{\alpha^{(1-\gamma)(1-\xi)}}{(1-\gamma)(\xi-1)}|\mu|\left(K_{8 r}^{\lambda}\right) . \tag{2}
\end{equation*}
$$

Outline of proof $(4 / 5)$

■ Parabolic embedding theorem $(q \geq 1, m>0)$

$$
\int_{K_{8 r}^{\lambda}}|f|^{q \frac{n+m}{n}} d x d t \leq c\left(\int_{K_{8 r}^{\lambda}}|D f|^{q} d x d t\right)\left(\sup _{t \in I_{8 r}^{\lambda}} \int_{\Omega_{8 r} \times\{t\}}|f|^{m} d x\right)^{\frac{q}{n}}
$$

- Take $f=|u-w|^{\frac{p-\beta}{p}}, q=1$ and $m=\frac{p}{p-\beta} \quad(0 \leq \beta<p)$.

$$
\begin{aligned}
f_{K_{8 r}^{\lambda}}|u-w|^{\frac{(n+1) p-n \beta}{n p}} d x d t \leq & c f_{K_{8 r}^{\lambda}}|D| u-\left.w\right|^{\frac{p-\beta}{p}} \mid d x d t \\
& \times\left(\sup _{t \in I_{8 r}^{\lambda}} \int_{\Omega_{8 r} \times\{t\}}|u-w| d x\right)^{\frac{1}{n}} \\
\leq & \left.c\left[|\mu|\left(K_{8 r}^{\lambda}\right)\right]^{\frac{1}{n}} f_{K_{8 r}^{\lambda}}|D| u-\left.w\right|^{\frac{p-\beta}{p}} \right\rvert\, d x d t \quad \text { (by (1)). }
\end{aligned}
$$

Outline of proof $(5 / 5)$

- $f_{K_{8 r}^{\lambda}}|D| u-\left.w\right|^{\frac{p-\beta}{p}} \mid d x d t$ can be estimated by (2).
(Here, choose $0 \leq \gamma<1, \alpha>0$ and $\xi>1 \Longrightarrow$ the range of p, β is determined.)
- Since $|D| u-\left.w\right|^{\frac{p-\beta}{p}}\left|=\frac{p-\beta}{p}\right| u-\left.w\right|^{-\frac{\beta}{p}}|D u-D w|$, we compute

$$
\begin{aligned}
f_{K_{8 r}^{\lambda}} & |D u-D w|^{\theta} d x d t \\
& =f_{K_{8 r}^{\lambda}}\left(|u-w|^{-\frac{\beta}{p}}|D u-D w|\right)^{\theta}|u-w|^{\frac{\beta \theta}{p}} d x d t \\
& \leq c\left(f_{K_{8 r}^{\lambda}}|D| u-\left.w\right|^{\frac{p-\beta}{p}} \mid d x d t\right)^{\theta}\left(f_{K_{8 r}^{\lambda}}|u-w|^{\frac{\beta \theta}{p(1-\theta)}} d x d t\right)^{1-\theta} \\
& \left.\leq c\left[|\mu|\left(K_{8 r}^{\lambda}\right)\right]^{\frac{1-\theta}{n}} f_{K_{8 r}^{\lambda}}|D| u-\left.w\right|^{\frac{p-\beta}{p}} \right\rvert\, d x d t
\end{aligned}
$$

by taking $\frac{\beta \theta}{p(1-\theta)}=\frac{(n+1) p-n \beta}{n p}(\Longrightarrow$ the range of θ is determined $)$.

- Comparison estimate between (P) and $\left(P_{w}\right)$

Let $\frac{3 n+2}{2 n+2}<p \leq 2-\frac{1}{n+1}$. There exists a constant $c=c\left(n, \Lambda_{0}, p, \theta\right) \geq 1$ such that

$$
\begin{aligned}
\left(f_{K_{8 r}^{\lambda}}|D u-D w|^{\theta} d x d t\right)^{\frac{1}{\theta}} \leq & c\left[\frac{|\mu|\left(K_{8 r}^{\lambda}\right)}{\left|K_{8 r}^{\lambda}\right|^{\frac{n+1}{n+2}}}\right]^{\frac{n+2}{(n+1) p-n}} \\
& +c\left[\frac{|\mu|\left(K_{8 r}^{\lambda}\right)}{\left|K_{8 r}^{\lambda}\right|^{\frac{n+1}{n+2}}}\right]\left(f_{K_{8 r}^{\lambda}}|D u|^{\theta} d x d t\right)^{\frac{(2-p)(n+1)}{\theta(n+2)}}
\end{aligned}
$$

for any constant θ such that $\frac{n+2}{2(n+1)}<\theta<p-\frac{n}{n+1} \leq 1$.

- Higher integrability (Bögelein \& Parviainen '10)

Let $\frac{2 n}{n+2}<p \leq 2$. There exist constants $\sigma=\sigma\left(n, \Lambda_{0}, \Lambda_{1}, p, \theta\right) \in(0,1)$ and $c=c\left(n, \Lambda_{0}, \Lambda_{1}, p, \theta\right) \geq 1$ such that

$$
f_{K_{4 r}^{\lambda}}|D w|^{p(1+\sigma)} d x d t \leq c \lambda^{p(1+\sigma)}\left[\left(\lambda^{-\theta} f_{K_{8 r}^{\lambda}}|D w|^{\theta} d x d t\right)^{\frac{p(1+\boldsymbol{\jmath} \sigma)}{p-p \boldsymbol{\jmath}+\boldsymbol{\jmath} \theta}}+1\right]
$$

for every $\frac{(2-p) n}{2}<\theta \leq p$, where $\mathfrak{d}:=\frac{2 p}{(n+2) p-2 n}$.

Why $p>\frac{2 n}{n+1}$?

- From comparison estimates and higher integrability, the valid range of p is

$$
\frac{2 n}{n+1}<p \leq 2-\frac{1}{n+1}
$$

not $\max \left\{\frac{3 n+2}{2 n+2}, \frac{2 n}{n+2}\right\}<p \leq 2-\frac{1}{n+1}$, since the constant θ exists only when

$$
\max \left\{\frac{n+2}{2(n+1)}, \frac{(2-p) n}{2}\right\}<\theta<p-\frac{n}{n+1}
$$

■ $\frac{2 n}{n+1} \geq \max \left\{\frac{2 n}{n+2}, \frac{3 n+2}{2 n+2}\right\}$, where the equality holds iff $n=2$.

■ $\frac{2 n}{n+2}<\frac{3 n+2}{2 n+2}$ if $n=2,3,4 ; \quad \frac{2 n}{n+2}>\frac{3 n+2}{2 n+2}$ if $n \geq 5$.

Idea of proof

■ Our proof consists of comparison estimates via approximation arguments and covering argument.

■ We obtain comparison estimates under intrinsic cylinders.

- Covering argument is based on maximal function technique, introduced by Caffarelli \& Peral '98, developed in Byun \& Palagachev \& Shin '20.
* Maximal function free technique (Acerbi \& Mingione '07).

Modified Vitali covering lemma

Lemma

Let $0<\varepsilon<1, \lambda>0$ and $\Omega_{\mathfrak{T}}:=\Omega \times(-\infty, T)$, where Ω is (δ, R)-Reifenberg flat. Let $\mathfrak{C} \subset \mathfrak{D} \subset \Omega_{\mathfrak{T}}$ be two bounded measurable subsets such that
$1|\mathfrak{C}|<\varepsilon\left|Q_{R / 10}^{\lambda}\right|$, and
2 for any $(y, s) \in \Omega_{\mathfrak{T}}$ and any $r \in(0, R / 10]$ with $\left|\mathfrak{C} \cap Q_{r}^{\lambda}(y, s)\right| \geq \varepsilon\left|Q_{r}^{\lambda}\right|$, $Q_{r}^{\lambda}(y, s) \cap \Omega_{\mathfrak{T}} \subset \mathfrak{D}$.

Then we have

$$
\begin{equation*}
|\mathfrak{C}| \leq\left(\frac{10}{1-\delta}\right)^{n+2} \varepsilon|\mathfrak{D}|=: \varepsilon_{0}|\mathfrak{D}| \tag{3}
\end{equation*}
$$

- The covering lemma above is obtained under $\mathfrak{C} \subset \mathfrak{D} \subset \Omega_{\mathfrak{T}}$, not $\mathfrak{C} \subset \mathfrak{D} \subset \Omega_{T}:=\Omega \times(0, T)$. Then the relation (3) is independent of λ.
- For any fixed $\varepsilon \in(0,1)$, we set

$$
\lambda_{0}:=\left[\frac{|\mu|\left(\Omega_{T}\right)}{\left|\Omega_{T}\right|^{\frac{n+1}{n+2}}}\right]^{\beta \theta} \frac{\left|\Omega_{T}\right|}{\varepsilon\left|Q_{R / 10}\right|}+\left[\frac{|\mu|\left(\Omega_{T}\right)}{\delta T^{\frac{n+1}{2}}}\right]^{d}+1
$$

where $\beta:=\frac{n+2}{(n+1) p-n}, d:=\frac{2}{(n+1) p-2 n}$, and θ is a constant such that

$$
\max \left\{\frac{n+2}{2(n+1)}, \frac{(2-p) n}{2}, p-1\right\}<\theta<p-\frac{n}{n+1} \leq 1
$$

- For $\lambda \geq \lambda_{0} \geq 1$ and $N>1$, we write

$$
\mathfrak{C}:=\left\{\mathcal{M}^{\lambda}\left(|D u|^{\theta}\right)>(N \lambda)^{\theta}\right\}, \quad \mathfrak{D}:=\left\{\mathcal{M}^{\lambda}\left(|D u|^{\theta}\right)>\lambda^{\theta}\right\} \cup\left\{\mathcal{M}_{1}^{\lambda}(\mu)>\delta \lambda\right\},
$$

where

$$
\begin{aligned}
& \mathcal{M}^{\lambda}\left(|D u|^{\theta}\right)(x, t):=\sup _{r>0} f_{Q_{r}^{\lambda}(x, t)}|D u(y, s)|^{\theta} d y d s, \\
& \mathcal{M}_{1}^{\lambda}(\mu)(x, t):=\sup _{r>0} \frac{|\mu|\left(Q_{r}^{\lambda}(x, t)\right)}{r^{n+1}} .
\end{aligned}
$$

Verifying two conditions

- Energy type estimates

Let $\frac{3 n+2}{2 n+2}<p \leq 2-\frac{1}{n+1}$. Then there is a constant $c=c\left(n, \Lambda_{0}, p, \theta\right) \geq 1$ such that

$$
\left(f_{\Omega_{T}}|D u|^{\theta} d x d t\right)^{\frac{1}{\theta}} \leq c\left[\frac{|\mu|\left(\Omega_{T}\right)}{\left|\Omega_{T}\right|^{\frac{n+1}{n+2}}}\right]^{\frac{n+2}{(n+1) p-n}}
$$

for any constant θ such that $0<\theta<p-\frac{n}{n+1}$.
■ (1st condition) There exists a constant $N_{1}=N_{1}\left(n, \Lambda_{0}, p, \theta\right)>1$ such that for any fixed $N \geq N_{1}$ and $\lambda \geq \lambda_{0}$, we have $|\mathfrak{C}|<\varepsilon\left|Q_{R / 10}^{\lambda}\right|$.
Pf. Since $\theta>p-1$ and $\lambda \geq \lambda_{0} \geq 1$, we note that $\lambda^{-\theta} \leq \lambda^{1-p} \leq \lambda^{2-p} \lambda_{0}^{-1}$.

$$
\begin{aligned}
|\mathfrak{C}| & \leq \frac{c}{(\lambda N)^{\theta}} \int_{\Omega_{T}}|D u|^{\theta} d x d t \leq \frac{c\left|\Omega_{T}\right|}{(\lambda N)^{\theta}}\left[\frac{|\mu|\left(\Omega_{T}\right)}{\left|\Omega_{T}\right|^{\frac{n+1}{n+2}}}\right]^{\beta \theta} \\
& <\frac{c \lambda^{2-p} \varepsilon\left|Q_{R / 10}\right|}{N_{1}{ }^{\theta}} \leq \varepsilon\left|Q_{R / 10}^{\lambda}\right|
\end{aligned}
$$

by selecting N_{1} large enough.

Verifying two conditions (cont.)

- For $\lambda \geq \lambda_{0} \geq 1$ and $N>1$, we write

$$
\mathfrak{C}:=\left\{\mathcal{M}^{\lambda}\left(|D u|^{\theta}\right)>(N \lambda)^{\theta}\right\}, \quad \mathfrak{D}:=\left\{\mathcal{M}^{\lambda}\left(|D u|^{\theta}\right)>\lambda^{\theta}\right\} \cup\left\{\mathcal{M}_{1}^{\lambda}(\mu)>\delta \lambda\right\} .
$$

- (1st condition) There exists a constant $N_{1}=N_{1}\left(n, \Lambda_{0}, p, \theta\right)>1$ such that for any fixed $N \geq N_{1}$ and $\lambda \geq \lambda_{0}$, we have $|\mathfrak{C}|<\varepsilon\left|Q_{R / 10}^{\lambda}\right|$.
- From previous comparison estimates, we can obtain 2nd condition: There exists $N_{2}=N_{2}\left(n, \Lambda_{0}, \Lambda_{1}, p, \theta\right)>1$ such that for any fixed $\lambda \geq \lambda_{0}$, $N \geq N_{2}, r \in\left(0, \frac{R}{10}\right]$ and $(y, s) \in \Omega_{\mathfrak{T}}$ with $\left|\mathfrak{C} \cap Q_{r}^{\lambda}(y, s)\right| \geq \varepsilon\left|Q_{r}^{\lambda}\right|$, we have $K_{r}^{\lambda}(y, s) \subset \mathfrak{D}$.

■ Take $N=\max \left\{N_{1}, N_{2}\right\}$. We apply the covering lemma to derive the decay estimates as follows: for any $\lambda \geq \lambda_{0}$,

$$
\left|\left\{\mathcal{M}^{\lambda}\left(|D u|^{\theta}\right)>(N \lambda)^{\theta}\right\}\right| \leq \varepsilon_{0}\left|\left\{\mathcal{M}^{\lambda}\left(|D u|^{\theta}\right)>\lambda^{\theta}\right\}\right|+\varepsilon_{0}\left|\left\{\mathcal{M}_{1}^{\lambda}(\mu)>\delta \lambda\right\}\right| .
$$

Relation between classical and intrinsic fractional maximal

 functions$\square \mathcal{M}_{1}(\mu)(x, t):=\sup _{r>0} \frac{|\mu|\left(Q_{r}(x, t)\right)}{r^{n+1}} \& \mathcal{M}_{1}^{\lambda}(\mu)(x, t):=\sup _{r>0} \frac{|\mu|\left(Q_{r}^{\lambda}(x, t)\right)}{r^{n+1}}$.
■ Let $\delta>0$ and let $\lambda \geq 1$. If $\frac{2 n}{n+1}<p \leq 2$, then we have

$$
\left\{\mathcal{M}_{1}^{\lambda}(\mu)>\delta \lambda\right\} \subset\left\{\left[\mathcal{M}_{1}(\mu)\right]^{\frac{2}{(n+1) p-2 n}}>\delta^{\frac{2}{(n+1) p-2 n}} \lambda\right\}
$$

Pf. Set $r_{0}:=\lambda^{\frac{2-p}{2}} r$. Since $Q_{r}^{\lambda} \subset Q_{r_{0}}, \frac{|\mu|\left(Q_{r}^{\lambda}(y, s)\right)}{r^{n+1}} \leq \frac{|\mu|\left(Q_{r_{0}}(y, s)\right)}{r_{0}^{n+1}} \lambda^{\frac{(2-p)(n+1)}{2}}$.
If $\frac{|\mu|\left(Q_{r}^{\lambda}(y, s)\right)}{r^{n+1}}>\delta \lambda$, then $\frac{|\mu|\left(Q_{r_{0}}(y, s)\right)}{r_{0}^{n+1}}>\delta \lambda^{\frac{(n+1) p-2 n}{2}}$.

Relation between classical and intrinsic fractional maximal functions (cont.)

- Let $\delta>0$ and let $\lambda \geq 1$. If $p>1$ and $\mu=\mu_{0} \otimes f$, then we have

$$
\left\{\mathcal{M}_{1}^{\lambda}(\mu)>\delta \lambda\right\} \subset\left\{\left[2\left(\mathcal{M}_{1}\left(\mu_{0}\right)\right)(\mathcal{M} f)\right]^{\frac{1}{p-1}}>\delta^{\frac{1}{p-1}} \lambda\right\}
$$

where $\mathcal{M} f(t):=\sup _{r>0} f_{t-r}^{t+r}|f(s)| d s$ and $\mathcal{M}_{1}\left(\mu_{0}\right)(x):=\sup _{r>0} \frac{\left|\mu_{0}\right|\left(B_{r}(x)\right)}{r^{n-1}}$.

Pf. Since $\mu=\mu_{0} \otimes f, \frac{|\mu|\left(Q_{r}^{\lambda}(x, t)\right)}{\lambda^{2-p} r^{n+1}}=2 \frac{\left|\mu_{0}\right|\left(B_{r}(x)\right)}{r^{n-1}} f_{t-\lambda^{2-p} r^{2}}^{t+\lambda^{2-p} r^{2}}|f(s)| d s$.

$$
\text { If } \frac{|\mu|\left(Q_{r}^{\lambda}(x, t)\right)}{r^{n+1}}>\delta \lambda \text {, then } 2 \frac{\left|\mu_{0}\right|\left(B_{r}(x)\right)}{r^{n-1}} f_{t-\lambda^{2-p} r^{2}}^{t+\lambda^{2-p} r^{2}}|f(s)| d s>\delta \lambda^{p-1} .
$$

Decay estimates

- For any $\lambda \geq \lambda_{0}$, we have

$$
\left|\left\{\mathcal{M}^{\lambda}\left(|D u|^{\theta}\right)>(N \lambda)^{\theta}\right\}\right| \leq \varepsilon_{0}\left|\left\{\mathcal{M}^{\lambda}\left(|D u|^{\theta}\right)>\lambda^{\theta}\right\}\right|+\varepsilon_{0}\left|\left\{\left[\mathcal{M}_{1}(\mu)\right]^{d}>\delta^{d} \lambda\right\}\right|,
$$

where $d:=\frac{2}{(n+1) p-2 n} \geq 1$. Moreover, if $\mu=\mu_{0} \otimes f$, then we have

$$
\begin{aligned}
& \left|\left\{\mathcal{M}^{\lambda}\left(|D u|^{\theta}\right)>(N \lambda)^{\theta}\right\}\right| \\
& \quad \leq \varepsilon_{0}\left|\left\{\mathcal{M}^{\lambda}\left(|D u|^{\theta}\right)>\lambda^{\theta}\right\}\right|+\varepsilon_{0}\left|\left\{\left[2\left(\mathcal{M}_{1}\left(\mu_{0}\right)\right)(\mathcal{M} f)\right]^{\frac{1}{p-1}}>\delta^{\frac{1}{p-1}} \lambda\right\}\right|,
\end{aligned}
$$

where $\varepsilon_{0}:=\left(\frac{10}{1-\delta}\right)^{n+2} \varepsilon$.

Decay estimates of integral type

- Weak (1,1)-estimate for the λ-maximal function

$$
\left|\left\{\mathcal{M}^{\lambda} f>2 \alpha\right\}\right| \leq \frac{c(n)}{\alpha} \int_{\{|f|>\alpha\}}|f| d x d t \quad \text { for any } \alpha>0 .
$$

- For any $\theta_{0} \in\left(\theta, p-\frac{n}{n+1}\right)$ and any $\lambda \geq \lambda_{0}$, there exists a constant $c=c\left(n, \Lambda_{0}, \Lambda_{1}, p, \theta_{0}\right) \geq 1$ such that

$$
\begin{aligned}
\int_{\{|D u|>N \lambda\}}|D u|^{\theta_{0}} d x d t \leq c \varepsilon & \int_{\left\{|D u|>\frac{\lambda}{2}\right\}}|D u|^{\theta_{0}} d x d t \\
& +\frac{c \varepsilon}{\delta^{d \theta_{0}}} \int_{\left\{\left[\mathcal{M}_{1}(\mu)\right]^{d}>\delta^{d} \lambda\right\}}\left[\mathcal{M}_{1}(\mu)\right]^{d \theta_{0}} d x d t .
\end{aligned}
$$

- Using the above decay estimate, we can obtain our main global gradient estimate.

Summary

- Consider the Cauchy-Dirichlet problem with measure data

$$
\left\{\begin{align*}
u_{t}-\operatorname{div} \mathbf{a}(D u, x, t)=\mu & \text { in } \Omega_{T}, \tag{P}\\
u=0 & \text { on } \partial_{p} \Omega_{T},
\end{align*}\right.
$$

where μ is a signed Radon measure on Ω_{T} with finite mass.

- (\mathbf{a}, Ω) is (δ, R)-vanishing
$\left(\Longleftrightarrow x \mapsto \frac{\mathbf{a}(\xi, x, t)}{|\xi|^{p-1}}\right.$ is δ-small BMO \& Ω is (δ, R)-Reifenberg flat)
- Global gradient estimate. Let u be a renormalized solution of (P). For $p \geq 2$, we have

$$
\int_{\Omega_{T}}|D u|^{q} d x d t \leq c\left(\int_{\Omega_{T}}\left[\mathcal{M}_{1}(\mu)\right]^{q} d x d t\right)^{\frac{(n+2)(p-1)}{(n+1) p-n}}+c \quad \text { for } 0<\forall q<\infty .
$$

For $\frac{2 n}{n+1}<p \leq 2$, we have

$$
\int_{\Omega_{T}}|D u|^{q} d x d t \leq c \int_{\Omega_{T}}\left[\mathcal{M}_{1}(\mu)\right]^{\frac{2 q}{(n+1) p-2 n}} d x d t+c \quad \text { for } \quad 0<\forall q<\infty .
$$

Thank you for your attention!

