Fourth order pq-Laplacian

Jan Lang, The Ohio State University

4/26/2021, Nonstandard Seminar, (Warsaw University)

Fourth order pq-Laplacian

Jan Lang, The Ohio State University

4/26/2021, Nonstandard Seminar, (Warsaw University)
(To generalize something means to think. G.W.F.Hegel)

Abstract

Motivated by study of the higher order Sobolev embeddings on interval and their approximation we introduce and study a non-linear pq-biharmonic eigenvalue problem on the unit segment subject to Navier boundary condition. We will disuse existence of periodic symmetric solutions. In the case p, p^{\prime} we show that all eigenvalues and eigenfunctions can be expressed in terms of generalized trigonometric functions.
(Theses results were obtained with Lyonell Boulton.)

Introduction

$$
\begin{align*}
& \text { The Main Problem: pq-bi-Lapalcian (with Navier boundary condition) } \\
& \qquad \begin{array}{c}
\left(\left[u^{\prime \prime}\right]^{p-1}\right)^{\prime \prime}=\lambda[u]^{q-1} \\
u(0)=u\left(t_{0}\right)=\left[u^{\prime \prime}(0)\right]^{p-1}=\left[u^{\prime \prime}\left(t_{0}\right)\right]^{p-1}=0,
\end{array}
\end{align*}
$$

where $[u(t)]^{p-1}=|u(t)|^{p-1} \operatorname{sgn}(u(t)), 1<p, q<\infty$ and $\lambda \in \mathbb{R}$.
pq-Laplacian problem (with Dirichlet boundary condition)

Introduction

The Main Problem: pq-bi-Lapalcian (with Navier boundary condition)

$$
\begin{array}{rlrl}
\left(\left[u^{\prime \prime}\right]^{p-1}\right)^{\prime \prime} & =\lambda[u]^{q-1} & 0 \leq t \leq t_{0} \\
u(0)=u\left(t_{0}\right) & =\left[u^{\prime \prime}(0)\right]^{p-1}=\left[u^{\prime \prime}\left(t_{0}\right)\right]^{p-1}=0, & \tag{1}
\end{array}
$$

where $[u(t)]^{p-1}=|u(t)|^{p-1} \operatorname{sgn}(u(t)), 1<p, q<\infty$ and $\lambda \in \mathbb{R}$.
pq-Laplacian problem (with Dirichlet boundary condition)

$$
\begin{align*}
\left(\left[u^{\prime}\right]^{p-1}\right)^{\prime} & =\lambda[u]^{q-1} \quad 0 \leq t \leq t_{0} \tag{2}\\
u(0)=u\left(t_{0}\right) & =0 .
\end{align*}
$$

Introduction

Consider Sobolev embeddings

$$
E_{1}: W_{0}^{1, p}(\mathcal{I}) \rightarrow L^{q}(\mathcal{I})
$$

Where $\mathcal{I}=\left[0, t_{0}\right], 1<p, q<\infty$ and by $W_{0}^{1, p}(\mathcal{I})$ we denote the closure of $C_{0}^{\infty}(\operatorname{lnt} \mathcal{I})$
in the Sobolev space $W^{1, p}(\mathcal{I})$ with respect to the usual norm
$\|u\|_{W^{1, p}}:=\|u\|_{p, \mathcal{I}}+\left\|u^{\prime}\right\|_{p, I}$. And $W_{0}^{1, p}$ is equipped with the norm
$\|u\|_{W_{0}^{1, p}}:=\left\|u^{\prime}\right\|_{p, \mathcal{I}}$ due to the vanishing of its functions at 0 and t_{0}.
From compactness of E_{1} and reflexivity of the underlying spaces, it follows that there exists an optimal element $u_{0} \in W_{0}^{1, p}(\mathcal{I})$ such that

Introduction

Consider Sobolev embeddings

$$
E_{1}: W_{0}^{1, p}(\mathcal{I}) \rightarrow L^{q}(\mathcal{I})
$$

Where $\mathcal{I}=\left[0, t_{0}\right], 1<p, q<\infty$ and by $W_{0}^{1, p}(\mathcal{I})$ we denote the closure of $C_{0}^{\infty}(\operatorname{lnt} \mathcal{I})$ in the Sobolev space $W^{1, p}(\mathcal{I})$ with respect to the usual norm $\|u\|_{W^{1, p}}:=\|u\|_{p, \mathcal{I}}+\left\|u^{\prime}\right\|_{p, \mathcal{I}}$. And $W_{0}^{1, p}$ is equipped with the norm $\|u\|_{W_{0}^{1, p}}:=\left\|u^{\prime}\right\|_{\rho, \mathcal{I}}$ due to the vanishing of its functions at 0 and t_{0}.

From compactness of E_{1} and reflexivity of the underlying spaces, it follows that there exists an optimal element $u_{0} \in W_{0}^{1, p}(\mathcal{I})$ such that

Introduction

Consider Sobolev embeddings

$$
E_{1}: W_{0}^{1, p}(\mathcal{I}) \rightarrow L^{q}(\mathcal{I})
$$

Where $\mathcal{I}=\left[0, t_{0}\right], 1<p, q<\infty$ and by $W_{0}^{1, p}(\mathcal{I})$ we denote the closure of $C_{0}^{\infty}(\operatorname{lnt} \mathcal{I})$ in the Sobolev space $W^{1, p}(\mathcal{I})$ with respect to the usual norm $\|u\|_{W^{1, p}}:=\|u\|_{p, \mathcal{I}}+\left\|u^{\prime}\right\|_{p, \mathcal{I}}$. And $W_{0}^{1, p}$ is equipped with the norm $\|u\|_{W_{0}^{1, p}}:=\left\|u^{\prime}\right\|_{p, \mathcal{I}}$ due to the vanishing of its functions at 0 and t_{0}.

From compactness of E_{1} and reflexivity of the underlying spaces, it follows that there exists an optimal element $u_{0} \in W_{0}^{1, p}(\mathcal{I})$ such that

$$
\sup _{u \in W_{0}^{1, p}(\mathcal{I})} \frac{\|u\|_{q, \mathcal{I}}}{\left\|u^{\prime}\right\|_{p, \mathcal{I}}}=\frac{\left\|u_{0}\right\|_{q, \mathcal{I}}}{\left\|u_{0}^{\prime}\right\|_{p, \mathcal{I}}}
$$

Introduction

In order to characterize $u_{0}(t)$, write the quotient of modular as

$$
S(u):=\frac{\|u\|_{q, \mathcal{I}}^{q}}{\left\|u^{\prime}\right\|_{p, \mathcal{I}}^{p}}, \text { for } 0 \neq u \in W_{0}^{1, p}(\mathcal{I})
$$

Let $u \in L^{P}(\mathcal{I})$. Taking the Gâteux derivative of the L^{P} norm,

$$
\operatorname{grad}\|u\|_{p, \mathcal{I}}(v)=\|u\|_{p, \mathcal{I}}^{1-p} \int_{\mathcal{I}}[u(t)]^{p-1} v(t) \mathrm{d} t
$$

yields

$$
\operatorname{grad}\left(\|u\|_{p, \mathcal{I}}^{p}\right)(v)=p \int_{\mathcal{I}}[u(t)]^{p-1} v(t) \mathrm{d} t
$$

where $[u(t)]^{p-1}=|u(t)|^{p-1} \operatorname{sgn}(u(t))$. Then,

$$
\begin{equation*}
\operatorname{grad} S(u)=0 \Longleftrightarrow\left(\left[u^{\prime / 1}\right]^{p-1}\right)^{\prime}=-\lambda[u]^{q-1} \tag{3}
\end{equation*}
$$

for an appropriate multiplier/eigenvalue $\lambda>0$
In other words, the eigenfunctions of a suitable $\boldsymbol{p q}$-Laplacian eigenvalue problem, are exactly the extremal functions of the Sobolev embedding E_{1}

Introduction

In order to characterize $u_{0}(t)$, write the quotient of modular as

$$
S(u):=\frac{\|u\|_{q, \mathcal{I}}^{q}}{\left\|u^{\prime}\right\|_{p, \mathcal{I}}^{p}}, \text { for } 0 \neq u \in W_{0}^{1, p}(\mathcal{I})
$$

Let $u \in L^{p}(\mathcal{I})$. Taking the Gâteux derivative of the L^{p} norm,

$$
\operatorname{grad}\|u\|_{p, \mathcal{I}}(v)=\|u\|_{p, \mathcal{I}}^{1-p} \int_{\mathcal{I}}[u(t)]^{p-1} v(t) \mathrm{d} t
$$

yields

$$
\operatorname{grad}\left(\|u\|_{p, \mathcal{I}}^{p}\right)(v)=p \int_{\mathcal{I}}[u(t)]^{p-1} v(t) \mathrm{d} t
$$

where $[u(t)]^{p-1}=|u(t)|^{p-1} \operatorname{sgn}(u(t))$. Then,

$$
\begin{equation*}
\operatorname{grad} S(u)=0 \Longleftrightarrow\left(\left[u^{\prime}\right]^{p-1}\right)^{\prime}=-\lambda[u]^{q-1} \tag{3}
\end{equation*}
$$

for an appropriate multiplier/eigenvalue $\lambda>0$.
In other words, the eigenfunctions of a suitable pq-Laplacian eigenvalue problem, are
exactly the extremal functions of the Sobolev embedding E_{1}.

Introduction

In order to characterize $u_{0}(t)$, write the quotient of modular as

$$
S(u):=\frac{\|u\|_{q, \mathcal{I}}^{q}}{\left\|u^{\prime}\right\|_{p, \mathcal{I}}^{p}}, \text { for } 0 \neq u \in W_{0}^{1, p}(\mathcal{I})
$$

Let $u \in L^{p}(\mathcal{I})$. Taking the Gâteux derivative of the L^{p} norm,

$$
\operatorname{grad}\|u\|_{p, \mathcal{I}}(v)=\|u\|_{p, \mathcal{I}}^{1-p} \int_{\mathcal{I}}[u(t)]^{p-1} v(t) \mathrm{d} t
$$

yields

$$
\operatorname{grad}\left(\|u\|_{p, \mathcal{I}}^{p}\right)(v)=p \int_{\mathcal{I}}[u(t)]^{p-1} v(t) \mathrm{d} t
$$

where $[u(t)]^{p-1}=|u(t)|^{p-1} \operatorname{sgn}(u(t))$. Then,

$$
\begin{equation*}
\operatorname{grad} S(u)=0 \Longleftrightarrow\left(\left[u^{\prime}\right]^{p-1}\right)^{\prime}=-\lambda[u]^{q-1} \tag{3}
\end{equation*}
$$

for an appropriate multiplier/eigenvalue $\lambda>0$.
In other words, the eigenfunctions of a suitable $p q$-Laplacian eigenvalue problem, are exactly the extremal functions of the Sobolev embedding E_{1}.

Let $1<p, q<\infty$ and define a (differentiable) function $F_{p, q}:[0,1] \rightarrow \mathbf{R}$ by

$$
\begin{equation*}
F_{p, q}(x)=\int_{0}^{x} \frac{1}{\sqrt[p]{1-t^{q}}} d t, \quad 0 \leq x \leq 1 \tag{4}
\end{equation*}
$$

Since $F_{p, q}$ is strictly increasing it is a one-to-one function on $[0,1]$ with range [$0, \pi_{p, q} / 2$], where

$$
\begin{equation*}
\pi_{p, q}=2 \int_{0}^{1} \frac{1}{\sqrt[p]{1-t^{q}}} d t, \quad 0 \leq x \leq 1 \tag{5}
\end{equation*}
$$

The inverse of $F_{p, q}$ on $\left[0, \pi_{p, q} / 2\right]$ we denote by $\sin _{p, q}$ and extend as in the case of $\sin (\mathrm{p}=\mathrm{q}=2)$ to $\left[0, \pi_{p, q}\right]$ by defining

$$
\sin _{p, q}(x)=\sin _{p, q}\left(\pi_{p, q}-x\right) \quad \text { for } x \in\left[\pi_{p, q} / 2, \pi_{p, q}\right]
$$

further extension is achieved by oddness and $2 \pi_{p, q^{-}}$periodicity on the whole of \mathbf{R}. By this means we obtain a differentiable function on \mathbf{R} which coincides with \sin when $p=q=2$.

Review: Some special functions: $\sin _{p, q}, \cos _{p, q}$

Corresponding to this we define a function $\cos _{p, q}$ by the prescription

$$
\begin{equation*}
\cos _{p, q}(x)=\frac{d}{d x} \sin _{p, q}(x), x \in \mathbf{R} . \tag{6}
\end{equation*}
$$

Clearly $\cos _{p, q}$ is even, $2 \pi_{p, q}$-periodic and odd about $\pi_{p, q} / 2$; and $\cos _{2,2}=\cos$. If $x \in\left[0, \pi_{p, q} / 2\right]$, then from the definition it follows that

$$
\begin{equation*}
\cos _{p, q}(x)=\left(1-\left(\sin _{p, q}(x)\right)^{q}\right)^{1 / p} . \tag{7}
\end{equation*}
$$

Moreover, the asymmetry and periodicity show that

$$
\begin{equation*}
\left|\sin _{p, q}(x)\right|^{q}+\left|\cos _{p, q}(x)\right|^{p}=1, \quad x \in \mathbf{R} . \tag{8}
\end{equation*}
$$

We will use:
$\pi_{p}:=\pi_{p, p}, \sin _{p}:=\sin _{p, p}$ and $\cos _{p}:=\cos _{p, p}$, and then we have

Review: Some special functions: $\sin _{p, q}, \cos _{p, q}$

Corresponding to this we define a function $\cos _{p, q}$ by the prescription

$$
\begin{equation*}
\cos _{p, q}(x)=\frac{d}{d x} \sin _{p, q}(x), x \in \mathbf{R} . \tag{6}
\end{equation*}
$$

Clearly $\cos _{p, q}$ is even, $2 \pi_{p, q}$-periodic and odd about $\pi_{p, q} / 2$; and $\cos _{2,2}=\cos$. If $x \in\left[0, \pi_{p, q} / 2\right]$, then from the definition it follows that

$$
\begin{equation*}
\cos _{p, q}(x)=\left(1-\left(\sin _{p, q}(x)\right)^{q}\right)^{1 / p} . \tag{7}
\end{equation*}
$$

Moreover, the asymmetry and periodicity show that

$$
\begin{equation*}
\left|\sin _{p, q}(x)\right|^{q}+\left|\cos _{p, q}(x)\right|^{p}=1, \quad x \in \mathbf{R} . \tag{8}
\end{equation*}
$$

We will use:
$\pi_{p}:=\pi_{p, p}, \sin _{p}:=\sin _{p, p}$ and $\cos _{p}:=\cos _{p, p}$, and then we have

$$
\begin{equation*}
\left|\sin _{p}(x)\right|^{p}+\left|\cos _{p}(x)\right|^{p}=1, \quad x \in \mathbf{R} . \tag{9}
\end{equation*}
$$

Review: Some special functions: $\sin _{p, q}, \cos _{p, q}$

Figure: $\sin _{6}, \cos _{6}$ and $\sin _{1.2}, \cos _{1.2}$

History: Erik Lundberg (1879),S. Günther (1881), V.I.Levin (1938), E.Schmidt (1940), R. Grammel (1948), D. Shelupsky (1959), Tichomirov, Makovoz, Buslaev \& etc. (1960-90), J.Peetre (1972), A.Elbert (1979), M.Ôtani (1984), P.Lindqvist

Review: Some special functions: $\sin _{p, q}, \cos _{p, q}$

Figure: $\sin _{6}, \cos _{6}$ and $\sin _{1.2}, \cos _{1.2}$

History: Erik Lundberg (1879),S. Günther (1881), V.I.Levin (1938), E.Schmidt (1940), R. Grammel (1948), D. Shelupsky (1959), Tichomirov, Makovoz, Buslaev \& etc. (1960-90), J.Peetre (1972), A.Elbert (1979), M.Ôtani (1984), P.Lindqvist (1995), P.Drábek (1999)

Review: Some special functions: $\sin _{p, q}, \cos _{p, q}$

Theorem (Edmunds, Gurka, L.)

Let $p, q \in(1, \infty)$ and let

$$
\begin{equation*}
\frac{p^{\prime}}{q}<\frac{4}{\pi^{2}-8} \approx 2.14 \tag{10}
\end{equation*}
$$

Then the sequence $\left(\sin _{p, q}\left(n \pi_{p, q} t\right)\right)_{n \in \mathbf{N}}$ is a Schauder basis in $L^{r}(0,1)$ for any $r \in(1, \infty)$.

The functions $f_{n, p}(x):=\sin _{p}\left(n \pi_{p} x\right)$ form a basis in $L_{q}(0,1)$ for every $q \in(1, \infty)$ if $p_{0}<p<\infty$, where p_{0} is defined by the equation

Review: Some special functions: $\sin _{p, q}, \cos _{p, q}$

Theorem (Edmunds, Gurka, L.)

Let $p, q \in(1, \infty)$ and let

$$
\begin{equation*}
\frac{p^{\prime}}{q}<\frac{4}{\pi^{2}-8} \approx 2.14 \tag{10}
\end{equation*}
$$

Then the sequence $\left(\sin _{p, q}\left(n \pi_{p, q} t\right)\right)_{n \in \mathbf{N}}$ is a Schauder basis in $L^{r}(0,1)$ for any $r \in(1, \infty)$.

The functions $f_{n, p}(x):=\sin _{p}\left(n \pi_{p} x\right)$ form a basis in $L_{q}(0,1)$ for every $q \in(1, \infty)$ if $p_{0}<p<\infty$, where p_{0} is defined by the equation

$$
\begin{equation*}
\pi_{p_{0}}=\frac{2 \pi^{2}}{\pi^{2}-8} \tag{11}
\end{equation*}
$$

$$
\text { (i.e. } p_{0} \approx 1.05 \text {) }
$$

We recall the definition of the p-Laplacian which is a natural extension of the Laplacian:

$$
\Delta_{p} u=\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}
$$

$$
\text { (evidently } \Delta_{2} u=\Delta u \text {). }
$$

Then the analogue of (3) is the eigenvalue problem

In [Elbert, Lindqvist, Drabek] it is shown that all eigenvalues of this problem are of the form

$$
\lambda_{n}=\left(\frac{n \pi_{p}}{T}\right)^{p} \frac{p}{p^{\prime}}
$$

with corresponding eigenfunctions

$$
u_{n}(t)=\sin _{p}\left(\frac{n \pi_{p}}{T} t\right)
$$

We recall the definition of the p-Laplacian which is a natural extension of the Laplacian:

$$
\left.\Delta_{p} u=\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime} \quad \quad \text { (evidently } \Delta_{2} u=\Delta u\right)
$$

Then the analogue of (3) is the eigenvalue problem

In [Elbert, Lindqvist, Drabek] it is shown that all eigenvalues of this problem are of the form

with corresponding eigenfunctions

$$
u_{n}(t)=\sin _{p}\left(\frac{n \pi_{p}}{T} t\right)
$$

We recall the definition of the p-Laplacian which is a natural extension of the Laplacian:

$$
\Delta_{p} u=\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime} \quad \quad\left(\text { evidently } \Delta_{2} u=\Delta u\right)
$$

Then the analogue of (3) is the eigenvalue problem

$$
\left.\begin{array}{c}
\Delta_{p} u+\lambda|u|^{p-2} u=0 \quad \text { on }(0, T) \tag{12}\\
u(0)=0, u(T)=0
\end{array}\right\}
$$

In [Elbert, Lindqvist, Drabek] it is shown that all eigenvalues of this problem are of the form

with corresponding eigenfunctions

We recall the definition of the p-Laplacian which is a natural extension of the Laplacian:

$$
\Delta_{p} u=\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime} \quad\left(\text { evidently } \Delta_{2} u=\Delta u\right)
$$

Then the analogue of (3) is the eigenvalue problem

$$
\left.\begin{array}{c}
\Delta_{p} u+\lambda|u|^{p-2} u=0 \quad \text { on }(0, T) \tag{12}\\
u(0)=0, u(T)=0
\end{array}\right\}
$$

In [Elbert, Lindqvist, Drabek] it is shown that all eigenvalues of this problem are of the form

$$
\lambda_{n}=\left(\frac{n \pi_{p}}{T}\right)^{p} \frac{p}{p^{\prime}}
$$

with corresponding eigenfunctions

$$
u_{n}(t)=\sin _{p}\left(\frac{n \pi_{p}}{T} t\right)
$$

Review: pq-Laplacian

(1-dim)

Theorem (Drabek, Manásevic (1999))

Consider the following Dirichlet problem

$$
\left.\begin{array}{c}
\Delta_{p} u+\lambda|u|^{q-2} u=0 \quad \text { on }(0, T), \tag{13}\\
u(0)=0, u(T)=0 .
\end{array}\right\}
$$

All eigenvalues are of the form:

$$
\lambda_{n, \alpha}=\left(\frac{n \pi_{p, q}}{T}\right)^{q} \frac{|\alpha|^{p-q} q}{p^{\prime}}, \alpha \in \mathbf{R} \backslash\{0\}, n \in \mathbf{N}
$$

with corresponding eigenfunctions

$$
u_{n, \alpha}(t)=\frac{\alpha T}{n \pi_{p, q}} \sin _{p, q}\left(\frac{n \pi_{p, q}}{T} t\right)
$$

Review: Sobolev embedd., Extremals, Approx.

Let $1<p<\infty$ and $-\infty<a<b<\infty$. Consider the Sobolev embedding on $I=[a, b]$,

$$
\begin{equation*}
E_{1}: W_{0}^{1, p}(I) \rightarrow L^{p}(I) \tag{14}
\end{equation*}
$$

Then $u(x)=\sin _{p}\left(\frac{x-a}{b-a} \pi_{\rho}\right)$ is the extremal functions.
Theorem
Let \widetilde{s}_{n} stands for any strict s-number (i.e. $a_{n}, d_{n}, d^{n}, m_{n}, b_{n}, i_{n}$). Let n be an integer, then

and

Here

Review: Sobolev embedd., Extremals, Approx.

(1-dim)

Let $1<p<\infty$ and $-\infty<a<b<\infty$. Consider the Sobolev embedding on $I=[a, b]$,

$$
\begin{equation*}
E_{1}: W_{0}^{1, p}(I) \rightarrow L^{p}(I) \tag{14}
\end{equation*}
$$

Then $u(x)=\sin _{p}\left(\frac{x-a}{b-a} \pi_{\rho}\right)$ is the extremal functions.

Theorem

Let \widetilde{s}_{n} stands for any strict s-number (i.e. $a_{n}, d_{n}, d^{n}, m_{n}, b_{n}, i_{n}$). Let n be an integer, then

$$
s_{n}\left(E_{1}\right)=\frac{|I|}{n \pi_{p}} \cdot\left(\frac{p^{\prime}}{p}\right)^{1 / p}
$$

and

$$
s_{n}\left(E_{1}\right)=\left\|\left(E_{1}-R_{n}\right) g \mid L^{p}(I)\right\|, \quad \text { where } g(x)=\sin _{p}\left(\frac{x-a}{b-a} \pi_{p} n\right) .
$$

Here

$$
R_{n} f=\sum_{i=1}^{n-1} P_{i} f, \quad \text { where } P_{i} f(x)=\chi_{l_{i}}(x) f\left(a+i \frac{|I|}{n}\right)
$$

(n-dim)

Let $1<p<\infty$ and $-\infty<a_{i}<b_{i}<\infty$ and set $R:=\prod_{i=1}\left(a_{i}, b_{i}\right)$ or on $D:=\mathbf{R}^{k} \times \prod_{i=1}^{n-k}\left(a_{i}, b_{i}\right)$. Consider the Sobolev embedding:

$$
\begin{equation*}
E_{1}: W_{0}^{1, p}(\Omega) \rightarrow L^{p}(\Omega), \quad \text { with } \Omega=R \text { or } D \tag{15}
\end{equation*}
$$

and where:

$$
\|u\|_{1, p}=\left(\|u\|_{L^{p}(\Omega)}^{p}+\left.\| \| \nabla u\right|_{\mid p} \|_{L p(\Omega)}^{p}\right)^{1 / p}
$$

Study of this embedding is related to study of this pseudo-p-Laplacian problem:

$$
\tilde{\Delta}_{p} u=\lambda|u|^{p-2} u, \quad \text { with } u=0 \text { on } \partial \Omega
$$

where

$$
\tilde{\Delta}_{p} u=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right)
$$

Remark

If $\Omega=R$ then these functions are eigenfunctions:

$$
\prod_{i=1}^{n} \sin _{p}\left(\frac{\pi_{p} k_{i}\left(x_{i}-a_{i}\right)}{b_{i}-a_{i}}\right), \quad\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R, \text { for some } k_{i} \in \mathbf{N}
$$

Question: Are all eigenfunctions of the above problem of the above form?

(n-dim)

Theorem (Edmunds, Mihula, L.)

(i) The case D: There is not an extremal function and

$$
\left\|W_{0}^{1, p}(D) \rightarrow L^{p}(D)\right\|=\left(1+\pi_{p}^{p}(p-1) \sum_{i=1}^{n-k} \frac{1}{\left(a_{i}-b_{i}\right)^{p}}\right)^{-1 / p}
$$

(ii) The case R : The norm of embedding $W_{0}^{1, p}(R) \rightarrow L^{p}(R)$ is reached by function

$$
u(x)=\prod_{i=1}^{n} \sin _{p}\left(\frac{\pi_{p}\left(x_{i}-a_{i}\right)}{b_{i}-a_{i}}\right)
$$

Lemma (Edmunds, Mihula, L.)

The first egenfunction for

$$
\tilde{\Delta}_{p} u=\lambda|u|^{p-2} u, \quad \text { with } u=0 \text { on } \partial R
$$

is

$$
u(x)=\prod_{i=1}^{n} \sin _{p}\left(\frac{\pi_{p}\left(x_{i}-a_{i}\right)}{b_{i}-a_{i}}\right)
$$

(n-dim)

Theorem (Edmunds, Mihula, L.)

Let $1<p<\infty, k \in \mathbf{N}, k \leq n-1, D:=\mathbf{R}^{k} \times \prod_{i=1}^{n-k}\left(a_{i}, b_{i}\right)$. Then we have

$$
s_{n}\left(W_{0}^{1, p}(D) \rightarrow L^{p}(D)\right)=\left(1+\pi_{p}^{p}(p-1) \sum_{i=1}^{n-k} \frac{1}{\left(a_{i}-b_{i}\right)^{p}}\right)^{-1 / p}
$$

where s_{n} stands for any strict s-number.

Consider Sobolev embeddings

$$
E_{2}: W_{D}^{2, p}(\mathcal{I}) \rightarrow L^{q}(\mathcal{I})
$$

where $\mathcal{I}=\left[0, t_{0}\right], 1<p, q<\infty$ and $W_{D}^{2, p}(\mathcal{I})=C_{0}^{1}(\ln \mathcal{I}) \cap W^{2, p}(\mathcal{I})$ equipped with the norm $\|u\|_{W_{D}^{2, p}}:=\left\|u^{\prime \prime}\right\|_{p, \mathcal{I}}$.

Due compactness of E_{2} and reflexivity of the underlying spaces, it follows that there exists an optimal element $u_{0} \in W_{D}^{2, p}(\mathcal{I})$ such that

Consider Sobolev embeddings

$$
E_{2}: W_{D}^{2, p}(\mathcal{I}) \rightarrow L^{q}(\mathcal{I})
$$

where $\mathcal{I}=\left[0, t_{0}\right], 1<p, q<\infty$ and $W_{D}^{2, p}(\mathcal{I})=C_{0}^{1}(\ln \mathcal{I}) \cap W^{2, p}(\mathcal{I})$ equipped with the norm $\|u\|_{W_{D}^{2, p}}:=\left\|u^{\prime \prime}\right\|_{p, \mathcal{I}}$.

Due compactness of E_{2} and reflexivity of the underlying spaces, it follows that there exists an optimal element $u_{0} \in W_{D}^{2, p}(\mathcal{I})$ such that

$$
\sup _{u \in W_{D}^{1, p}(\mathcal{I})} \frac{\|u\|_{q, \mathcal{I}}}{\left\|u^{\prime \prime}\right\|_{p, \mathcal{I}}}=\frac{\left\|u_{0}\right\|_{q, \mathcal{I}}}{\left\|u_{0}^{\prime \prime}\right\|_{p, \mathcal{I}}} .
$$

As before, in order to characterize $u_{0}(t)$, write the quotient of modular as

$$
D(u):=\frac{\|u\|_{q, \mathcal{I}}^{q}}{\left\|u^{\prime \prime}\right\|_{p, \mathcal{I}}^{p}}, \text { for } 0 \neq u \in W_{D}^{2, p}(\mathcal{I})
$$

Take the Gâteux derivative of $D(u)$. Then

$$
\operatorname{grad} D(u)=0 \Longleftrightarrow\left\|u^{\prime \prime}\right\|_{p}^{p} \operatorname{grad}\left(\|u\|_{q}^{q}\right)=\|u\|_{q}^{q} \operatorname{grad}\left(\left\|u^{\prime \prime}\right\|_{p}^{p}\right)
$$

which can be re-written as as a differential equation which is reminiscent of the equation form the introduction:

$$
\begin{align*}
\left(\left[u^{\prime \prime}\right]^{p-1}\right)^{\prime \prime} & =\lambda[u]^{q-1} \\
u(0)=u\left(t_{0}\right) & =\left[u^{\prime \prime}(0)\right]^{p-1}=\left[u^{\prime \prime}\left(t_{0}\right)\right]^{p-1}=0 \tag{17}
\end{align*}
$$

for $u \neq 0$ and $\lambda \in \mathbb{R}$.
And we can see that the eigenfunctions of a suitable fourth order p,q-Laplacian
eigenvalue problem, are exactly the extremal functions of the Sobolev embedding E_{2}

As before, in order to characterize $u_{0}(t)$, write the quotient of modular as

$$
D(u):=\frac{\|u\|_{q, \mathcal{I}}^{q}}{\left\|u^{\prime \prime}\right\|_{p, \mathcal{I}}^{p}}, \text { for } 0 \neq u \in W_{D}^{2, p}(\mathcal{I})
$$

Take the Gâteux derivative of $D(u)$. Then

$$
\begin{equation*}
\operatorname{grad} D(u)=0 \Longleftrightarrow\left\|u^{\prime \prime}\right\|_{p}^{p} \operatorname{grad}\left(\|u\|_{q}^{q}\right)=\|u\|_{q}^{q} \operatorname{grad}\left(\left\|u^{\prime \prime}\right\|_{p}^{p}\right) \tag{16}
\end{equation*}
$$

which can be re-written as as a differential equation which is reminiscent of the equation form the introduction:

$$
\begin{array}{rlrl}
\left(\left[u^{\prime \prime}\right]^{p-1}\right)^{\prime \prime} & =\lambda[u]^{q-1} & 0 \leq t \leq t_{0} \\
u(0)=u\left(t_{0}\right) & =\left[u^{\prime \prime}(0)\right]^{p-1}=\left[u^{\prime \prime}\left(t_{0}\right)\right]^{p-1}=0 &
\end{array}
$$

for $u \neq 0$ and $\lambda \in \mathbb{R}$.
And we can see that the eigenfunctions of a suitable fourth order p, q-Laplacian eigenvalue problem, are exactly the extremal functions of the Sobolev embedding E_{2}.

Idea: Assume that $\lambda>0$. Writing

$$
\begin{gathered}
u_{1}(t)=u(t), \quad u_{2}(t)=u^{\prime}(t) \\
w_{1}(t)=-\left[u^{\prime \prime}(t)\right]^{p-1} \quad \text { and } \quad w_{2}(t)=-\left(\left[u^{\prime \prime}(t)\right]^{p-1}\right)^{\prime},
\end{gathered}
$$

we get the system of differential equations

$$
\begin{aligned}
u_{1}^{\prime}(t) & =u_{2}(t) \\
w_{1}^{\prime}(t) & =w_{2}^{\prime}(t)
\end{aligned} \quad w_{2}^{\prime}(t)=-\left[w_{1}(t)\right]^{p^{\prime}-1}=-\lambda\left[u_{1}(t)\right]^{q-1}
$$

or the system of integral equations

$$
\begin{array}{ll}
u_{1}(t)=\int_{0}^{t} u_{2}(s) \mathrm{d} s & u_{2}(t)=\alpha-\int_{0}^{t}\left[w_{1}(s)\right]^{p^{\prime}-1} \mathrm{~d} s \\
w_{1}(t)=\int_{0}^{t} w_{2}(s) \mathrm{d} s & w_{2}(t)=\beta-\lambda \int_{0}^{t}\left[u_{1}(s)\right]^{q-1} \mathrm{~d} s \tag{18}
\end{array}
$$

both subject to the initial and final conditions

$$
\begin{equation*}
u_{1}(0)=u_{1}\left(t_{0}\right)=w_{1}(0)=w_{1}\left(t_{0}\right)=0 \tag{19}
\end{equation*}
$$

pq-bi-Laplacian

It is useful to fix λ and understand (17) in the context of (18) as a dynamical system seeking for the trajectory

$$
\underline{\varphi}(t)=\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t) \\
w_{1}(t) \\
w_{2}(t)
\end{array}\right]
$$

starting from an initial state at $t=0$

$$
\underline{\varphi}(0)=\underline{\zeta}=\left[\begin{array}{l}
u_{1}(0) \\
u_{2}(0) \\
w_{1}(0) \\
w_{2}(0)
\end{array}\right] .
$$

> Example
> let $1<n<q<\infty, \lambda>0$ and set $r=2 p /(p-q)$. Let $H, K>0$ be
> arbitrary (fixed). Then $u(t)=K(H-t)^{r}$ is a solution of our
> $p q$-bi-Laplacian with a finite time blow-up at $t_{\infty}=H>0$.
> (Here t_{∞} denotes the blow-up time)

pq-bi-Laplacian

It is useful to fix λ and understand (17) in the context of (18) as a dynamical system seeking for the trajectory

$$
\underline{\varphi}(t)=\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t) \\
w_{1}(t) \\
w_{2}(t)
\end{array}\right]
$$

starting from an initial state at $t=0$

$$
\underline{\varphi}(0)=\underline{\zeta}=\left[\begin{array}{l}
u_{1}(0) \\
u_{2}(0) \\
w_{1}(0) \\
w_{2}(0)
\end{array}\right] .
$$

Example

Let $1<p<q<\infty, \lambda>0$ and set $r=2 p /(p-q)$. Let $H, K>0$ be arbitrary (fixed). Then $u(t)=K(H-t)^{r}$ is a solution of our $p q$-bi-Laplacian with a finite time blow-up at $t_{\infty}=H>0$.

pq-bi-Laplacian

It is useful to fix λ and understand (17) in the context of (18) as a dynamical system seeking for the trajectory

$$
\underline{\varphi}(t)=\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t) \\
w_{1}(t) \\
w_{2}(t)
\end{array}\right]
$$

starting from an initial state at $t=0$

$$
\underline{\varphi}(0)=\underline{\zeta}=\left[\begin{array}{l}
u_{1}(0) \\
u_{2}(0) \\
w_{1}(0) \\
w_{2}(0)
\end{array}\right] .
$$

Example

Let $1<p<q<\infty, \lambda>0$ and set $r=2 p /(p-q)$. Let $H, K>0$ be arbitrary (fixed). Then $u(t)=K(H-t)^{r}$ is a solution of our $p q$-bi-Laplacian with a finite time blow-up at $t_{\infty}=H>0$.
(Here t_{∞} denotes the blow-up time)

pq-bi-Laplacian

Using By Picard-Lindelöf or Cauchy-Peano techniques we get:

Lemma

Given λ, p, q, α and β fixed, there exists a unique solution to (18) for all $t \in\left(0, t_{\infty}\right)$.
Then by careful analysis of our system and using observation like:

Lemma

Consider the system of integral equations (18) with $\lambda>0$ and initial conditions $u_{1}(0)=w_{1}(0)=0$.
(i) If $\alpha>0, \beta<0$ then u_{1} is strictly increasing and w_{1} is strictly decreasing for $t>0$. (ii) If $\alpha<0, \beta>0$ then u_{1} is strictly decreasing and w_{1} is strictly increasing for $t>0$. (iii) ...
we obtain that there must exists values $\alpha, \beta>0$ for which we have a unique positive solution on ($0, t_{0}$) with given boundary conditions.
Note about initial value problem:

pq-bi-Laplacian

Using By Picard-Lindelöf or Cauchy-Peano techniques we get:

Lemma

Given λ, p, q, α and β fixed, there exists a unique solution to (18) for all $t \in\left(0, t_{\infty}\right)$.
Then by careful analysis of our system and using observation like:

Lemma

Consider the system of integral equations (18) with $\lambda>0$ and initial conditions $u_{1}(0)=w_{1}(0)=0$.
(i) If $\alpha>0, \beta<0$ then u_{1} is strictly increasing and w_{1} is strictly decreasing for $t>0$. (ii) If $\alpha<0, \beta>0$ then u_{1} is strictly decreasing and w_{1} is strictly increasing for $t>0$. (iii) ...
we obtain that there must exists values $\alpha, \beta>0$ for which we have a unique positive solution on ($0, t_{0}$) with given boundary conditions.
Note about initial value problem:

pq-bi-Laplacian

Lemma

Let λ, p, q be fixed. Consider the evolution systems (*). Let $\alpha_{2} \leq \alpha_{1}$ and $\beta_{1} \leq \beta_{2}$. Let $t_{1}>0$ be any point such that all the quantities ${ }^{a}\left|u_{k}^{j}(t)\right|$ and $\left|w_{k}^{j}(t)\right|$ are finite for $0 \leq t<t_{1}$. Then,

$$
\begin{equation*}
u_{k}^{2}(t) \leq u_{k}^{1}(t) \quad \text { and } \quad w_{k}^{1}(t) \leq w_{k}^{2}(t) \quad \forall k=1,2 \quad t \in\left(0, t_{1}\right) \tag{20}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
u_{1}^{1}(t)-u_{1}^{2}(t) & \geq\left(\alpha_{1}-\alpha_{2}\right) t \\
w_{1}^{2}(t)-w_{1}^{1}(t) & \geq\left(\beta_{2}-\beta_{1}\right) t
\end{align*} \quad \forall t \in\left(0, t_{1}\right) .
$$

In fact, if one of the inequalities involving α_{j} or β_{j} is strict, then $u_{1}^{2}(t)<u_{1}^{1}(t)$ and $w_{1}^{1}(t)<w_{1}^{2}(t)$ for $0<t \leq t_{1}$.
${ }^{a}$ Here and everywhere below, the indices j (on top) refer to corresponding sub-indices of α or β, in context.

[^0]Let $t_{0}>0$ be fixed. If $p \neq q$, then for all $\lambda>0$ there exists a unique solution $u(t)$ positive on $\left(0, t_{0}\right)$ satisfying (17). If $p=q$, then there exists a unique $\lambda \equiv \lambda\left(t_{0}\right)>0$ such that a solution $u(t)$ positive on ($0, t_{0}$) satisfying (17) exists. Moreover this solution is unique up to multiplication by a constant.

pq-bi-Laplacian

Lemma

Let λ, p, q be fixed. Consider the evolution systems (*). Let $\alpha_{2} \leq \alpha_{1}$ and $\beta_{1} \leq \beta_{2}$. Let $t_{1}>0$ be any point such that all the quantities ${ }^{a}\left|u_{k}^{j}(t)\right|$ and $\left|w_{k}^{j}(t)\right|$ are finite for $0 \leq t<t_{1}$. Then,

$$
\begin{equation*}
u_{k}^{2}(t) \leq u_{k}^{1}(t) \quad \text { and } \quad w_{k}^{1}(t) \leq w_{k}^{2}(t) \quad \forall k=1,2 \quad t \in\left(0, t_{1}\right) \tag{20}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
u_{1}^{1}(t)-u_{1}^{2}(t) & \geq\left(\alpha_{1}-\alpha_{2}\right) t \tag{21}\\
w_{1}^{2}(t)-w_{1}^{1}(t) & \geq\left(\beta_{2}-\beta_{1}\right) t
\end{align*}
$$

In fact, if one of the inequalities involving α_{j} or β_{j} is strict, then $u_{1}^{2}(t)<u_{1}^{1}(t)$ and $w_{1}^{1}(t)<w_{1}^{2}(t)$ for $0<t \leq t_{1}$.
${ }^{a}$ Here and everywhere below, the indices j (on top) refer to corresponding sub-indices of α or β, in context.

Theorem (Existence and Uniqueness)

Let $t_{0}>0$ be fixed. If $p \neq q$, then for all $\lambda>0$ there exists a unique solution $u(t)$ positive on ($0, t_{0}$) satisfying (17). If $p=q$, then there exists a unique $\lambda \equiv \lambda\left(t_{0}\right)>0$ such that a solution $u(t)$ positive on ($0, t_{0}$) satisfying (17) exists. Moreover this solution is unique up to multiplication by a constant.

pq-bi-Laplacian

Theorem (Existence and Uniqueness)

Let $t_{0}>0$ be fixed. If $p \neq q$, then for all $\lambda>0$ there exists a unique solution $u(t)$ positive on $\left(0, t_{0}\right)$ satisfying (17). If $p=q$, then there exists a unique $\lambda \equiv \lambda\left(t_{0}\right)>0$ such that a solution $u(t)$ positive on ($0, t_{0}$) satisfying (17) exists. Moreover this solution is unique up to multiplication by a constant.

Theorem (Symmetricity)

Let $u(t)$ be a positive solution of (17) on ($0, t_{0}$). Then, $u(t)=u\left(t_{0}-t\right)$ for all $0<t<\frac{t_{0}}{2}$. Moreover, $u(t)$ can be extended to a $2 t_{0}$-periodic function $u_{*} \in C^{1}(\mathbb{R})$ satisfying

$$
\left(\left[u_{*}^{\prime \prime}(t)\right]^{p-1}\right)^{\prime \prime}=\lambda\left[u_{*}(t)\right]^{q-1} \quad \forall t \in \mathbb{R} .
$$

[^1]Moreover, $u^{\prime \prime}(t)$ also vanish exactly at the points t_{j}

pq-bi-Laplacian

Theorem (Existence and Uniqueness)

Let $t_{0}>0$ be fixed. If $p \neq q$, then for all $\lambda>0$ there exists a unique solution $u(t)$ positive on ($0, t_{0}$) satisfying (17). If $p=q$, then there exists a unique $\lambda \equiv \lambda\left(t_{0}\right)>0$ such that a solution $u(t)$ positive on ($0, t_{0}$) satisfying (17) exists. Moreover this solution is unique up to multiplication by a constant.

Theorem (Symmetricity)

Let $u(t)$ be a positive solution of (17) on ($0, t_{0}$). Then, $u(t)=u\left(t_{0}-t\right)$ for all $0<t<\frac{t_{0}}{2}$. Moreover, $u(t)$ can be extended to a $2 t_{0}$-periodic function $u_{*} \in C^{1}(\mathbb{R})$ satisfying

$$
\left(\left[u_{*}^{\prime \prime}(t)\right]^{p-1}\right)^{\prime \prime}=\lambda\left[u_{*}(t)\right]^{q-1} \quad \forall t \in \mathbb{R}
$$

Corollary

Let $u(t)$ be a solution of (17) with exactly n zeros in $\left(0, t_{0}\right)$. Then, these zeros are all simple and located at

$$
t_{j}=\frac{j t_{0}}{n+1} \quad j=1, \ldots, n
$$

Moreover, $u^{\prime \prime}(t)$ also vanish exactly at the points t_{j}.

pq-bi-Laplacian

The case $q=p^{\prime}$

Theorem

Let $1<p<\infty$ and $T>0$. Then for any given $c \neq 0$ and $n \in \mathbf{N}$, the n-eigenvalue of problem (17) on $[0, T]$ is

$$
\lambda_{n}(c)=\frac{\left(\pi_{2, p^{\prime}} \pi_{2, p} n^{2}\right)^{p}}{T^{2 p}}|c|^{p-p^{\prime}}
$$

and the corresponding n-eigenfunction is (i.e. eigenfunction which change $n-1$ times sign on $(0, T))$ is

$$
\begin{equation*}
f_{n, c}(x)=c \sin _{2, p^{\prime}}\left(\pi_{2, p^{\prime}} n x / T\right) \tag{22}
\end{equation*}
$$

and this eigenfunction is the unique n-eigenfunction to the given eigenvalue $\lambda_{n}(c)$.

[^2]$\left\{\sin _{2, p^{\prime}}\left(\pi_{2, p^{\prime}} n x / T\right)\right\}_{n}$ is a basis in $L^{r}(0, T)$ for any $1<r<\infty$.

pq-bi-Laplacian

The case $q=p^{\prime}$

Theorem

Let $1<p<\infty$ and $T>0$. Then for any given $c \neq 0$ and $n \in \mathbf{N}$, the n-eigenvalue of problem (17) on $[0, T]$ is

$$
\lambda_{n}(c)=\frac{\left(\pi_{2, p^{\prime}} \pi_{2, p} n^{2}\right)^{p}}{T^{2 p}}|c|^{p-p^{\prime}}
$$

and the corresponding n-eigenfunction is (i.e. eigenfunction which change $n-1$ times sign on $(0, T))$ is

$$
\begin{equation*}
f_{n, c}(x)=c \sin _{2, p^{\prime}}\left(\pi_{2, p^{\prime}} n x / T\right) \tag{22}
\end{equation*}
$$

and this eigenfunction is the unique n-eigenfunction to the given eigenvalue $\lambda_{n}(c)$.

Note

$$
\left\{\sin _{2, p^{\prime}}\left(\pi_{2, p^{\prime}} n x / T\right)\right\}_{n} \text { is a basis in } L^{r}(0, T) \text { for any } 1<r<\infty
$$

Approximation of $W_{D}^{2, p} \rightarrow L^{q}$

Definition

Given any continuous function f on closed interval I we denote by $Z(f)$ the number of distinct zeros of f on interior of I , and by $P(f)$ the number of sign changes of f on interval I.
By $S P_{n}(I, p, q)$ we denote the set of all spectral couples (f, λ) with $Z(f)=n$ on interval I, and by $s p_{n}(I, p, q)$ a set of all corresponding spectral numbers λ.

Lemma

For each $n \in N, S P_{n}(I, p, q)$ contains only one spectral couple (f, λ).
Let $\left(f_{1}, \lambda_{1}\right)$ be a spectral couple from $S P_{0}([0,1], p, q)$ and let us consider that f_{1} is periodically extended on \mathbf{R}, then

$$
\tilde{\lambda}:=n^{2 q} \lambda_{1} \text { and } \tilde{f}(t):=f_{1}(n t) / n^{2}
$$

is a spectral couple for $S P_{n}\left([0,1]_{2} p, q\right)$.
If $(f, \lambda) \in S P_{n}([0,1], p, q)$, then $\tilde{\lambda}:=d^{q / p-1-2 q} \lambda$ and $\tilde{f}(t):=d^{2-1 / p} f(t / d)$ is a spectral couple for $S P_{n}([0, d], p, q)$.
Then we have that

$$
\bar{\lambda}:=n^{2 q} d^{q / p-1-2 q} \lambda_{1} \text { and } \bar{f}(t):=d^{2-1 / p} f_{1}(n t / d)
$$

is a spectral couple for $S P_{n}([0, d], p, q)$.

Approximation of $W_{D}^{2, p} \rightarrow L^{q}$

Theorem

Let $1<p, q<\infty, I=[a, b]$ and $E_{2}: W_{D}^{2, p}(I) \rightarrow L^{q}(I)$. Then

$$
\left\|E_{2}\right\|:=\sup _{u \in W^{2, p}(I)} \frac{\|u\|_{q, \mathcal{I}}}{\left\|u^{\prime \prime}\right\|_{p, \mathcal{I}}}=\frac{\|f\|_{q, \mathcal{I}}}{\left\|f^{\prime \prime}\right\|_{p, \mathcal{I}}}=\lambda^{-1 / q}=\left|| |^{1 / q-1 / p+2} \lambda_{0}^{-1 / q},\right.
$$

where $(f, \lambda) \in S P_{0}(I, p, q)$ and $\lambda_{0} \in s p_{0}([0,1], p, q)$.

Theorem

Let $I=[a, b]$ and $E_{2}: W_{D}^{2, p}(I) \rightarrow L^{q}(I)$.
If $1<p<q<\infty$ then

$$
i_{n}\left(E_{2}\right)=b_{n}\left(E_{2}\right)=\lambda_{n}^{-1 / q}=\frac{\left|| |^{1 / q+2-1 / p}\right.}{n^{2} \lambda_{0}^{1 / q}}
$$

and if $1<q \leq p<\infty$ then

$$
a_{n}\left(E_{2}\right)=d_{n}\left(E_{2}\right)=\lambda_{n}^{-1 / q}=\frac{\left|| |^{1 / q+2-1 / p}\right.}{n^{2} \lambda_{0}^{1 / q}}
$$

where $\lambda_{n} \in s p_{n}(I, p, q)$ and $\lambda_{0} \in s p_{0}([0,1], p, q)$.

[^0]: Theorem (Existence and Uniqueness)

[^1]: Corollary
 let $u(t)$ be a solution of (17) with exactly n zeros in $\left(0, t_{0}\right)$. Then, these zeros are all simple and located at

[^2]: Note

