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Mean Value Property for Harmonic functions

Theorem

∆u(x) = 0

if and only if

(1) u(x) = −
ˆ
∂B(x ,r)

u(y) dσ(y)

or

( lim
r→0

)
1

r2

[
−
ˆ
∂B(x ,r)

u(y) dσ(y)− u(x)

]
= 0.

(2) u(x) = −
ˆ
B(x ,r)

u(y) dσ(y)

or

( lim
r→0

)
1

r2

[
−
ˆ
B(x ,r)

u(y) dσ(y)− u(x)

]
= 0.
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Introduction. Asymptotic MVF

Theorem (Blasche, 1916)

An upper-semicontinuous function u is subharmonic, ∆u ≥ 0, if
and only if

lim sup
ε→0

1

ε2

[
−
ˆ
∂B(x ,ε)

u(y) dσ(y)− u(x)

]
≥ 0

Theorem (Privaloff, 1916)

An upper-semicontinuous function u is subharmonic, ∆u ≥ 0, if
and only if

lim sup
ε→0

1

ε2

[
−
ˆ
B(x ,ε)

u(y) d(y)− u(x)

]
≥ 0
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Introduction

Theorem

A function u is harmonic, ∆u = 0, if and only if

u(x) =
1

n

n∑
j=1

{
1

2
u(x + εej) +

1

2
u(x − εej)

}
+ o(ε2) as ε→ 0,

where {e1, . . . , en} is the canonical basis of Rn, or

u(x) =

[
−
ˆ
B(x ,ε)

u(y) d(y)

]
+ o(ε2) as ε→ 0.

Modern Linear results

If we replace the Laplace equation ∆u = 0 by a linear elliptic
equation with constant coefficients Lu =

∑
i ,j aijuxixj = 0 then

mean value formulas hold for appropriate ellipsoids instead of balls.
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Introduction

Nonlinear operators. (Manfredi-Parvianen-R., 2010)

Viscosity solutions to the 1−homogeneous p-Laplacian

∆N
p u =

1

p − 2
|∇u|2−p div

(
|∇u|p−2∇u

)
=

1

p − 2
∆u + ∆N

∞u = 0,

for 1 < p ≤ ∞ are characterized by a mean value formula

u(x)−
(
p − 2

p + n

)max
Bε(x)

u + min
Bε(x)

u

2

+

(
2 + n

p + n

)
−
ˆ
Bε(x)

u(y) dy

= o(ε2) as ε→ 0.
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Main goal

We will discuss mean value properties for solutions to the

Monge-Ampère equation

detD2u = f ,

with f ≥ 0 in a convex domain Ω.

As usual, we look for convex solutions u, thus the D2u ≥ 0 and
hence f is non-negative. In terms of eigenvalues of D2u we have

min
λ eigenvalue of D2u

{λ} ≥ 0.
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Convex C 2 case

Let φ(ε), φ : R+ 7→ R+ be such that

lim
ε→0

φ(ε) = +∞

and
lim
ε→0

ε φ(ε) = 0.

(φ(ε) = ε−1/2 works).

Theorem (Convex C 2 Case)

Let u be convex and C 2 in Ω. Fix x ∈ Ω. We have

u(x)− inf
detA=1
A≤φ(ε)I

{
−
ˆ
Bε(0)

u(x+Ay) dy

}
+

n

2(n + 2)

(
detD2u(x)

)1/n
ε2 = o(ε2),

as ε→ 0.
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Convex C 2 case. Remarks

• Notice that for every A with detA = 1, it holds{
−
ˆ
Bε(0)

u(x + Ay) dy

}
=

{
−
ˆ
Eε(A,x)

u(z) dz

}
where Eε(A, x) = {x + Ay : y ∈ Bε(0)}.

• The restriction A ≤ φ(ε)I in the infimum makes the formula
local. For every x ∈ Ω, the conditions A ≤ φ(ε)I and |y | ≤ ε imply
that

dist(Eε(A, x), x) = dist(x+Ay , x), x) = |Ay | ≤ |A||y | ≤ ε φ(ε)→ 0

(since ε φ(ε)→ 0 as ε→ 0).
Hence, Eε(A, x) ⊂ Ω for ε small enough.
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Non-local Convex C 2-case

Replace the condition A ≤ φ(ε) by requiring

Eε(A, x) =
{
x + Ay : y ∈ Bε(0)

}
⊂ Ω.

Theorem (Non-Local Convex C 2-case)

Let u be convex and C 2 in Ω. Fix x ∈ Ω. We have

u(x)− inf
detA=1

Eε(A,x)⊂Ω

{
−
ˆ
Bε(0)

u(x+Ay) dy

}
+

n

2(n + 2)

(
detD2u(x)

)1/n
ε2 = o(ε2)

as ε→ 0.
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Characterization of C 2-solutions by MVP

Corollary (Characterization of C 2-solutions)

Let u be convex and C 2 in Ω, f ≥ 0. TFAE:(
detD2u(x)

)1/n
= f (x)

u(x)− inf
detA=1
A≤φ(ε)I

{
−
ˆ
Bε(0)

u(x + Ay) dy

}
+

ε2 n

2(n + 2)
f (x) = o(ε2)

u(x)− inf
detA=1

Eε(A,x)⊂Ω

{
−
ˆ
Bε(0)

u(x + Ay) dy

}
+

ε2 n

2(n + 2)
f (x) = o(ε2).
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Viscosity solutions

Theorem (Characterization of viscosity solutions)

Let f ∈ C (Ω) be non-negative and u ∈ C (Ω) be convex. TFAE:

u is a viscosity subsolution (respectively, supersolution) of

detD2u = f in Ω, (detD2u ≥ f )

u(x)≤ inf
detA=1
A≤φ(ε)I

{
−
ˆ
Bε(0)

u(x + Ay) dy

}
− ε2 n

2(n + 2)
f (x) + o(ε2)

u(x) ≤ inf
detA=1

Eε(A,x)⊂Ω

{
−
ˆ
Bε(0)

u(x + Ay) dy

}
− ε2 n

2(n + 2)
f (x) + o(ε2)

(respectively, ≥) in the viscosity sense (the mean value expansions
are satisfied for convex paraboloids P that touch u at x).
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Discrete Mean Values

Discrete asymptotic expansion

For u ∈ C 2 convex we have the asymptotic expansion

u(x) = inf
V∈O

inf
αi∈I nε

{
1

n

n∑
i=1

u(x + ε
√
αivi ) + u(x − ε√αivi )

2

}
−ε

2

2
(det(D2u)(x))1/n + o(ε2)

as ε→ 0.

Here O is the set all orthonormal bases V = {v1, . . . , vn} of Rn and

I nε =
{

(α1, . . . , αn) ∈ Rn :
n∏

j=1

αj = 1 and 0 < αj < φ2(ε)
}
.
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Discrete Mean Values, II

Theorem (Characterization of viscosity solutions by Discrete Mean
Values)

Let u be a convex function in a domain Ω ⊂ Rn. Then, u is a
solution to the Monge-Ampère equation

det(D2u(x)) = f (x)

in the viscosity sense if and only if

u(x) = inf
V∈O

inf
αi∈I nε

{
1

n

n∑
i=1

u(x + ε
√
αivi ) + u(x − ε√αivi )

2

}
−ε

2

2
(f (x))1/n + o(ε2)

as ε→ 0, holds in the viscosity sense.
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Key ideas

Determinant identity for M ≥ 0

n
(

detM
)1/n

= inf
detA=1

trace(At M A),

where the matrix A is symmetric and positive definite.

Linear averages

Let M be a square matrix of dimension n. We have

trace(M) =
n + 2

ε2
−
ˆ
Bε(0)
〈My , y〉 dy .
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Main argument

Suppose D2u(x) > 0. Extra work is needed when detD2u(x) = 0.

Given x ∈ Ω, consider the paraboloid

P(z) = u(x) + 〈∇u(x), z − x〉+
1

2
〈D2u(x)(z − x), (z − x)〉.

Since u ∈ C 2(Ω), we have

u(z)− P(z) = o(|z − x |2) as z → x ,

that is,

P(z)− η

2
|z − x |2 ≤ u(z) ≤ P(z) +

η

2
|z − x |2,

for every z ∈ Bδ(x), with equality only when z = x . Let us denote

P±η (z) = P(z)± η

2
|z − x |2.
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Main argument

−
ˆ
Bε(0)

(
P±η (x + Ay)− u(x)

)
dy =

1

2
−
ˆ
Bε(0)

(〈
AtD2u(x)Ay , y

〉
± η|Ay |2

)
dy

=
1

2
−
ˆ
Bε(0)

〈
At
(
D2u(x)± ηI

)
Ay , y

〉
dy

=
ε2

2(n + 2)
trace

(
At
(
D2u(x)± ηI

)
A
)
,

Using

n
(

detM
)1/n

= inf
detA=1

trace(At M A),

and that P±η (x) = u(x) we obtain

inf
detA=1
A≤φ(ε)I

{
−
ˆ
Bε(0)

(
P±η (x+Ay)−P±η (x)

)
dy

}
=

n ε2

2(n + 2)

(
det
(
D2u(x)±ηI

))1/n
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The heart of the matter

Now we use that

P−η (x + Ay) ≤ u(x + Ay) ≤ P+
η (x + Ay) for every y ∈ Bε(0).

to obtain

inf
detA=1,

A≤φ(ε)I

{
−
ˆ
Bε(0)

(u(x + Ay)− u(x)) dy

}
≤ n ε2

2(n + 2)

(
det
(
D2u(x) + ηI

))1/n

inf
detA=1,

A≤φ(ε)I

{
−
ˆ
Bε(0)

(u(x + Ay)− u(x)) dy

}
≥ n ε2

2(n + 2)

(
det
(
D2u(x)− ηI

))1/n
.

The result follows from(
det
(
D2u(x)± ηI

))1/n →
(
detD2u(x)

)1/n
as η → 0.
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Games

We describe a one-player game (or control problem)
RULES OF THE GAME :
• Fix a convex domain Ω ⊂ Rn

• Fix a final payoff g : Rn \ Ω 7→ R and a running cost f ∈ C (Ω),
f ≥ 0,
• Fix ε > 0 small
• Place a token at an initial position x0 ∈ Ω
• The player chooses an orthonormal basis {v1, ..., vn} and n real
nonnegative numbers (α1, ...., αn) ∈ I nε where

I nε =

{
(αi )i=1,...,n ∈ Rn :

n∏
i=1

αi = 1 and 0 < αi <
1

ε

}
.

• The token is moved to

x1 = x0 ± ε
√
αivi

with equal probabilities 1
2n

• Player 1 pays 1
2ε

2(f (x0))1/n
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Games

• Repeat the process starting at x1 to get x2 and so on
• Get a sequence of positions {x0, x1, . . . , xj . . .}
• The game stops when the token leaves Ω. Let τ be first time
that xτ /∈ Ω. The player gets paid g(xτ )
• At the end the player obtains

g(xτ )− 1

2
ε2

τ−1∑
j=0

(f (xj))1/n

• A STRATEGY S for the player is a choice of orthonormal basis
and numbers (αi ) ∈ I nε .
• Given a strategy S we can look for the expected outcome

Ex0
S

g(xτ )− 1

2
ε2

τ−1∑
j=0

[f (xj)]1/n


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Games, III

Suppose that the player wants to minimize the payment.

The value of the game at x0 ∈ Ω

uε(x0) = inf
S
Ex0
S

g(xτ )− 1

2
ε2

τ−1∑
j=0

[f (xj)]1/n


The value function satisfies the DPP

uε(x) = inf
V∈O

inf
αi∈I nε

{
1

n

n∑
i=1

uε(x + ε
√
αivi ) + uε(x − ε

√
αivi )

2

}
−ε

2

2
(f (x))1/n for x ∈ Ω

uε(x) = g(x) for x /∈ Ω

Existence and Uniqueness for the DPP hold.
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Convergence

Solving the DPP for each ε > 0 we get a family of functions {uε}.

Theorem

When the domain Ω is strictly convex we have

uε → u as ε→ 0

uniformly in Ω, where u is the unique viscosity solution to the
problem {

detD2u = f in Ω,
u = g on ∂Ω.
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Introduction

General picture

MVP (continuous, discrete) ⇐⇒ DPP (usually discrete) ⇐⇒
PDE (usually continuous)

(Meta) Theorem

For an appropriate real function u we have a meta-equivalence
among

1 u satisfies a Mean Value Property (in an appropriate
asymptotic sense)

2 u can be approximated by solutions to a Dynamic
Programming Principle associated to a game or control
problem

3 u solves a (possibly nonlinear) PDE
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Introduction

Flexibility of this approach

Euclidean spaces, Riemannian manifolds, Sub-Riemannian
manifolds (Heisenberg group), graphs (trees), metric-measure
spaces, parabolic versions.

But limited to R-valued functions and 2nd order PDEs (we use
viscosity theory).
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