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Mean Value Property for Harmonic functions

if and only if

(1)

v
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Introduction. Asymptotic MVF

Theorem (Blasche, 1916)

An upper-semicontinuous function u is subharmonic, Au > 0, if
and only if

; 1
lim sup 2 []éB(X,E) u(y)do(y) — u(x)] >0

e—0

A\

Theorem (Privaloff, 1916)

An upper-semicontinuous function u is subharmonic, Au > 0, if
and only if

. 1
im sup [][B ) - u(x)] >0

A\
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Introduction

Theorem

A function u is harmonic, Au = 0, if and only if

n

u(x) = %Z {%u(x-l—sej) + %u(x — 5ej)} +0(e?) ase—0,

j=1
where {e1, ..., ey} is the canonical basis of R", or
u(x) = [][ u(y)d(y)| + 0(52) ase — 0.
B(x,€)

Modern Linear results

| A\

If we replace the Laplace equation Au = 0 by a linear elliptic
equation with constant coefficients Lu = }_; ; ajjuxx; = 0 then
mean value formulas hold for appropriate ellipsoids instead of balls.

v
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Introduction

Nonlinear operators. (Manfredi-Parvianen-R., 2010)

Viscosity solutions to the 1—homogeneous p-Laplacian

1 1
Azlu = EIVUI2_Pdiv(]Vu]P_2Vu) = EAU +ANu=0,

for 1 < p < oo are characterized by a mean value formula

ax u+ min u

m
p—2 Be(x) B (x) 2+n ][
- _— d
u(x) <P + n) 2 - (P+ ”) Bo(x) uly)dy

—o0(e?) as € —0.
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We will discuss mean value properties for solutions to the

Monge-Ampere equation

det D%u = f,

with £ > 0 in a convex domain Q.

As usual, we look for convex solutions u, thus the D?u > 0 and
hence f is non-negative. In terms of eigenvalues of D?u we have

min {A\} >0.
A eigenvalue of D2u
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Convex C? case

Let ¢(€), ¢ : Ry — Ry be such that

lim ¢(€) = 400

e—0

and
lim e p(e) = 0.
e—0

(6(€) = e /2 works).

Theorem (Convex C? Case)

Let u be convex and C? in Q. Fix x € Q. We have

det A=1

u(x)—inf {][ u(x+Ay) dy}+2(n:- 2) (det Dzu(x))l/ne2 = o(€?),
A< = 2O

ase — 0.
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Convex C? case. Remarks

e Notice that for every A with det A =1, it holds

Vi 9] =, 10

where E.(A,x) = {x+ Ay : y € B.(0)}.

e The restriction A < ¢(e)l in the infimum makes the formula
local. For every x € Q, the conditions A < ¢(¢)/ and |y| < e imply
that

dist(Ec(A, x), x) = dist(x+Ay, x), x) = |Ay| < |A|ly| < ep(e) = 0

(since ep(€) — 0 as € — 0).
Hence, E.(A, x) C Q for € small enough.
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Non-local Convex C2%-case

Replace the condition A < ¢(€) by requiring

E(Ax)={x+Ay: yeB(0)} CQ.

Theorem (Non-Local Convex C2-case)

Let u be convex and C? in Q. Fix x € Q. We have

— n 2 1/n o . 2
U(X) de{rl\f:l {][e(oljl(x-i_Ay) dy}+2(n T 2) (dEt D U(X)) € = 0(6 )
Ee(A,X)CQ

ase — 0.
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Characterization of C?-solutions by MVP

Corollary (Characterization of C2-solutions)

Let u be convex and C? in Q, f > 0. TFAE:

1/n

(det D2u(x)) = f(x)

2
u(x) — inf u(x + Ay)d N f(x) = ofe?
():e;;:g;,{ﬁew) (-t Ay} + 50 1) = ofe)

det A=1
E.(Ax)CQ

u(x) — inf {]{SE u(x + Ay) dy} + %ii f(x) = o(€?).
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Viscosity solutions

Theorem (Characterization of viscosity solutions)
Let f € C(Q2) be non-negative and u € C(2) be convex. TFAE:

u is a viscosity subsolution (respectively, supersolution) of

detD?u=f in Q,  (detD?u>f)

. e’ n 2
< -
o)<, {f,  ulc Aty = 2 0+ o)
A<6(e)l
(x) < inf (f (x + Ay) d ——iii—f()+o(§
u(x _de'lcr,lé\:l BE(OL)I X y)ay 2(n+2) X €
E.(Ax)CQ

(respectively, >) in the viscosity sense (the mean value expansions
are satisfied for convex paraboloids P that touch u at x).
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Discrete Mean Values

Discrete asymptotic expansion

For u € C? convex we have the asymptotic expansion

ux)= o inf {1 s+ /) + em—fv;)}

n

Ve a;elr 2

€2
= (det(D?u)(x))"'" + o(¢?)

as € — 0.

Here O is the set all orthonormal bases V = {v1,...,v,} of R” and

1= {(al,...,an) eR": Haj =1 and 0<a;< gbz(e)}.
il

y

12/24



Discrete Mean Values, |l

Theorem (Characterization of viscosity solutions by Discrete Mean
Values)

Let u be a convex function in a domain Q2 C R". Then, u is a
solution to the Monge-Ampére equation

det(D?u(x)) = f(x)

in the viscosity sense if and only if

u(x) = inf inf {EZ ulx ¥ ev/aivi) +ulx 6«/07:'\4')}

Veo w;elr|n 2

=

€2 n
SRV + o)

as € — 0, holds in the viscosity sense.
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Determinant identity for M > 0

n(det M)"" = inf

det A=

. trace(A" M A),

where the matrix A is symmetric and positive definite.

”
Linear averages

Let M be a square matrix of dimension n. We have

n+2
trace(M) = 2 ]{3(0)<My,y>dy.
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Suppose D?u(x) > 0. Extra work is needed when det D?u(x) = 0.
Given x € Q, consider the paraboloid
1
P(z) = u(x) + (Vu(x),z — x) + §<D2u(x)(z —x),(z — x)).
Since u € C%(Q), we have
u(z) — P(z) = o(|z — x|?) as z — x,
that is,
n 2 n 2
P(z) ~ Lz —xP < u(z) < Pl2) + Dz —x2
for every z € Bs(x), with equality only when z = x. Let us denote

n
Pni(z) = P(z) £ §|z — x|
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][ (P,j][(x + Ay) — u(x))dy = ][ (<AtD2u(x)Ay,y> + n]Ay\2) dy
B.(0) B.

Using

n( det M) Yn— inf trace(A" M A),
det A=1

and that P-(x) = u(x) we obtain

2
. :t o :t o ne 2 l/n
de{rl‘l(‘_)l{]ie(oan (x+Ay)—P, (x))dy}—2(n ) (det (D?u(x)+nl))
A<o(e)l
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The heart of the matter

Now we use that
— +
P, (x + Ay) < u(x + Ay) < P (x + Ay) for every y € B.(0).

to obtain

i’fti%:_)l; {]iew)(u(x A = ) b} <5 (0 (O +00)

1/n

I762

i 2
inf {][BE(O)(u(x +Ay) — u(x)) dy}zz(n ) (det (D?u(x) — nl))

det A=1,
A<g(e)l

1/n

The result follows from

(det (D?u(x) £ 77/))1/" — (det D?u(x)) L/ asn — 0.
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Games

We describe a one-player game (or control problem)

RULES OF THE GAME :

e Fix a convex domain Q C R”

e Fix a final payoff g: R”\ Q +— R and a running cost f € C(Q),
f >0,

e Fix ¢ > 0 small

e Place a token at an initial position xg €

e The player chooses an orthonormal basis {vi, ..., v,} and n real
nonnegative numbers (a1, ...., ap) € I where

n
1
M= {(a;),’_lv,_yn eR": Ha,- =1 and 0<aq;< 5} )
i=1

e The token is moved to
X1 = X0 + EN/ QG Vi

with equal probabilities %
e Player 1 pays 1e2(f(xp))¥/"
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Games

e Repeat the process starting at x; to get x» and so on

e Get a sequence of positions {xg, X1,...,Xj...}

e The game stops when the token leaves €. Let 7 be first time
that x; ¢ Q. The player gets paid g(x:)

e At the end the player obtains

T—1
g0) — 52 D (FOg)”
j=0

e A STRATEGY S for the player is a choice of orthonormal basis
and numbers (o) € I”.
e Given a strategy S we can look for the expected outcome

EY |g(xr) —*6 Z[fXJ )k
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Games, Il

Suppose that the player wants to minimize the payment.

The value of the game at xg €

ue(x0) = inf B | g(x) ——e Z[f(xj )

The value function satisfies the DPP
b)) = [ i { s /)l = a\/E,-v,-)}

Ve a;eln 2

<€2

—?(f(x))l/” for x € Q

u(x) = g(x) for x ¢ Q

Existence and Uniqueness for the DPP hold.
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Convergence

Solving the DPP for each ¢ > 0 we get a family of functions {u.}.

Theorem
When the domain Q is strictly convex we have

U: —> u ase — 0

uniformly in Q, where u is the unique viscosity solution to the
problem

det D?u=f in £,
u=g on 0f).
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Introduction

General picture

MVP (continuous, discrete) <= DPP (usually discrete) <=
PDE (usually continuous)

(Meta) Theorem

For an appropriate real function u we have a meta-equivalence
among

@ u satisfies a Mean Value Property (in an appropriate
asymptotic sense)
® u can be approximated by solutions to a Dynamic

Programming Principle associated to a game or control
problem

© u solves a (possibly nonlinear) PDE

22/24



Introduction

Flexibility of this approach

Euclidean spaces, Riemannian manifolds, Sub-Riemannian
manifolds (Heisenberg group), graphs (trees), metric-measure
spaces, parabolic versions.

But limited to R-valued functions and 2nd order PDEs (we use
viscosity theory).
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