Non-Newtonian fluids: from ketchup to convex integration

Jan Burczak

UNIVERSITAT LEIPZIG
‘Nonstandard Seminar', MIMUW, 7.12.2020

Physical laws and simplifications

- mass balance

$$
\dot{\varrho}+\varrho \operatorname{div} v=0 \quad \partial_{t} \varrho+\operatorname{div}(\varrho v)=0
$$

- linear momentum balance

$$
\rho \dot{v}=\operatorname{div} T+b \quad \rho\left(\partial_{t} v+v \cdot \nabla v\right)=\operatorname{div} T+b
$$

- angular momentum balance supplement:
T symmetric
$T=\stackrel{\circ}{T}-p l$ is Cauchy stress (for contact forces), b are body forces (e.g. fields)

Working assumptions

- incompressible $\operatorname{div} v=0 \Longrightarrow \dot{\varrho}=0$
- homogenous $\varrho \equiv$ const

Specific models

$$
\partial_{t} v+v \cdot \nabla v+\nabla p=\operatorname{div} \stackrel{\circ}{T}+b, \quad \operatorname{div} v=0
$$

Aim: choose $\stackrel{\circ}{T}$

- $\stackrel{\circ}{T}(\nabla v)$, so by frame indifference $\stackrel{\circ}{T}(D v)$ and $\stackrel{\circ}{T}$ isotropic
- representation of isotropic functions

$$
\stackrel{\circ}{T}(D v)=\alpha I+\beta D v+\gamma(D v)^{2}
$$

α, β, γ scalar functions depending on invariants of $D v$:
$\operatorname{tr}, \frac{1}{2}\left((t r)^{2}-\operatorname{tr}\left({ }^{2}\right)\right), d e t$

Example of choices

- $\alpha=\beta=\gamma=0$: Euler's equation
- $\alpha=\gamma=0, \beta=\nu_{0}$: Navier-Stokes equation
- $\alpha=\gamma=0, \beta=\left(\nu_{0}+|D v|\right)^{q-2}$: non-Newtonian fluid

Newtonian vs non-Newtonian fluids

$$
\partial_{t} v+v \cdot \nabla v+\nabla p=\operatorname{div} \nu_{0} D v+b, \quad \operatorname{div} v=0
$$

ν_{0} : constant viscosity (Newtonian) (clip)
but viscosity may change under applied forces (non-Newtonian), e.g.

$$
\partial_{t} v+v \cdot \nabla v+\nabla p=\operatorname{div}\left(\left(\nu_{0}+|D v|\right)^{q-2} D v\right)+b, \quad \operatorname{div} v=0
$$

power-law model: 1929 Norton for molten steel, Ostwald for polymers

- $q<2$ forces decrease viscosity (paints, ketchup, ice)
- $q>2$ forces increase viscosity (corn starch+water, silicone solutions) (clip)

job of an (applied) mathematician

take a reasonable model and check its basic analytical properties
(i) existence of solutions
(ii) uniqueness of solutions (for reasonable initial data)
(iii) stability on data
(iv) dynamical/regularity properties
for Euler and Navier-Stokes: only (i) satisfactorily answered

Ladyzhenskaya ICM 1966 suggestion: think of power-law fluids

Rules of thumb

$$
\begin{aligned}
\partial_{t} v+v \cdot \nabla v-\operatorname{div}\left(\left(\nu_{0}+|D v|\right)^{q-2} D v\right) & =\nabla p \\
\operatorname{div} v & =0
\end{aligned}
$$

Energy

$$
\int|v|^{2}(t)+2 \int_{0}^{t} \int\left(\nu_{0}+|D v|\right)^{q-2}|D v|^{2}
$$

Scaling (case $\nu_{0}=0$)

$$
v_{\lambda}:=\lambda^{\alpha} v\left(\lambda x, \lambda^{\alpha+1} t\right) \quad \text { with } \quad \alpha=\frac{q-1}{3-q}
$$

Suggest:

- $W^{1, q} \subset \subset L^{2}$ for $q>\frac{2 d}{d+2} \Longrightarrow$ existence of a solution
- energy of v_{λ} as $\lambda \rightarrow \infty$ blows up iff $q>\frac{3 d+2}{d+2} \Longrightarrow v \cdot \nabla v$ plays no role for $q>\frac{3 d+2}{d+2}$, i.e. uniqueness

results overview

rigorous proofs of $q>\frac{2 d}{d+2}$ and $q>\frac{3 d+2}{d+2}$ thresholds 1969-2020:
Ladyzhenskaya, Nečas, Malek, Diening, Buliček

our contribution (B, Modena, Székelyhidi)

dual picture in q

recall:

h-principle in fluid dynamics

- relax PDE to PDRelation with error R
- correct solution to PDR with fast-oscillating function to reduce R
- if problem is flexible enough, we can produce a solution to PDE, which is 'close' to PDR
- many PDRs \Longrightarrow many solutions to PDEs

h-principle in fluid dynamics

- relax PDE to PDRelation with error R
- correct solution to PDR with fast-oscillating function to reduce R
- if problem is flexible enough, we can produce a solution to PDE, which is 'close' to PDR
- many PDRs \Longrightarrow many solutions to PDEs

$$
\partial_{t} v+\operatorname{div}(v \otimes v)-\operatorname{div} A(D v)=\nabla p
$$

average

$$
\begin{aligned}
\partial_{t} \bar{v}+\operatorname{div}(\bar{v} \otimes \bar{v})-\operatorname{div} A(D \bar{v})-\nabla \bar{p} & =\operatorname{div}(\bar{v} \otimes \bar{v}-\overline{v \otimes v})-\operatorname{div}(A(D \bar{v})-\overline{A(D v)}) \\
& =: \operatorname{div} R
\end{aligned}
$$

\bar{v} - 'laminar flow', R - Reynolds stress (measure of turbulence)

Reducing the error

take $\left(u_{0}, q_{0}, R_{0}\right)$ solving Non-Newtonian-Reynolds

$$
\partial_{t} u_{0}+\operatorname{div}\left(u_{0} \otimes u_{0}\right)-\operatorname{div}\left(\left(\nu_{0}+\left|D u_{0}\right|\right)^{q-2} D u_{0}\right)+\nabla p=-\operatorname{div} R_{0}
$$

aim: produce $\left(u_{1}, q_{1}, R_{1}\right)$ via

$$
u_{1}:=u_{0}+u_{p}
$$

so that $u_{p} \otimes u_{p}-R_{0}$ small.

$$
\begin{gathered}
M=\sum_{k \in K} \Gamma_{k}^{2}(M) k \otimes k \\
u_{p}=\sum_{k} \sqrt{\left|R_{0}\right|} \Gamma_{k}\left(\frac{R_{0}}{\left|R_{0}\right|}\right) W^{k}, \quad f_{\mathbb{T}^{d}} W^{k} \otimes W^{k}=k \otimes k \\
u_{p} \otimes u_{p}-R_{0}=\sum_{k}\left|R_{0}\right| \Gamma_{k}^{2}\left(\frac{R_{0}}{\left|R_{0}\right|}\right) P_{\neq 0} W^{k} \otimes W^{k} \\
\operatorname{div}\left(W^{k} \otimes W^{k}\right)=0 \Longrightarrow \operatorname{div}\left(u_{p} \otimes u_{p}-R_{0}\right)=\sum_{k} \nabla\left(\left|R_{0}\right| \Gamma_{k}^{2}\left(\frac{R_{0}}{\left|R_{0}\right|}\right)\right) P_{\neq 0} W^{k} \otimes W^{k} \\
R_{1}=\operatorname{div}^{-1}\left(\sum_{k} \nabla\left(\left|R_{0}\right| \Gamma_{k}^{2}\left(\frac{R_{0}}{\left|R_{0}\right|}\right)\right) P_{\neq 0} W^{k} \otimes W^{k}\right)
\end{gathered}
$$

Full derivative by concentrated Mikado flows

$$
\begin{aligned}
u_{p} & =\sum_{k} \sqrt{\left|R_{0}\right|} \Gamma_{k}\left(\frac{R_{0}}{\left|R_{0}\right|}\right) W^{k} \\
\operatorname{div} W_{\mu, \lambda}^{k} & =0, \quad \operatorname{div}\left(W_{\mu, \lambda}^{k} \otimes W_{\mu, \lambda}^{k}\right)=0, \\
f_{\mathbb{T}^{d}} W_{\mu, \lambda}^{k} & =0, \quad f_{\mathbb{T}^{d}} W_{\mu, \lambda}^{k} \otimes W_{\mu, \lambda}^{k}=k \otimes k
\end{aligned}
$$

$W_{\mu, \lambda}^{k}$ and $W_{\mu, \lambda}^{r}$ have disjoint supports for $k \neq r$ and

$$
\left|\nabla^{s} W_{\mu, \lambda}^{k}\right|_{\left.L L^{(\mathbb{T}}\right)} \leq C(s,|K|) \lambda^{s} \mu^{s+\frac{d-1}{2}-\frac{d-1}{\tau}} .
$$

If $d-1 \rightarrow d$ above, then

$$
\left|\nabla W_{\mu, \lambda}^{k}\right|_{L^{\frac{2 d}{d+2}}-{ }_{\left(\mathbb{T}^{d}\right)} \leq \lambda \mu^{-\epsilon} .}
$$

$d=3$ by concentrated, localized, traveling Mikado flows

Aim: $d \rightarrow d-1$. Localisation destroys Euler-like properties.

$$
\begin{gathered}
\operatorname{div}\left(W^{k} \otimes W^{k}\right)=0 \Longrightarrow \operatorname{div}\left(u_{p} \otimes u_{p}-R_{0}\right)=\sum_{k} \nabla\left(a_{k}^{2}\right) P_{\neq 0} W^{k} \otimes W^{k} \\
\operatorname{div}\left(u_{p} \otimes u_{p}-R_{0}\right) \sim \sum_{k \in K}\left(P_{\neq 0} W^{k} \otimes W^{k}\right) \nabla\left(a_{k}^{2}\right) \\
+\sum_{k \in K}\left(f W^{k} \otimes W^{k}-k \otimes k\right) \nabla\left(a_{k}^{2}\right)+\sum_{k \in K} a_{k}^{2} \operatorname{div}\left(W^{k} \otimes W^{k}\right) \\
Y^{k} \sim-\frac{1}{\omega} \operatorname{div}\left(W^{k} \otimes W^{k}\right)
\end{gathered}
$$

Iteration Step

Fix any $e \in C^{\infty}\left([0,1] ;\left[\frac{1}{2}, 1\right]\right)$. $\left(u_{0}, \pi_{0}, R_{0}\right)$ solves

$$
\begin{aligned}
\partial_{t} u_{0}+\operatorname{div}\left(u_{0} \otimes u_{0}\right)-\operatorname{div} A\left(D u_{0}\right)+\nabla \pi_{0} & =-\operatorname{div} R_{0} \\
\operatorname{div} u & =0
\end{aligned}
$$

Take any $\delta, \eta \in(0,1]$. Assume

$$
\frac{3}{4} \delta e(t) \leq e(t)-\left(\int_{\mathbb{T}^{d}}\left|u_{0}\right|^{2}(t)+2 \int_{0}^{t} \int_{\mathbb{T}^{d}} A\left(D u_{0}\right) D u_{0}\right) \leq \frac{5}{4} \delta e(t)
$$

and

$$
\left|R_{0}(t)\right|_{L_{1}} \leq \frac{\delta}{2^{7} d}
$$

Then, \exists solution $\left(u_{1}, \pi_{1}, R_{1}\right)$

$$
\begin{gathered}
\left|\left(u_{1}-u_{0}\right)(t)\right|_{L^{2}} \leq M \delta^{\frac{1}{2}} \\
\left|\left(u_{1}-u_{0}\right)(t)\right|_{W^{1, q}} \leq \eta \\
\left|R_{1}(t)\right|_{L_{1}} \leq \eta . \\
\frac{3}{8} \delta e(t) \leq e(t)-\left(\int_{\mathbb{T}^{d}}\left|u_{1}\right|^{2}(t)+2 \int_{0}^{t} \int_{\mathbb{T}^{d}} A\left(D u_{1}\right) D u_{1}\right) \leq \frac{5}{8} \delta e(t) .
\end{gathered}
$$

Highlights

- non-uniqueness picture, sharp in powers

- improves regularity of NSE non-unique weak solutions by Buckmaster\&Vicol
- avoids Fourier side
- avoids meticulous control of decays
- introduces concentration mechanism into fluid-dynamics convex integration
- provides improved antidivergence operators

