physical background 0000 Results 000 Glimpses into proofs 00000 Summary O

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-Newtonian fluids: from ketchup to convex integration

Jan Burczak

'Nonstandard Seminar', MIMUW, 7.12.2020

physical background	Results	Glimpses into proofs	Summary
●000	000	00000	0

Physical laws and simplifications

mass balance

$$\dot{\varrho} + \varrho \operatorname{div} v = 0$$
 $\partial_t \varrho + \operatorname{div} (\varrho v) = 0$

linear momentum balance

$$\rho \dot{\mathbf{v}} = \operatorname{div} \mathbf{T} + \mathbf{b}$$
 $\rho(\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v}) = \operatorname{div} \mathbf{T} + \mathbf{b}$

• angular momentum balance supplement:

T symmetric

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $T = \mathring{T} - pI$ is Cauchy stress (for contact forces), b are body forces (e.g. fields)

Working assumptions

- incompressible div $v = 0 \implies \dot{\varrho} = 0$
- homogenous *ρ* ≡ const

physical background	Results	Glimpses into proofs	Summary
0000	000	00000	0
Specific models			

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla \mathbf{p} = \operatorname{div} \mathring{T} + \mathbf{b}, \quad \operatorname{div} \mathbf{v} = \mathbf{0}$$

Aim: choose \mathring{T}

- $\mathring{T}(\nabla v)$, so by frame indifference $\mathring{T}(Dv)$ and \mathring{T} isotropic
- representation of isotropic functions

$$\mathring{T}(Dv) = \alpha I + \beta Dv + \gamma (Dv)^2$$

 α, β, γ scalar functions depending on invariants of Dv: $tr, \frac{1}{2}((tr)^2 - tr(^2)), det$

Example of choices

- $\alpha = \beta = \gamma = 0$: Euler's equation
- $\alpha = \gamma = 0$, $\beta = \nu_0$: Navier-Stokes equation
- $\alpha = \gamma = 0$, $\beta = (\nu_0 + |Dv|)^{q-2}$: non-Newtonian fluid

physical background	Results	Glimpses into proofs	Summary
0000	000	00000	0

Newtonian vs non-Newtonian fluids

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla \mathbf{p} = \operatorname{div} \nu_0 D \mathbf{v} + \mathbf{b}, \quad \operatorname{div} \mathbf{v} = \mathbf{0}$$

 u_0 : constant viscosity (Newtonian) (clip)

but viscosity may change under applied forces (non-Newtonian), e.g.

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla \mathbf{p} = \operatorname{div} \left((\nu_0 + |D\mathbf{v}|)^{q-2} D\mathbf{v} \right) + b, \quad \operatorname{div} \mathbf{v} = 0$$

power-law model: 1929 Norton for molten steel, Ostwald for polymers

• *q* < 2 forces decrease viscosity (paints, ketchup, ice)

q > 2 forces increase viscosity (corn starch+water, silicone solutions)
 (clip)

job of an (applied) mathematician

take a reasonable model and check its basic analytical properties

- (i) existence of solutions
- (ii) uniqueness of solutions (for reasonable initial data)
- (iii) stability on data
- (iv) dynamical/regularity properties

for Euler and Navier-Stokes: only (i) satisfactorily answered

Ladyzhenskaya ICM 1966 suggestion: think of power-law fluids

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

physical background	Results	Glimpses into proofs	Summary
0000	•00	00000	0
Rules of thumb			

$$\partial_t v + v \cdot \nabla v - \operatorname{div} \left(\left(\nu_0 + |Dv| \right)^{q-2} Dv \right) = \nabla p$$

 $\operatorname{div} v = 0$

Energy

$$\int |v|^2(t) + 2 \int_0^t \int (\nu_0 + |Dv|)^{q-2} |Dv|^2$$

Scaling (case $\nu_0 = 0$)

$$v_{\lambda} := \lambda^{lpha} v(\lambda x, \lambda^{lpha+1} t) \quad ext{with} \quad lpha = rac{q-1}{3-q}$$

Suggest:

•
$$W^{1,q} \subset L^2$$
 for $q > \frac{2d}{d+2} \implies$ existence of a solution

• energy of v_{λ} as $\lambda \to \infty$ blows up iff $q > \frac{3d+2}{d+2} \implies v \cdot \nabla v$ plays no role for $q > \frac{3d+2}{d+2}$, i.e. uniqueness

rigorous proofs of $q > \frac{2d}{d+2}$ and $q > \frac{3d+2}{d+2}$ thresholds 1969–2020: Ladyzhenskaya, Nečas, Malek, Diening, Buliček

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

our contribution (B, Modena, Székelyhidi)

dual picture in q

recall:

physical background	Results	Glimpses into proofs	Summary
0000	000	0000	0
	h-principle in	fluid dynamics	

- relax PDE to PDRelation with error R
- correct solution to PDR with fast-oscillating function to reduce R
- if problem is flexible enough, we can produce a solution to PDE, which is 'close' to PDR

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• many PDRs \implies many solutions to PDEs

physical background	Results	Glimpses into proofs	Summary
0000	000	00000	0
	h nuinainla in	fluid dumanaina	
	<i>n</i> -principle in	nuid dynamics	

- relax PDE to PDRelation with error R
- correct solution to PDR with fast-oscillating function to reduce R
- if problem is flexible enough, we can produce a solution to PDE, which is 'close' to PDR
- many PDRs \implies many solutions to PDEs

$$\partial_t \mathbf{v} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{A}(\mathbf{D}\mathbf{v}) = \nabla \mathbf{p}$$

average

$$\partial_t \bar{\mathbf{v}} + \operatorname{div}\left(\bar{\mathbf{v}} \otimes \bar{\mathbf{v}}\right) - \operatorname{div} \mathbf{A}(D\bar{\mathbf{v}}) - \nabla \bar{\mathbf{p}} = \operatorname{div}\left(\bar{\mathbf{v}} \otimes \bar{\mathbf{v}} - \overline{\mathbf{v} \otimes \mathbf{v}}\right) - \operatorname{div}\left(\mathbf{A}(D\bar{\mathbf{v}}) - \overline{\mathbf{A}(D\mathbf{v})}\right) \\ =: \operatorname{div} \mathbf{R}$$

 \bar{v} - 'laminar flow', R - Reynolds stress (measure of turbulence)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

physical background	Results	Glimpses into proofs	Summary
0000	000	0000	0

Reducing the error

take (u_0, q_0, R_0) solving Non-Newtonian-Reynolds

$$\partial_t u_0 + \operatorname{div} (u_0 \otimes u_0) - \operatorname{div} ((\nu_0 + |Du_0|)^{q-2} Du_0) + \nabla p = -\operatorname{div} R_0$$

aim: produce (u_1, q_1, R_1) via

$$u_1 := u_0 + u_p$$

so that $u_p \otimes u_p - R_0$ small.

div (

$$M = \sum_{k \in K} \Gamma_k^2(M) k \otimes k$$
$$u_p = \sum_k \sqrt{|R_0|} \Gamma_k \left(\frac{R_0}{|R_0|}\right) W^k, \qquad \int_{\mathbb{T}^d} W^k \otimes W^k = k \otimes k$$
$$u_p \otimes u_p - R_0 = \sum_k |R_0| \Gamma_k^2 \left(\frac{R_0}{|R_0|}\right) P_{\neq 0} W^k \otimes W^k$$
$$W^k \otimes W^k) = 0 \implies \operatorname{div} \left(u_p \otimes u_p - R_0\right) = \sum_k \nabla \left(|R_0| \Gamma_k^2 \left(\frac{R_0}{|R_0|}\right)\right) P_{\neq 0} W^k \otimes W^k$$
$$R_1 = \operatorname{div}^{-1} \left(\sum_k \nabla \left(|R_0| \Gamma_k^2 \left(\frac{R_0}{|R_0|}\right)\right) P_{\neq 0} W^k \otimes W^k\right)$$

physical background	Results	Glimpses into proofs	Summary
0000	000	00000	0

Full derivative by concentrated Mikado flows

$$\begin{split} u_{p} &= \sum_{k} \sqrt{|R_{0}|} \Gamma_{k} \Big(\frac{R_{0}}{|R_{0}|} \Big) W^{k} \\ \operatorname{div} W_{\mu,\lambda}^{k} &= 0, \quad \operatorname{div} (W_{\mu,\lambda}^{k} \otimes W_{\mu,\lambda}^{k}) = 0, \\ &\int_{\mathbb{T}^{d}} W_{\mu,\lambda}^{k} = 0, \quad \int_{\mathbb{T}^{d}} W_{\mu,\lambda}^{k} \otimes W_{\mu,\lambda}^{k} = k \otimes k \end{split}$$

 $W^k_{\mu,\lambda}$ and $W^r_{\mu,\lambda}$ have disjoint supports for k
eq r and

$$|
abla^s W^k_{\mu,\lambda}|_{L^r(\mathbb{T}^d)} \leq C(s,|\mathcal{K}|)\lambda^s \mu^{s+rac{d-1}{2}-rac{d-1}{r}}.$$

If d-1
ightarrow d above, then

$$\left\|\nabla W_{\mu,\lambda}^{k}\right\|_{L^{\frac{2d}{d+2}-}(\mathbb{T}^{d})} \leq \lambda \mu^{-\epsilon}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

physical background	Results	Glimpses into proofs	Summary
0000	000	00000	0

d = 3 by concentrated, localized, traveling Mikado flows

Aim: $d \rightarrow d - 1$. Localisation destroys Euler-like properties.

$$\operatorname{div} (W^k \otimes W^k) = 0 \implies \operatorname{div} (u_{\rho} \otimes u_{\rho} - R_0) = \sum_k \nabla(a_k^2) P_{\neq 0} W^k \otimes W^k$$

$$\begin{split} \operatorname{div}\left(u_{p}\otimes u_{p}-R_{0}\right)&\sim\sum_{k\in\mathcal{K}}(P_{\neq0}W^{k}\otimes W^{k})\nabla(a_{k}^{2})\\ &+\sum_{k\in\mathcal{K}}\left(\int W^{k}\otimes W^{k}-k\otimes k\right)\nabla(a_{k}^{2})+\sum_{k\in\mathcal{K}}a_{k}^{2}\operatorname{div}\left(W^{k}\otimes W^{k}\right).\\ &Y^{k}\sim-\frac{1}{\omega}\operatorname{div}\left(W^{k}\otimes W^{k}\right)\end{split}$$

physical background	Results	Glimpses into proofs	Summary
0000	000	00000	0
Iteration Step			

Fix any $e \in C^{\infty}([0,1]; [\frac{1}{2},1])$. (u_0, π_0, R_0) solves

$$\partial_t u_0 + \operatorname{div} (u_0 \otimes u_0) - \operatorname{div} A(Du_0) + \nabla \pi_0 = -\operatorname{div} R_0,$$

 $\operatorname{div} u = 0.$

Take any $\delta, \eta \in (0, 1]$. Assume

$$\frac{3}{4}\delta e(t) \leq e(t) - \left(\int_{\mathbb{T}^d} |u_0|^2(t) + 2\int_0^t \int_{\mathbb{T}^d} A(Du_0)Du_0\right) \leq \frac{5}{4}\delta e(t)$$

and

$$|R_0(t)|_{L_1}\leq rac{\delta}{2^7d}.$$

Then, \exists solution (u_1, π_1, R_1)

$$\begin{split} |(u_1 - u_0)(t)|_{L^2} &\leq M\delta^{\frac{1}{2}} \\ |(u_1 - u_0)(t)|_{W^{1,q}} &\leq \eta \\ |R_1(t)|_{L_1} &\leq \eta. \end{split}$$
$$\frac{3}{8}\delta e(t) \leq e(t) - \left(\int_{\mathbb{T}^d} |u_1|^2(t) + 2\int_0^t \int_{\mathbb{T}^d} A(Du_1)Du_1\right) \leq \frac{5}{8}\delta e(t). \end{split}$$

physical background	Results	Glimpses into proofs	Summary
0000	000	00000	•
	Highlights		
	0 0		

• non-uniqueness picture, sharp in powers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Multiple Leray-Hopf solutions possible.

- improves regularity of NSE non-unique weak solutions by Buckmaster&Vicol
- avoids Fourier side
- avoids meticulous control of decays
- introduces concentration mechanism into fluid-dynamics convex integration
- provides improved antidivergence operators