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Motivation

Dealing with capacities often implies dealing with fuctionals more
general than norms

⇓

we constructed a modular capacity theory
and

introduced two modular capacities

A comparison between the zero capacity sets with respect to the
two different notions was obtained through a modular Poincaré
inequality
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The setting

Ω ⊂ Rn open set,

M(Ω) = {f : Ω→ IR, measurablew.r.t Lebesguemeasure}
Given a mapping ρX (·) :M(Ω)→ [0,∞], the set

X (Ω) = {u ∈M(Ω) : ρX (u) <∞},
is a modular function space over Ω if the pair (X (Ω), ρX ) satisfies
the following properties:

i ρX (u) = ρX (|u|) and ρX (u) = 0 if and only if u ≡ 0
ii |u| ≤ |v | a.e. ⇒ ρX (u) ≤ ρX (v)
iii ρX (u + v) ≤ ρX (u) + ρX (v) ∀u, v : uv ≡ 0
iv if E ⊂ Ω is measurable set and |E | <∞, then ρX (χE ) <∞
v |uj | ↑ |u| a.e. ⇒ ρX (uj) ↑ ρX (u)
vi ∀k > 1∃ ck > 1 : ρX (ku) ≤ ckρX (u)
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AS A CONSEQUENCE of the previous properties we have the
following type-convexity of ρX :

ρX (αu + βv) ≤ ρX (u) + ρX (v) ∀α, β ≥ 0 , α + β = 1.

Flavia Giannetti A modular Poincaré inequality 5/34
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Examples of modular

EXAMPLE 1

Consider
ρX (u) = ‖u‖X

where X (Ω) is a Banach function space in the sense given by
Bennett & Sharpley.

Flavia Giannetti A modular Poincaré inequality 6/34
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In particular, it holds for

ρX (u) = ‖u‖A

where X (Ω) = LA(Ω) is an Orlicz space

NOTE that it is not required that A satisfies the ∆2 condition, but
rather that ρX has to satisfy property vi .

(
‖u‖A = inf

{
λ > 0 :

∫
Ω
A

(
|u|
λ

)
≤ 1
})

Flavia Giannetti A modular Poincaré inequality 7/34
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EXAMPLE 2

Consider
ρX (u) =

∫
Ω
A(|u|) dx

where A : [0,∞[→ [0,∞[ is a Young function (i.e. an increasing,
continuous, convex, and such that A(0) = 0, A(t) > 0 for t > 0)
satisfying the ∆2 condition.

NOTE that ρX is not a norm unless A(t) = t and so here we need
to require that A satisfies the ∆2 condition.
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EXAMPLE 3

Consider
ρX (u) =

∫
Ω
P(|u|) dx

where P : [0,∞[→ [0,∞[ is increasing, continuous, strictly
CONCAVE, unbounded and such that P(0) = 0.

(HERE ρX is not convex!)
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Some definitions

We consider the generalized Sobolev space defined as

W 1X (Ω) = {u weakly differentiable : u ∈ X (Ω) and |∇u| ∈ X (Ω)}
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uj → u with respect to the ρX−convergence in W 1X (Ω)

⇐⇒

ρX (uj)→ ρX (u) , ρX (|∇uj |)→ ρX (|∇u|) .

Flavia Giannetti A modular Poincaré inequality 11/34



The setting
Examples of modular

Definitions
The result
Remarks
Examples

REMARK In the case ρX is the norm in a Banach function space
X , the convergence in norm of the function and of its gradient is
not equivalent to the ρX−convergence, but the former implies the
latter.
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Statement of the result

THEOREM (Modular Poincaré inequality)

(X (Ω), ρX ), (Y (Ω), ρY ), and (Z (Ω), ρZ ) are such that

ρZ (u) ≤ c(Y ,Z ) ρY (|∇u|) u ∈ C∞0 (Ω)
W 1X (Ω)

.

If for some strictly increasing function ϕ : [0,∞[→ [0,∞[ such that
ϕ−1 ∈ ∆2, it is

c1ρY (f ) ≤ ϕ(ρX (f )) ≤ c2ρZ (f ) f ∈ Z (Ω) ,

⇓

ρX (u) ≤ cϕ−1(c1 c2 c(Y ,Z )) ρX (|∇u|) u ∈ C∞0 (Ω)
W 1X (Ω)

.
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NOTE that

ρZ (u) ≤ c(Y ,Z ) ρY (|∇u|) u ∈ C∞0 (Ω)
W 1X (Ω)

is an abstract Sobolev-type inequality
the closure of C∞0 (Ω) is respect to the ρX−convergence in
W 1X (Ω)
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Actually the proof is a straightforward consequence of the
assumptions but examples and comments in the sequel will show:

the differences with the current results in literature
we unify and extend known results
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Remarks

REMARK 1 In the proof we make use of a Sobolev-type inequality
applied to a closure of smooth, compactly supported functions
(see e.g. Brezis: Functional analysis. Sobolev spaces and partial
differential equations (2011)).

Actually, we underline that a weak form of the Sobolev estimate is
sufficient and we don’t need the full gain of summability established
by the Sobolev inequality: even if the gain is not optimal therein,
an improvement of the exponent exists and this is sufficient.
(as it happens e.g in Kovácik-Rákosník:Czechoslovak Math. J
(1991) , in the variable exponent case).

Flavia Giannetti A modular Poincaré inequality 16/34
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REMARK 2 It is well known that the classical Poincaré inequality
does not hold, in general, for unbounded Ω, the typical
counterexample being Ω = IRn. Unbounded Ω are allowed: Ω can
be bounded in one direction or the measure of Ω∩ (IRn \BR) tends
sufficiently fast to zero as R →∞.
(see Frehse:Jahresber.Deutsch.Math.Verein.(1982)).
Our assumptions do not impose a priori any restriction on the
domain Ω. For instance, in Examples 2, 3 below, any open set
Ω ⊆ IRn is allowed.

Flavia Giannetti A modular Poincaré inequality 17/34
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REMARK 3 Note that for given (Y (Ω), ρY ) and (Z (Ω), ρZ ),
choosing in a suitable way (X (Ω), ρX ), we may get two "endpoint"
cases of our Poincaré inequality: assume the Sobolev inequality

ρZ (u) ≤ c(Y ,Z ) ρY (|∇u|),
and assume the second inequality

for (X (Ω), ρX ) = (Y (Ω), ρY ), c1 = 1, ϕ(t) = t, that is
ρY (u) ≤ c2ρZ (u), therefore we get

ρY (u) ≤ c ρY (|∇u|) u ∈ C∞0 (Ω)
W 1Y (Ω)

(1)

for (X (Ω), ρX ) = (Z (Ω), ρZ ), c2 = 1, ϕ(t) = t, that is
c1ρY (u) ≤ ρZ (u), therefore we get

ρZ (u) ≤ c ρZ (|∇u|) u ∈ C∞0 (Ω)
W 1Z(Ω)

(2)

Flavia Giannetti A modular Poincaré inequality 18/34
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PRECISELY
Poincaré inequalities (1) and (2) involve respectively the domain
space and the target space of the Sobolev inequality

ρZ (u) ≤ c(Y ,Z ) ρY (|∇u|)

while the Poincaré inequality in the theorem

ρX (u) ≤ cϕ−1(c1 c2 c(Y ,Z )) ρX (|∇u|)

involves an intermediate space X (Ω) (see also next Examples 4, 5).
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Examples

EXAMPLE 1
Ω ⊂ IRn open, |Ω| <∞ , 1 ≤ p < n.

(Y , ρY ) = (Lp(Ω), ‖ · ‖p), (Z , ρZ ) = (Lp
∗
(Ω), ‖ · ‖p∗), p∗ = np/(n−p)

(X , ρX ) =

(
LA(Ω),

∫
Ω
A(·) dx

)
where A is a Young function such that

pA(t) ≤ tA′(t) ≤ p∗A(t), t ≥ 0.

⇒ the Sobolev inequality ρZ (u) ≤ c(Y ,Z ) ρY (|∇u|) obviously
holds and the second inequality c1ρY (f ) ≤ ϕ(ρX (f )) ≤ c2ρZ (f ) is
satisfied choosing ϕ(t) = A−1(t) ( see Fiorenza: NonlinearAnal.
(1991) )

Flavia Giannetti A modular Poincaré inequality 20/34
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Hence ∫
Ω
A(u)dx ≤ cA

∫
Ω
A(|∇u|)dx

for every u in the closure of C∞0 (Ω) with respect to the
ρX -convergence in W 1LA(Ω).

REMARK Obviously the same inequality holds also for u in the
closure of C∞0 (Ω) with respect to the norm convergence in
W 1,A(Ω), since the convergence in norm implies the
ρX -convergence.

Flavia Giannetti A modular Poincaré inequality 21/34
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EXAMPLE 2 Ω ⊂ IRn, n ≥ 2 open,

(Y , ρY ) = (Ln(Ω), ‖ · ‖n) , (Z , ρZ ) =
(
LA(Ω), ‖ · ‖A

)
(X , ρX ) =

(
LA(Ω), ‖ · ‖A

)
with A(t) = exp(tn/(n−1))− 1

⇒ the Sobolev inequality ρZ (u) ≤ c(Y ,Z ) ρY (|∇u|) holds (see
Trudinger:J.Math.Mech., (1967)) and the second inequality
c1ρY (f ) ≤ ϕ(ρX (f )) ≤ c2ρZ (f ) is satisfied choosing

ϕ(t) = t, c2 = 1

and observing that
LA(Ω) ⊂ Ln(Ω)

since A(t) dominates B(t) = tn globally
(see Adams-Fournier: Sobolev Spaces, (2003)).

Flavia Giannetti A modular Poincaré inequality 22/34
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Hence
‖u‖A ≤ c ‖∇u‖A

for every u in the closure of C∞0 (Ω) with respect to the
ρX -convergence in W 1LA(Ω).

REMARK As in the previous example, we note that the same
inequality holds also for u in the closure of C∞0 (Ω) with respect to
the norm convergence in W 1,A(Ω).
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REMARK Obviously, if LB(Ω) is any Orlicz space such that

LA(Ω) ⊂ LB(Ω) ⊂ Ln(Ω) ,

choosing (X , ρX ) =
(
LB(Ω), ‖ · ‖B

)
, we have also

‖u‖B ≤ c ‖∇u‖A

for every u in the closure of C∞0 (Ω) with respect to the
ρX -convergence in W 1LB(Ω). We note that the same inequality
holds also for u in the closure of C∞0 (Ω) with respect to the norm
convergence in W 1,B(Ω), and of course also for u in the closure of
C∞0 (Ω) with respect to the norm convergence in W 1,A(Ω).
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EXAMPLE 3
A a Young function satisfying∫

0

(
t

A(t)

) 1
n−1

dt <∞, n ≥ 2,

Setting

H(r) =

(∫ r

0

(
t

A(t)

) 1
n−1

dt

) n−1
n

r ≥ 0

An = A ◦ H−1

where H−1 is the left-continuous inverse of H, the optimal Sobolev
inequality

‖u‖LAn (IRn) ≤ c‖∇u‖LA(IRn)

holds (see Cianchi (1999)). Setting B(t) = max{An(t),A(t)},
t ≥ 0, obviously B(t) dominates An(t) globally.
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⇒ the Sobolev inequality

ρZ (u) ≤ c(Y ,Z ) ρY (|∇u|) u ∈ C∞0 (IRn)
W 1X (IRn)

,

holds with (Y , ρY ) =
(
LA(IRn), ‖ · ‖A

)
, (Z , ρZ ) =

(
LB(IRn), ‖ · ‖B

)
(see Adams-Fournier: Sobolev Spaces, (2003)). Moreover, the
second inequality c1ρY (f ) ≤ ϕ(ρX (f )) ≤ c2ρZ (f ) is satisfied
choosing

(X , ρX ) =
(
LB(IRn), ‖ · ‖B

)
, ϕ(t) = t, c2 = 1

It follows
‖u‖B ≤ c ‖∇u‖B

for every u in the closure of C∞0 (IRn) with respect to the
ρX -convergence in W 1LB(IRn). We note that the same inequality
holds also for u in the closure of C∞0 (IRn) with respect to the norm
convergence in W 1,B(IRn).

Flavia Giannetti A modular Poincaré inequality 26/34



The setting
Examples of modular

Definitions
The result
Remarks
Examples

EXAMPLE 4 Ω ⊂ IRn open, |Ω| <∞,
p(·) : Ω→ [1, p+], 1 ≤ p+ < n p∗(·) = np(·)

n−p(·)

(Y , ρY ) =
(
Lp(·)(Ω), ‖ · ‖p(·)

)
, (Z , ρZ ) =

(
Lp
∗(·)(Ω), ‖ · ‖p∗(·)

)
⇓

the Sobolev inequality ρZ (u) ≤ c(Y ,Z ) ρY (|∇u|) holds provided
the maximal operator is bounded on L(p∗(·)/n′)′(Ω), n′ = n

n−1
(see e.g. Cruz-Uribe-Fiorenza:Variable Lebesgue spaces, (2013)).
Moreover, the second inequality c1ρY (f ) ≤ ϕ(ρX (f )) ≤ c2ρZ (f ) is
satisfied choosing

(X , ρX ) =
(
Lp
∗(·)(Ω), ‖ · ‖p∗(·)

)
, ϕ(t) = t, c2 = 1

and observing that Lp
∗(·)(Ω) ⊂ Lp(·)(Ω).
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Hence
‖u‖p∗(·) ≤ c ‖∇u‖p∗(·)

for every u in the closure of C∞0 (Ω) with respect to the the
ρX -convergence in W 1Lp

∗(·)(Ω). We note that the same inequality
holds also for u in the closure of C∞0 (Ω) with respect to the norm
convergence in W 1,p∗(·)(Ω).

(
‖u‖p(·) = inf

{
λ > 0 :

∫
Ω

(
|u(x)|
λ

)p(x)

dx ≤ 1

})
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REMARK Obviously, if Lq(·)(Ω) is such that

Lp
∗(·)(Ω) ⊂ Lq(·)(Ω) ⊂ Lp(·)(Ω) ,

choosing (X , ρX ) =
(
Lq(·)(Ω), ‖ · ‖q(·)

)
, we have also

‖u‖q(·) ≤ c ‖∇u‖p∗(·)

for every u in the closure of C∞0 (Ω) with respect to the
ρX -convergence in W 1Lq(·)(Ω). We note that the same inequality
holds also for u in the closure of C∞0 (Ω) with respect to the norm
convergence in W 1,p∗(·)(Ω).
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EXAMPLE 5 Ω ⊂ IRn open, |Ω| <∞,
p(·) : Ω→ [1, p+], 1 ≤ p+ < n.
Suppose that the maximal operator is bounded on L(p∗(·)/n′)′(Ω),
p∗(·) = np(·)/(n − p(·)), n′ = n/(n − 1).

(Y , ρY ) =
(
Lp(·)(Ω), ‖ · ‖p(·)

)
, (Z , ρZ ) =

(
Lp
∗(·)(Ω), ‖ · ‖p∗(·)

)
,

⇓

the Sobolev inequality

ρZ (u) ≤ c(Y ,Z ) ρY (|∇u|) ,

holds (see e.g. Cruz-Uribe-Fiorenza:Variable Lebesgue spaces,
(2013)). Moreover, setting (X , ρX ) =

(
Lp(·)(Ω), ‖ · ‖p(·)

)
,

ϕ(t) = t, c1 = 1, the second inequality
c1ρY (f ) ≤ ϕ(ρX (f )) ≤ c2ρZ (f ) is satisfied observing that
Lp
∗(·)(Ω) ⊂ Lp(·)(Ω).
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Hence
‖u‖p(·) ≤ c ‖∇u‖p(·)

for every u in the closure of C∞0 (Ω) with respect to the
ρX -convergence in W 1Lp(·)(Ω). We note that the same inequality
holds also for u in the closure of C∞0 (Ω) with respect to the norm
convergence in W 1,p(·)(Ω).
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EXAMPLE 6 Ω ⊂ IRn bounded, n ≥ 2,
1 < q <∞, A(t) = exp(tq/(q−1))− 1.

(Y , ρY ) =
(
Ln,q(Ω), ‖ · ‖Ln,q(Ω)

)
, (Z , ρZ ) =

(
LA(Ω), ‖ · ‖A

)
,

⇓

the Sobolev inequality

ρZ (u) ≤ c(Y ,Z ) ρY (|∇u|) ,

holds (see Brezis-Wainger: Commun. Partial Differ. Equ., (1980);
Alvino-Trombetti-Lions: Nonlinear Anal.(1989)).

Moreover, setting (X , ρX ) =
(
Ln,q(Ω), ‖ · ‖Ln,q(Ω)

)
, ϕ(t) = t, the

second inequality c1ρY (f ) ≤ ϕ(ρX (f )) ≤ c2ρZ (f ) is satisfied
observing that Ln,q(Ω) ⊂ LA(Ω).
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Hence
‖u‖Ln,q(Ω) ≤ c ‖∇u‖Ln,q(Ω)

for every u in the closure of C∞0 (Ω) with respect to the
ρX -convergence in W 1Ln,q(Ω).

(
‖f ‖qn,q = n

∫ +∞

0
|Ωt |

q
n tq−1 dt <∞ |Ωt | = {x ∈ Ω : |f (x)| > t} , t ≥ 0

)
.
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THANK YOU FOR THE ATTENTION!
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