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Motivation

Dealing with capacities often implies dealing with fuctionals more
general than norms
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Motivation

Dealing with capacities often implies dealing with fuctionals more
general than norms

Y

we constructed a modular capacity theory
and
introduced two modular capacities

A comparison between the zero capacity sets with respect to the
two different notions was obtained through a modular Poincaré
inequality

A modular Poincaré inequality 3/34



The setting

The setting

Q C R" open set,
M(Q) = {f : @ — R, measurable w.r.t Lebesgue measure}
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The setting

The setting

Q C R" open set,
M(Q) = {f : @ — R, measurable w.r.t Lebesgue measure}
Given a mapping px(-) : M(Q2) — [0, 0], the set
X(Q) ={ue M(Q): px(u) < oo},

is a modular function space over Q if the pair (X(£), px) satisfies
the following properties:

i px(u) = px(|u]) and px(u) =0 if and only if u =0

i [ul < |v| a.e. = px(u) < px(v)

iii px(u+v) < px(u)+ px(v) Yu,v : uv =0

iv if E C Q is measurable set and |E| < oo, then px(xg) < o0

vl tul ae = px(u) 1 px(u)

vi Vk>13¢c, > 1 : px(ku) < ckpx(u)



The setting

AS A CONSEQUENCE of the previous properties we have the
following type-convexity of px:

px(ou+ Bv) < px(u) + px(v)  Va,8=0,a+8=1
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Examples of modular

Examples of modular

EXAMPLE 1

Consider
px(u) = [lullx

where X () is a Banach function space in the sense given by
Bennett & Sharpley.
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Examples of modular

In particular, it holds for

px(u) = ||ulla

where X(Q) = LA(Q) is an Orlicz space
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Examples of modular

In particular, it holds for

px(u) = ||ulla

where X(Q) = LA(Q) is an Orlicz space

NOTE that it is not required that A satisfies the A, condition, but
rather that px has to satisfy property vi.

(- oo fa(3) 1)
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Examples of modular

EXAMPLE 2
Consider

px(e) = [ Aul) o

where A : [0, 00[— [0, oo[ is a Young function (i.e. an increasing,
continuous, convex, and such that A(0) =0, A(t) > 0 for t > 0)
satisfying the A, condition.
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Examples of modular

EXAMPLE 2
Consider

px(e) = [ Aul) o

where A : [0, 00[— [0, oo[ is a Young function (i.e. an increasing,
continuous, convex, and such that A(0) =0, A(t) > 0 for t > 0)
satisfying the A, condition.

NOTE that px is not a norm unless A(t) =t and so here we need
to require that A satisfies the A, condition.
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Examples of modular

EXAMPLE 3

Consider

pxw) = [ P(luD o
where P : [0, co[— [0, oo[ is increasing, continuous, strictly

CONCAVE, unbounded and such that P(0) = 0.

(HERE px is not convex!)
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Definitions

Some definitions

We consider the generalized Sobolev space defined as

WX(Q) = {u weakly differentiable : u € X(Q)and |Vu| € X(Q)}
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Definitions

uj — u with respect to the px—convergence in W!X(Q)

—

px () = px(u) 5 px(IVyl) = px([Vu]).
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Definitions

REMARK In the case px is the norm in a Banach function space

X, the convergence in norm of the function and of its gradient is

not equivalent to the px—convergence, but the former implies the
latter.
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The result

Statement of the result

THEOREM (Modular Poincaré inequality)
(X(Q), px), (Y(R),py), and (Z(2), pz) are such that

——WIX(Q
pz(u) < (Y, Z) py(IVul) uwe G X,
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The result

Statement of the result

THEOREM (Modular Poincaré inequality)
(X(Q), px), (Y(R),py), and (Z(2), pz) are such that

——WIX(Q
pz(u) < (Y, Z) py(IVul) uwe G X,

If for some strictly increasing function ¢ : [0, co[— [0, co[ such that
cpfl € No, itis

apy(f) < (px(f)) < c2pz(f) € 2(Q),

4
px(u) < C¢71(C1 cc(Y,2)px(|Vu|) ve WWIX(Q) .
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The result

NOTE that
—————W1X(Q)

o p2(u) < (Y. 2) py(IVul) ue G
is an abstract Sobolev-type inequality
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The result

NOTE that
———WX(Q
o pz(u) < (Y. 2) py(IVul) we CGEE)"
is an abstract Sobolev-type inequality

o the closure of C§°(2) is respect to the px—convergence in
WX(Q)
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The result

Actually the proof is a straightforward consequence of the
assumptions but examples and comments in the sequel will show:

o the differences with the current results in literature
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The result

Actually the proof is a straightforward consequence of the
assumptions but examples and comments in the sequel will show:

o the differences with the current results in literature

@ we unify and extend known results
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Remarks

Remarks

REMARK 1 In the proof we make use of a Sobolev-type inequality
applied to a closure of smooth, compactly supported functions
(see e.g. Brezis: Functional analysis. Sobolev spaces and partial
differential equations (2011)).
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Remarks

Remarks

REMARK 1 In the proof we make use of a Sobolev-type inequality
applied to a closure of smooth, compactly supported functions
(see e.g. Brezis: Functional analysis. Sobolev spaces and partial
differential equations (2011)).

Actually, we underline that a weak form of the Sobolev estimate is
sufficient and we don't need the full gain of summability established
by the Sobolev inequality: even if the gain is not optimal therein,
an improvement of the exponent exists and this is sufficient.

(as it happens e.g in Kovécik-Rakosnik:Czechoslovak Math. J
(1991) , in the variable exponent case).
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REMARK 2 It is well known that the classical Poincaré inequality
does not hold, in general, for unbounded €2, the typical
counterexample being Q2 = IR". Unbounded Q are allowed: Q can
be bounded in one direction or the measure of QN (IR"\ Bg) tends
sufficiently fast to zero as R — co.

(see Frehse:Jahresber.Deutsch.Math.Verein.(1982)).
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REMARK 2 It is well known that the classical Poincaré inequality
does not hold, in general, for unbounded €2, the typical
counterexample being Q2 = IR". Unbounded Q are allowed: Q can
be bounded in one direction or the measure of QN (IR"\ Bg) tends
sufficiently fast to zero as R — co.

(see Frehse:Jahresber.Deutsch.Math.Verein.(1982)).

Our assumptions do not impose a priori any restriction on the
domain €. For instance, in Examples 2, 3 below, any open set

Q CIR" is allowed.
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Remarks

REMARK 3 Note that for given (Y (), py) and (Z(R2), pz),
choosing in a suitable way (X(), px), we may get two "endpoint"
cases of our Poincaré inequality: assume the Sobolev inequality

pz(u) < c(Y,Z) py(|Vul),

and assume the second inequality
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Remarks

REMARK 3 Note that for given (Y (), py) and (Z(R2), pz),
choosing in a suitable way (X(), px), we may get two "endpoint"
cases of our Poincaré inequality: assume the Sobolev inequality

pz(u) < c(Y,Z) py(|Vul),

and assume the second inequality
e for , that is
py(u) < cpz(u), therefore we get
————WlY(Q)

py(u) < cpy(|Vul) ue Q) (1)
o for , that is
apy(u) < pz(u), therefore we get
——W1Z(Q
pz(u) < cpz((Vu) we @ ()
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PRECISELY
Poincaré inequalities (1) and (2) involve respectively the domain
space and the target space of the Sobolev inequality

pz(u) < c(Y,Z)py(|Vul)

while the Poincaré inequality in the theorem
px(u) < cp1(a e c(Y, Z)) px(IVul)

involves an intermediate space X({2) (see also next Examples 4, 5).
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Examples

Examples

EXAMPLE 1
QCRR"open, [ <oc0,1<p<n.

(Yoov) = (LPQ), 1 - llp). (Z,p2) = (L7 (Q). ]| - lp+), P* = np/(n—p)

() = (140, [ ) ox)
where A is a Young function such that
pA(t) < tA'(t) < p*A(t),t > 0.

= the Sobolev inequality pz(u) < c(Y, Z) py(|Vu|) obviously
holds and the second inequality c1py(f) < p(px(f)) < copz(f) is
satisfied choosing o(t) = A~1(t) ( see Fiorenza: NonlinearAnal.
(1991) )
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Examples

Hence

'/QA(u)dx <ca /Q A(|V ul)dx

for every u in the closure of C§°(£2) with respect to the
px-convergence in W1LA(Q).
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Examples

Hence

'/QA(u)dx <ca /Q A(|V ul)dx

for every u in the closure of C§°(£2) with respect to the
px-convergence in W1LA(Q).

REMARK Obviously the same inequality holds also for u in the
closure of C§°(2) with respect to the

, since the convergence in norm implies the
px-convergence.
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Examples

EXAMPLE 2 Q Cc IR", n > 2 open,

(Yopy) = (L)1), (Zopz) = (L4911 - la)

(vaX) = (LA(Q)’ H : ||A) with A(t) = exp(t”/(”*l)) -1

= the Sobolev inequality pz(u) < c(Y,Z) py(|Vu|) holds (see
Trudinger:J.Math.Mech., (1967)) and the second inequality
cpy(f) < p(px(f)) < cpz(f) is satisfied choosing

o(t) =t, =1

and observing that
since A(t) dominates B(t) = t" globally

(see Adams-Fournier: Sobolev Spaces, (2003)).



Examples

Hence
[ulla < c[[Vulla

for every u in the closure of C§°(£2) with respect to the
px-convergence in WLA(Q).
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Examples

Hence
[ulla < c[[Vulla

for every u in the closure of C§°(£2) with respect to the
px-convergence in WLA(Q).

REMARK As in the previous example, we note that the same
inequality holds also for u in the closure of C3°(€2) with respect to
the
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Examples

REMARK Obviously, is any Orlicz space such that

choosing (X, px) = (LB(Q),] - ||g), we have also
lullg < cl[Vulla

for every u in the closure of C§°(£2) with respect to the
px-convergence in W1LB(Q). We note that the same inequality
holds also for u in the closure of C5°(€2) with respect to the

, and of course also for u in the closure of
C5°(92) with respect to the
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Examples

EXAMPLE 3
A a Young function satisfying

() :
— t < oo, n>2,
o \A(t)

Setting
1 n—1
H(r) /<t>d " 0
r)= —_— t r>
o \A(t) B
A, =AoH1

where H™1 is the left-continuous inverse of H, the optimal Sobolev
inequality

ullLan(rry < cl|Vullpagrny
holds (see Cianchi (1999)). Setting B(t) = max{An(t), A(t)},
t > 0, obviously B(t) dominates A,(t) globally:



Examples

= the Sobolev inequality
e WIX(R”
p2(u) < (Y, 2) py(|Vul) we GE@N)™ M,
holds with (Y, py) = (LA(R"). || - [la), (Z.pz) = (LB(R"), | - |I&)
(see Adams-Fournier: Sobolev Spaces, (2003)). Moreover, the
second inequality cipy(f) < ©(px(f)) < cpz(f) is satisfied
choosing

(X.px) = (LEOR) |- 18) » ¢(t) = £, 2 = 1
It follows
lulls < ¢ I Vulls

for every u in the closure of C3°(IR") with respect to the
px-convergence in W!LB(IR™). We note that the same inequality
holds also for u in the closure of C5°(IR") with respect to the
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Examples

EXAMPLE 4 Q C IR" open, Q| < o0,

p():Q—=[Lp] 1<py<n  pi() =20

(Y.ov) = (LPOQ) - o)) (Z:pz) = (LP"OQ) 1 llpe()
4

the Sobolev inequality pz(u) < c(Y,Z) py(|Vul) holds provided
the maximal operator is bounded on L(P"()/")(Q), o’ = ]

(see e.g. Cruz-Uribe-Fiorenza:Variable Lebesgue spaces, (2013)).
Moreover, the second inequality cipy () < p(px(f)) < cpz(f) is
satisfied choosing

(X.ox) = (L"O@, - lpry) - () = £, 2 = 1

and observing that
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Examples

Hence

ull ey < cIVullpe(y

for every u in the closure of C§°(£2) with respect to the the
px-convergence in W1LP"()(Q). We note that the same inequality
holds also for u in the closure of C§°(€2) with respect to the

<||U||p(-)=inf{)\>0:/Q<|u()\x)|>p(X)dx§1}>
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Examples

REMARK Obviously, is such that
choosing (X, px) = (L9O)(Q), | - l4()). we have also

lullqy < cl[Vu

p*(-)

for every u in the closure of C§°(£2) with respect to the
px-convergence in W1L9()(Q). We note that the same inequality
holds also for u in the closure of C5°(€2) with respect to the
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Examples

EXAMPLE 5 Q C IR" open, Q| < oo,

p():Q2—[1,ps] 1< pyp <n o
Suppose that the maximal operator is bounded on L(P"()/7) (),

p*(-) = np(:)/(n—p()), " = n/(n—1).
(Y.ov) = (LPO@), |- o)), (Z,p2) = (L7 OQ) I llpe(y)
4

the Sobolev inequality

pz(u) < c(Y,Z)py(IVul),

holds (see e.g. Cruz-Uribe-Fiorenza:Variable Lebesgue spaces,
(2013)). Moreover, setting (X, px) = (LPO(Q),]| - o()
©(t) =t, e =1, the second inequality

apy(f) < p(px(f)) < capz(f) is satisfied observing that
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Examples

Hence
ullpcy < clVullp

for every u in the closure of C§°(£2) with respect to the
px-convergence in W1LP()(Q). We note that the same inequality
holds also for u in the closure of C§°(€2) with respect to the
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Examples

EXAMPLE 6 Q c IR" bounded, n > 2,
1< q< oo, A(t) = exp(t9/(a-1)) — 1

(Y.py) = (LI(Q), || - [lina@)). (Z,pz) = (LAQ). 1| - [la),
4

the Sobolev inequality
pz(u) < c(Y,Z) py(IVul),

holds (see Brezis-Wainger: Commun. Partial Differ. Equ., (1980);
Alvino-Trombetti-Lions: Nonlinear Anal.(1989)).

Moreover, setting (X, px) = (L™9(Q), | - ||1ra(e)). ©(t) = t, the
second inequality c1py(f) < Lp( ( )) < cpz(f) is satisfied
observing that
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Examples

Hence
HUHL”‘q(Q) S c ||VU||Ln1q(Q)

for every u in the closure of C3°(€2) with respect to the
px-convergence in W1L™9(Q).

+o0
<|f||27(,,:n/0 Q|79 dt < 0o ]Qt|:{x€Q:f(x)\>t},t20>
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Examples

THANK YOU FOR THE ATTENTION!
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