A modular Poincaré inequality

Flavia Giannetti

Universitá degli studi di Napoli Federico II, Italy

Monday's Nonstandard Seminar, 30 November 2020

Image: A matrix and a matrix

A.Fiorenza-F.G. *Removability of zero modular capacity sets* Rev. Mat. Compl. 2020

< A >

< ∃ >

- ∢ ≣ →

2

Motivation

Dealing with capacities often implies dealing with fuctionals more general than norms

we constructed a modular capacity theory and introduced two modular capacities

A comparison between the zero capacity sets with respect to the two different notions was obtained through a modular Poincaré inequality

伺 ト イヨ ト イヨト

Motivation

Dealing with capacities often implies dealing with fuctionals more general than norms

\Downarrow

we constructed a modular capacity theory

and introduced two modular capacities

A comparison between the zero capacity sets with respect to the two different notions was obtained through a modular Poincaré inequality

< A >

Motivation

Dealing with capacities often implies dealing with fuctionals more general than norms

\Downarrow

we constructed a modular capacity theory and introduced two modular capacities

A comparison between the zero capacity sets with respect to the two different notions was obtained through a modular Poincaré inequality

< A >

Motivation

Dealing with capacities often implies dealing with fuctionals more general than norms

₩

we constructed a modular capacity theory and introduced two modular capacities

A comparison between the zero capacity sets with respect to the two different notions was obtained through a modular Poincaré inequality

The setting

 $\Omega \subset \mathbb{R}^n$ open set,

 $\mathcal{M}(\Omega) = \{ f : \Omega \to \mathbb{R}, \text{ measurable w.r.t Lebesgue measure} \}$

Given a mapping $\rho_X(\cdot) : \mathcal{M}(\Omega) \to [0,\infty]$, the set

 $X(\Omega) = \{ u \in \mathcal{M}(\Omega) :
ho_X(u) < \infty \},$

is a modular function space over Ω if the pair $(X(\Omega), \rho_X)$ satisfies the following properties:

- *i* $\rho_X(u) = \rho_X(|u|)$ and $\rho_X(u) = 0$ if and only if $u \equiv 0$
- $|\mathbf{i}| |\mathbf{u}| \leq |\mathbf{v}|$ a.e. $\Rightarrow \rho_X(\mathbf{u}) \leq \rho_X(\mathbf{v})$
- iii $\rho_X(u+v) \leq \rho_X(u) + \rho_X(v) \qquad \forall u, v : uv \equiv 0$
- iv if $E\subset \Omega$ is measurable set and $|E|<\infty$, then $ho_X(\chi_E)<\infty$
- $\mathbf{v} |u_j| \uparrow |u|$ a.e. $\Rightarrow \rho_X(u_j) \uparrow \rho_X(u)$
- $\forall k > 1 \exists c_k > 1 :
 ho_X(ku) \leq c_k
 ho_X(u)$

The setting

 $\Omega \subset \mathbb{R}^n$ open set,

 $\mathcal{M}(\Omega) = \{ f : \Omega \to \mathbb{R}, \text{ measurable w.r.t Lebesgue measure} \}$

Given a mapping $\rho_X(\cdot) : \mathcal{M}(\Omega) \to [0,\infty]$, the set

 $X(\Omega) = \{ u \in \mathcal{M}(\Omega) : \rho_X(u) < \infty \},$

is a modular function space over Ω if the pair $(X(\Omega), \rho_X)$ satisfies the following properties:

i $\rho_X(u) = \rho_X(|u|)$ and $\rho_X(u) = 0$ if and only if $u \equiv 0$

 $|u| \leq |v|$ a.e. $\Rightarrow
ho_X(u) \leq
ho_X(v)$

iii $\rho_X(u+v) \le \rho_X(u) + \rho_X(v)$ $\forall u, v : uv \equiv 0$

iv if $E\subset \Omega$ is measurable set and $|E|<\infty$, then $ho_X(\chi_E)<\infty$

 $\mathbf{v} |u_j| \uparrow |u|$ a.e. $\Rightarrow \rho_X(u_j) \uparrow \rho_X(u)$

The setting

 $\Omega \subset \mathbb{R}^n$ open set,

 $\mathcal{M}(\Omega) = \{ f : \Omega \to \mathbb{R}, \text{ measurable w.r.t Lebesgue measure} \}$

Given a mapping $\rho_X(\cdot) : \mathcal{M}(\Omega) \to [0,\infty]$, the set

$$X(\Omega) = \{ u \in \mathcal{M}(\Omega) : \rho_X(u) < \infty \},$$

is a modular function space over Ω if the pair $(X(\Omega), \rho_X)$ satisfies the following properties:

 $i \ \rho_X(u) = \rho_X(|u|) \text{ and } \rho_X(u) = 0 \text{ if and only if } u \equiv 0$ $ii \ |u| \le |v| \text{ a.e. } \Rightarrow \rho_X(u) \le \rho_X(v)$ $iii \ \rho_X(u+v) \le \rho_X(u) + \rho_X(v) \qquad \forall u, v : uv \equiv 0$ $iv \text{ if } E \subset \Omega \text{ is measurable set and } |E| < \infty, \text{ then } \rho_X(\chi_E) < \infty$ $v \ |u_j| \uparrow |u| \text{ a.e. } \Rightarrow \rho_X(u_j) \uparrow \rho_X(u)$ $vi \ \forall k > 1 \exists c_k > 1 : \rho_X(ku) \le c_k \rho_X(u)$

AS A CONSEQUENCE of the previous properties we have the following type-convexity of ρ_X :

 $\rho_X(\alpha u + \beta v) \leq \rho_X(u) + \rho_X(v) \qquad \forall \alpha, \beta \geq 0, \alpha + \beta = 1.$

Examples of modular

EXAMPLE 1

Consider

$\rho_X(u) = \|u\|_X$

where $X(\Omega)$ is a Banach function space in the sense given by Bennett & Sharpley.

≣ 6/34

In particular, it holds for

 $\rho_X(u) = \|u\|_A$

where $X(\Omega) = L^{A}(\Omega)$ is an Orlicz space

NOTE that it is not required that A satisfies the Δ_2 condition, but rather that ρ_X has to satisfy property *vi*.

$$\left(\|u\|_{A} = \inf\left\{\lambda > 0 : \int_{\Omega} A\left(\frac{|u|}{\lambda}\right) \le 1\right\}\right)$$

In particular, it holds for

 $\rho_X(u) = \|u\|_A$

where $X(\Omega) = L^{A}(\Omega)$ is an Orlicz space

NOTE that it is not required that A satisfies the Δ_2 condition, but rather that ρ_X has to satisfy property **vi**.

$$\left(\|u\|_{\mathcal{A}} = \inf\left\{\lambda > 0 : \int_{\Omega} \mathcal{A}\left(rac{|u|}{\lambda}
ight) \leq 1
ight\}
ight)$$

EXAMPLE 2

Consider

$$\rho_X(u) = \int_\Omega A(|u|) \, dx$$

where $A: [0, \infty[\rightarrow [0, \infty[$ is a Young function (i.e. an increasing, continuous, convex, and such that A(0) = 0, A(t) > 0 for t > 0) satisfying the Δ_2 condition.

NOTE that ρ_X is not a norm unless A(t) = t and so here we need to require that A satisfies the Δ_2 condition.

EXAMPLE 2

Consider

$$\rho_X(u) = \int_\Omega A(|u|) \, dx$$

where $A : [0, \infty[\rightarrow [0, \infty[$ is a Young function (i.e. an increasing, continuous, convex, and such that A(0) = 0, A(t) > 0 for t > 0) satisfying the Δ_2 condition.

NOTE that ρ_X is not a norm unless A(t) = t and so here we need to require that A satisfies the Δ_2 condition.

8/34

EXAMPLE 3

Consider

$$\rho_X(u) = \int_\Omega P(|u|) \, dx$$

where $P : [0, \infty[\rightarrow [0, \infty[$ is increasing, continuous, strictly CONCAVE, unbounded and such that P(0) = 0.

(HERE ρ_X is not convex!)

э

We consider the generalized Sobolev space defined as

 $W^1X(\Omega) = \{u \text{ weakly differentiable } : u \in X(\Omega) \text{ and } |\nabla u| \in X(\Omega)\}$

A 1

- A - B - M

э

 $u_j \rightarrow u$ with respect to the ρ_X -convergence in $W^1X(\Omega)$

 $\rho_X(u_j) \to \rho_X(u), \quad \rho_X(|\nabla u_j|) \to \rho_X(|\nabla u|).$

Ξ.

・ 同 ト ・ ヨ ト ・ ヨ ト …

REMARK In the case ρ_X is the norm in a Banach function space X, the convergence in norm of the function and of its gradient is not equivalent to the ρ_X -convergence, but the former implies the latter.

Statement of the result

THEOREM (Modular Poincaré inequality) $(X(\Omega), \rho_X), (Y(\Omega), \rho_Y), \text{ and } (Z(\Omega), \rho_Z) \text{ are such that}$ $\rho_Z(u) \leq c(Y, Z) \rho_Y(|\nabla u|) \quad u \in \overline{C_0^{\infty}(\Omega)}^{W^1X(\Omega)}.$ If for some strictly increasing function $\varphi : [0, \infty[\rightarrow [0, \infty[$ such that $\varphi^{-1} \in \Delta_2, \text{ it is}]$

 $c_1
ho_Y(f) \leq \varphi(
ho_X(f)) \leq c_2
ho_Z(f) \quad f \in Z(\Omega) \,,$

 $ho_X(u) \leq c_{arphi^{-1}}(c_1 \, c_2 \, c(Y, Z)) \,
ho_X(|
abla u|) \quad u \in \overline{C_0^\infty(\Omega)}^{W^+X(v)}$

Statement of the result

THEOREM (Modular Poincaré inequality) $(X(\Omega), \rho_X), (Y(\Omega), \rho_Y), \text{ and } (Z(\Omega), \rho_Z) \text{ are such that}$ $\rho_Z(u) \le c(Y, Z) \rho_Y(|\nabla u|) \quad u \in \overline{C_0^{\infty}(\Omega)}^{W^1X(\Omega)}.$

If for some strictly increasing function $\varphi : [0, \infty[\to [0, \infty[$ such that $\varphi^{-1} \in \Delta_2$, it is

 $c_1 \rho_Y(f) \leq \varphi(\rho_X(f)) \leq c_2 \rho_Z(f) \quad f \in Z(\Omega) \,,$

Statement of the result

THEOREM (Modular Poincaré inequality) $(X(\Omega), \rho_X), (Y(\Omega), \rho_Y), \text{ and } (Z(\Omega), \rho_Z) \text{ are such that}$ $\rho_Z(u) \le c(Y, Z) \rho_Y(|\nabla u|) \quad u \in \overline{C_0^{\infty}(\Omega)}^{W^1X(\Omega)}.$

If for some strictly increasing function $\varphi : [0, \infty[\to [0, \infty[$ such that $\varphi^{-1} \in \Delta_2$, it is

 $c_1 \rho_Y(f) \leq \varphi(\rho_X(f)) \leq c_2 \rho_Z(f) \quad f \in Z(\Omega) \,,$

 \downarrow

 $ho_X(u) \leq c_{arphi^{-1}}(c_1 \, c_2 \, c(Y, Z)) \,
ho_X(|
abla u|) \quad u \in \overline{C_0^\infty(\Omega)}^{W^1X(\Omega)}.$

NOTE that

- $\rho_Z(u) \le c(Y, Z) \rho_Y(|\nabla u|)$ $u \in \overline{C_0^{\infty}(\Omega)}^{W^1X(\Omega)}$ is an abstract Sobolev-type inequality
- the closure of $C_0^{\infty}(\Omega)$ is respect to the ρ_X -convergence in $W^1X(\Omega)$

伺 ト イヨト イヨト

NOTE that

- $\rho_Z(u) \le c(Y, Z) \rho_Y(|\nabla u|)$ $u \in \overline{C_0^{\infty}(\Omega)}^{W^1X(\Omega)}$ is an abstract Sobolev-type inequality
- the closure of $C_0^{\infty}(\Omega)$ is respect to the ρ_X -convergence in $W^1X(\Omega)$

э

14/34

Actually the proof is a straightforward consequence of the assumptions but examples and comments in the sequel will show:

- the differences with the current results in literature
- we unify and extend known results

Actually the proof is a straightforward consequence of the assumptions but examples and comments in the sequel will show:

- the differences with the current results in literature
- we unify and extend known results

Remarks

REMARK 1 In the proof we make use of a Sobolev-type inequality applied to a closure of smooth, compactly supported functions (see e.g. *Brezis: Functional analysis. Sobolev spaces and partial differential equations (2011)*).

Actually, we underline that a weak form of the Sobolev estimate is sufficient and we don't need the full gain of summability established by the Sobolev inequality: even if the gain is not optimal therein, an improvement of the exponent exists and this is sufficient. (as it happens e.g in *Kovácik-Rákosník:Czechoslovak Math. J* (1991), in the variable exponent case).

Remarks

REMARK 1 In the proof we make use of a Sobolev-type inequality applied to a closure of smooth, compactly supported functions (see e.g. *Brezis: Functional analysis. Sobolev spaces and partial differential equations (2011)*).

Actually, we underline that a weak form of the Sobolev estimate is sufficient and we don't need the full gain of summability established by the Sobolev inequality: even if the gain is not optimal therein, an improvement of the exponent exists and this is sufficient. (as it happens e.g in *Kovácik-Rákosník:Czechoslovak Math. J* (1991), in the variable exponent case).

REMARK 2 It is well known that the classical Poincaré inequality does not hold, in general, for unbounded Ω , the typical counterexample being $\Omega = \mathbb{R}^n$. Unbounded Ω are allowed: Ω can be bounded in one direction or the measure of $\Omega \cap (\mathbb{R}^n \setminus B_R)$ tends sufficiently fast to zero as $R \to \infty$. (see Frehse: Jahresber. Deutsch. Math. Verein. (1982)).

Our assumptions do not impose a priori any restriction on the domain Ω . For instance, in Examples 2, 3 below, any open set $\Omega \subseteq \mathbb{R}^n$ is allowed.

REMARK 2 It is well known that the classical Poincaré inequality does not hold, in general, for unbounded Ω , the typical counterexample being $\Omega = \mathbb{R}^n$. Unbounded Ω are allowed: Ω can be bounded in one direction or the measure of $\Omega \cap (\mathbb{R}^n \setminus B_R)$ tends sufficiently fast to zero as $R \to \infty$. (see Frehse: Jahresber. Deutsch. Math. Verein. (1982)). Our assumptions do not impose a priori any restriction on the domain Ω . For instance, in Examples 2, 3 below, any open set $\Omega \subseteq \mathbb{R}^n$ is allowed.

REMARK 3 Note that for given $(Y(\Omega), \rho_Y)$ and $(Z(\Omega), \rho_Z)$, choosing in a suitable way $(X(\Omega), \rho_X)$, we may get two "endpoint" cases of our Poincaré inequality: assume the Sobolev inequality

$$\rho_Z(u) \leq c(Y,Z) \rho_Y(|\nabla u|),$$

and assume the second inequality

• for $(X(\Omega), \rho_X) = (Y(\Omega), \rho_Y)$, $c_1 = 1$, $\varphi(t) = t$, that is $\rho_Y(u) \le c_2 \rho_Z(u)$, therefore we get $\rho_Y(u) \le c_2 \rho_Y(|\nabla u|)$, $u \in \overline{C^{\infty}(\Omega)}^{W^1Y(\Omega)}$

• for $(X(\Omega), \rho_X) = (Z(\Omega), \rho_Z)$, $c_2 = 1$, $\varphi(t) = t$, that is $c_1 \rho_Y(u) \le \rho_Z(u)$, therefore we get

 $ho_Z(u) \leq c \,
ho_Z(|
abla u|) \quad u \in \overline{C_0^\infty(\Omega)}^{W^+Z(\Omega)}$

REMARK 3 Note that for given $(Y(\Omega), \rho_Y)$ and $(Z(\Omega), \rho_Z)$, choosing in a suitable way $(X(\Omega), \rho_X)$, we may get two "endpoint" cases of our Poincaré inequality: assume the Sobolev inequality

$$\rho_Z(u) \leq c(Y,Z) \, \rho_Y(|\nabla u|),$$

and assume the second inequality

• for $(X(\Omega), \rho_X) = (Y(\Omega), \rho_Y)$, $c_1 = 1$, $\varphi(t) = t$, that is $\rho_Y(u) \le c_2 \rho_Z(u)$, therefore we get

 $ho_{\mathbf{Y}}(u) \leq c \,
ho_{\mathbf{Y}}(|
abla u|) \quad u \in \overline{C_0^\infty(\Omega)}^{W^*Y(\Omega)}$

• for $(X(\Omega), \rho_X) = (Z(\Omega), \rho_Z)$, $c_2 = 1$, $\varphi(t) = t$, that is $c_1 \rho_Y(u) \le \rho_Z(u)$, therefore we get

 $ho_Z(u) \leq c \,
ho_Z(|
abla u|) \quad u \in \overline{C_0^\infty(\Omega)}^{W^1Z(\Omega)}$

REMARK 3 Note that for given $(Y(\Omega), \rho_Y)$ and $(Z(\Omega), \rho_Z)$, choosing in a suitable way $(X(\Omega), \rho_X)$, we may get two "endpoint" cases of our Poincaré inequality: assume the Sobolev inequality

$$\rho_Z(u) \leq c(Y,Z) \, \rho_Y(|\nabla u|),$$

and assume the second inequality

• for $(X(\Omega), \rho_X) = (Y(\Omega), \rho_Y)$, $c_1 = 1$, $\varphi(t) = t$, that is $\rho_Y(u) \le c_2 \rho_Z(u)$, therefore we get

$$\rho_{\mathbf{Y}}(u) \leq c \, \rho_{\mathbf{Y}}(|\nabla u|) \quad u \in \overline{C_0^{\infty}(\Omega)}^{W^1 Y(\Omega)} \tag{1}$$

• for $(X(\Omega), \rho_X) = (Z(\Omega), \rho_Z)$, $c_2 = 1$, $\varphi(t) = t$, that is $c_1 \rho_Y(u) \le \rho_Z(u)$, therefore we get

 $ho_Z(u) \leq c \,
ho_Z(|
abla u|) \quad u \in \overline{C_0^\infty(\Omega)}^{W^1Z(\Omega)}$

18/34

REMARK 3 Note that for given $(Y(\Omega), \rho_Y)$ and $(Z(\Omega), \rho_Z)$, choosing in a suitable way $(X(\Omega), \rho_X)$, we may get two "endpoint" cases of our Poincaré inequality: assume the Sobolev inequality

$$\rho_Z(u) \leq c(Y,Z) \, \rho_Y(|\nabla u|),$$

and assume the second inequality

- for $(X(\Omega), \rho_X) = (Y(\Omega), \rho_Y)$, $c_1 = 1$, $\varphi(t) = t$, that is $\rho_Y(u) \le c_2 \rho_Z(u)$, therefore we get $\rho_Y(u) \le c \, \rho_Y(|\nabla u|) \quad u \in \overline{C_0^{\infty}(\Omega)}^{W^1Y(\Omega)}$
- for $(X(\Omega), \rho_X) = (Z(\Omega), \rho_Z)$, $c_2 = 1$, $\varphi(t) = t$, that is $c_1 \rho_Y(u) \le \rho_Z(u)$, therefore we get

 $ho_Z(u) \leq c \,
ho_Z(|
abla u|) \quad u \in \overline{C_0^\infty(\Omega)}^{W^1Z(\Omega)}$

(1)

REMARK 3 Note that for given $(Y(\Omega), \rho_Y)$ and $(Z(\Omega), \rho_Z)$, choosing in a suitable way $(X(\Omega), \rho_X)$, we may get two "endpoint" cases of our Poincaré inequality: assume the Sobolev inequality

$$\rho_Z(u) \leq c(Y,Z) \, \rho_Y(|\nabla u|),$$

and assume the second inequality

- for $(X(\Omega), \rho_X) = (Y(\Omega), \rho_Y)$, $c_1 = 1$, $\varphi(t) = t$, that is $\rho_Y(u) \le c_2 \rho_Z(u)$, therefore we get $\rho_Y(u) \le c \, \rho_Y(|\nabla u|) \quad u \in \overline{C_0^{\infty}(\Omega)}^{W^1Y(\Omega)}$
- for $(X(\Omega), \rho_X) = (Z(\Omega), \rho_Z)$, $c_2 = 1$, $\varphi(t) = t$, that is $c_1 \rho_Y(u) \le \rho_Z(u)$, therefore we get

$$\rho_{Z}(u) \leq c \,\rho_{Z}(|\nabla u|) \quad u \in \overline{C_{0}^{\infty}(\Omega)}^{W^{1}Z(\Omega)}$$
(2)

(1)

PRECISELY

Poincaré inequalities (1) and (2) involve respectively the domain space and the target space of the Sobolev inequality

 $\rho_{Z}(u) \leq c(Y,Z) \rho_{Y}(|\nabla u|)$

while the Poincaré inequality in the theorem

$$\rho_X(u) \leq c_{\varphi^{-1}}(c_1 c_2 c(Y, Z)) \rho_X(|\nabla u|)$$

involves an intermediate space $X(\Omega)$ (see also next Examples 4, 5).

A 10

Examples

EXAMPLE 1 $\Omega \subset \mathbb{R}^{n} \text{ open, } |\Omega| < \infty \text{ , } 1 \leq p < n.$ $(Y, \rho_{Y}) = (L^{p}(\Omega), \|\cdot\|_{p}), \quad (Z, \rho_{Z}) = (L^{p^{*}}(\Omega), \|\cdot\|_{p^{*}}), p^{*} = np/(n-p)$ $(X, \rho_{X}) = \left(L^{A}(\Omega), \int_{\Omega} A(\cdot) dx\right)$

where A is a Young function such that

 $pA(t) \leq tA'(t) \leq p^*A(t), t \geq 0.$

⇒ the Sobolev inequality $\rho_Z(u) \le c(Y, Z) \rho_Y(|\nabla u|)$ obviously holds and the second inequality $c_1\rho_Y(f) \le \varphi(\rho_X(f)) \le c_2\rho_Z(f)$ is satisfied choosing $\varphi(t) = A^{-1}(t)$ (see Fiorenza: NonlinearAnal. (1991))

Hence

$\int_{\Omega} A(u) dx \leq c_A \, \int_{\Omega} A(|\nabla u|) dx$

for every u in the closure of $C_0^{\infty}(\Omega)$ with respect to the ρ_X -convergence in $W^1 L^A(\Omega)$.

REMARK Obviously the same inequality holds also for u in the closure of $C_0^{\infty}(\Omega)$ with respect to the norm convergence in $W^{1,A}(\Omega)$, since the convergence in norm implies the ρ_X -convergence.

・ 同 ト ・ ヨ ト ・ ヨ ト

Hence

$$\int_{\Omega} A(u) dx \leq c_A \int_{\Omega} A(|\nabla u|) dx$$

for every u in the closure of $C_0^{\infty}(\Omega)$ with respect to the ρ_X -convergence in $W^1 L^A(\Omega)$.

REMARK Obviously the same inequality holds also for u in the closure of $C_0^{\infty}(\Omega)$ with respect to the norm convergence in $W^{1,A}(\Omega)$, since the convergence in norm implies the ρ_X -convergence.

EXAMPLE 2 $\Omega \subset \mathbb{R}^n$, $n \ge 2$ open,

 $(Y, \rho_Y) = (L^n(\Omega), \|\cdot\|_n), \qquad (Z, \rho_Z) = (L^A(\Omega), \|\cdot\|_A)$

 $(X,
ho_X) = \left(L^A(\Omega), \|\cdot\|_A
ight) \quad ext{with} \quad A(t) = exp(t^{n/(n-1)}) - 1$

⇒ the Sobolev inequality $\rho_Z(u) \le c(Y, Z) \rho_Y(|\nabla u|)$ holds (see Trudinger:J.Math.Mech., (1967)) and the second inequality $c_1\rho_Y(f) \le \varphi(\rho_X(f)) \le c_2\rho_Z(f)$ is satisfied choosing

$$\varphi(t)=t, \qquad c_2=1$$

and observing that

$$L^{A}(\Omega) \subset L^{n}(\Omega)$$

since A(t) dominates $B(t) = t^n$ globally (see Adams-Fournier: Sobolev Spaces, (2003))

Hence

$\|u\|_A \leq c \, \|\nabla u\|_A$

for every u in the closure of $C_0^{\infty}(\Omega)$ with respect to the ρ_X -convergence in $W^1 L^A(\Omega)$.

REMARK As in the previous example, we note that the same inequality holds also for u in the closure of $C_0^{\infty}(\Omega)$ with respect to the norm convergence in $W^{1,A}(\Omega)$.

A 10

Hence

$\|u\|_A \leq c \, \|\nabla u\|_A$

for every u in the closure of $C_0^{\infty}(\Omega)$ with respect to the ρ_X -convergence in $W^1 L^A(\Omega)$.

REMARK As in the previous example, we note that the same inequality holds also for u in the closure of $C_0^{\infty}(\Omega)$ with respect to the norm convergence in $W^{1,A}(\Omega)$.

REMARK Obviously, if $L^{B}(\Omega)$ is any Orlicz space such that $L^{A}(\Omega) \subset L^{B}(\Omega) \subset L^{n}(\Omega)$, choosing $(X, \rho_{X}) = (L^{B}(\Omega), \|\cdot\|_{B})$, we have also $\|u\|_{B} \leq c \|\nabla u\|_{A}$

for every u in the closure of $C_0^{\infty}(\Omega)$ with respect to the ρ_X -convergence in $W^1 L^B(\Omega)$. We note that the same inequality holds also for u in the closure of $C_0^{\infty}(\Omega)$ with respect to the norm convergence in $W^{1,B}(\Omega)$, and of course also for u in the closure of $C_0^{\infty}(\Omega)$ with respect to the norm convergence in $W^{1,A}(\Omega)$.

EXAMPLE 3 A a Young function satisfying

$$\int_0 \left(\frac{t}{A(t)}\right)^{\frac{1}{n-1}} dt < \infty, \qquad n \ge 2,$$

Setting

$$H(r) = \left(\int_0^r \left(\frac{t}{A(t)}\right)^{\frac{1}{n-1}} dt\right)^{\frac{n-1}{n}} \qquad r \ge 0$$
$$A_n = A \circ H^{-1}$$

where H^{-1} is the left-continuous inverse of H, the optimal Sobolev inequality

 $\|u\|_{L^{A_n}(\mathbb{R}^n)} \leq c \|\nabla u\|_{L^A(\mathbb{R}^n)}$

holds (see Cianchi (1999)). Setting $B(t) = \max\{A_n(t), A(t)\}, t \ge 0$, obviously B(t) dominates $A_n(t)$ globally is a set in a set of the set

 \Rightarrow the Sobolev inequality

$$\rho_Z(u) \leq c(Y,Z) \, \rho_Y(|\nabla u|) \quad u \in \overline{C_0^\infty(\mathbb{R}^n)}^{W^1X(\mathbb{R}^n)},$$

holds with $(Y, \rho_Y) = (L^A(\mathbb{R}^n), \|\cdot\|_A), (Z, \rho_Z) = (L^B(\mathbb{R}^n), \|\cdot\|_B)$ (see Adams-Fournier: Sobolev Spaces, (2003)). Moreover, the second inequality $c_1\rho_Y(f) \leq \varphi(\rho_X(f)) \leq c_2\rho_Z(f)$ is satisfied choosing

$$(X, \rho_X) = \left(L^B(\mathbb{R}^n), \|\cdot\|_B\right), \, \varphi(t) = t, \, c_2 = 1$$

It follows

$\|u\|_B \leq c \, \|\nabla u\|_B$

for every u in the closure of $C_0^{\infty}(\mathbb{R}^n)$ with respect to the ρ_X -convergence in $W^1 L^B(\mathbb{R}^n)$. We note that the same inequality holds also for u in the closure of $C_0^{\infty}(\mathbb{R}^n)$ with respect to the norm convergence in $W^{1,B}(\mathbb{R}^n)$.

EXAMPLE 4 $\Omega \subset \mathbb{R}^n$ open, $|\Omega| < \infty$, $p(\cdot) : \Omega \to [1, p_+], 1 \le p_+ < n$ $p^*(\cdot) = \frac{np(\cdot)}{n - p(\cdot)}$ $(Y, \rho_Y) = (L^{p(\cdot)}(\Omega), \|\cdot\|_{p(\cdot)}), (Z, \rho_Z) = (L^{p^*(\cdot)}(\Omega), \|\cdot\|_{p^*(\cdot)})$ \Downarrow

the Sobolev inequality $\rho_Z(u) \leq c(Y, Z) \rho_Y(|\nabla u|)$ holds provided the maximal operator is bounded on $L^{(p^*(\cdot)/n')'}(\Omega)$, $n' = \frac{n}{n-1}$ (see e.g. Cruz-Uribe-Fiorenza:Variable Lebesgue spaces, (2013)). Moreover, the second inequality $c_1\rho_Y(f) \leq \varphi(\rho_X(f)) \leq c_2\rho_Z(f)$ is satisfied choosing

$$(X,
ho_X)=\left(L^{p^*(\cdot)}(\Omega),\|\cdot\|_{p^*(\cdot)}
ight),\,arphi(t)=t,\,c_2=1$$

and observing that $L^{p^*(\cdot)}(\Omega) \subset L^{p(\cdot)}(\Omega)$.

Hence

 $\|u\|_{p^*(\cdot)} \leq c \, \|\nabla u\|_{p^*(\cdot)}$

for every u in the closure of $C_0^{\infty}(\Omega)$ with respect to the the ρ_X -convergence in $W^1 L^{p^*(\cdot)}(\Omega)$. We note that the same inequality holds also for u in the closure of $C_0^{\infty}(\Omega)$ with respect to the norm convergence in $W^{1,p^*(\cdot)}(\Omega)$.

$$\left(\|u\|_{\rho(\cdot)} = \inf\left\{\lambda > 0: \int_{\Omega} \left(\frac{|u(x)|}{\lambda}\right)^{p(x)} dx \le 1\right\}\right)$$

REMARK Obviously, if $L^{q(\cdot)}(\Omega)$ is such that

 $L^{p^*(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega) \subset L^{p(\cdot)}(\Omega)$,

choosing $(X, \rho_X) = (L^{q(\cdot)}(\Omega), \|\cdot\|_{q(\cdot)})$, we have also

 $\|u\|_{q(\cdot)} \leq c \|\nabla u\|_{p^*(\cdot)}$

for every u in the closure of $C_0^{\infty}(\Omega)$ with respect to the ρ_X -convergence in $W^1 L^{q(\cdot)}(\Omega)$. We note that the same inequality holds also for u in the closure of $C_0^{\infty}(\Omega)$ with respect to the norm convergence in $W^{1,p^*(\cdot)}(\Omega)$.

EXAMPLE 5 $\Omega \subset \mathbb{R}^n$ open, $|\Omega| < \infty$, $p(\cdot) : \Omega \to [1, p_+], 1 \le p_+ < n$. Suppose that the maximal operator is bounded on $L^{(p^*(\cdot)/n')'}(\Omega)$, $p^*(\cdot) = np(\cdot)/(n - p(\cdot)), n' = n/(n - 1)$. $(Y, \rho_Y) = (L^{p(\cdot)}(\Omega), \|\cdot\|_{p(\cdot)}), (Z, \rho_Z) = (L^{p^*(\cdot)}(\Omega), \|\cdot\|_{p^*(\cdot)}),$ \Downarrow

the Sobolev inequality

$$\rho_{Z}(u) \leq c(Y,Z) \rho_{Y}(|\nabla u|),$$

holds (see e.g. Cruz-Uribe-Fiorenza:Variable Lebesgue spaces, (2013)). Moreover, setting $(X, \rho_X) = (L^{p(\cdot)}(\Omega), \|\cdot\|_{p(\cdot)})$, $\varphi(t) = t, c_1 = 1$, the second inequality $c_1\rho_Y(f) \le \varphi(\rho_X(f)) \le c_2\rho_Z(f)$ is satisfied observing that $L^{p^*(\cdot)}(\Omega) \subset L^{p(\cdot)}(\Omega)$.

Hence

$\|u\|_{p(\cdot)} \leq c \, \|\nabla u\|_{p(\cdot)}$

for every u in the closure of $C_0^{\infty}(\Omega)$ with respect to the ρ_X -convergence in $W^1 L^{p(\cdot)}(\Omega)$. We note that the same inequality holds also for u in the closure of $C_0^{\infty}(\Omega)$ with respect to the norm convergence in $W^{1,p(\cdot)}(\Omega)$.

EXAMPLE 6 $\Omega \subset \mathbb{R}^n$ bounded, $n \geq 2$, $1 < q < \infty$, $A(t) = exp(t^{q/(q-1)}) - 1$. $(Y, \rho_Y) = (L^{n,q}(\Omega), \|\cdot\|_{L^{n,q}(\Omega)}), (Z, \rho_Z) = (L^A(\Omega), \|\cdot\|_A),$ \Downarrow

the Sobolev inequality

$$\rho_{Z}(u) \leq c(Y,Z) \rho_{Y}(|\nabla u|),$$

holds (see Brezis-Wainger: Commun. Partial Differ. Equ., (1980); Alvino-Trombetti-Lions: Nonlinear Anal.(1989)).

Moreover, setting $(X, \rho_X) = (L^{n,q}(\Omega), \|\cdot\|_{L^{n,q}(\Omega)})$, $\varphi(t) = t$, the second inequality $c_1\rho_Y(f) \leq \varphi(\rho_X(f)) \leq c_2\rho_Z(f)$ is satisfied observing that $L^{n,q}(\Omega) \subset L^A(\Omega)$.

Hence

$\|u\|_{L^{n,q}(\Omega)} \leq c \, \|\nabla u\|_{L^{n,q}(\Omega)}$

for every u in the closure of $C_0^{\infty}(\Omega)$ with respect to the ρ_X -convergence in $W^1 L^{n,q}(\Omega)$.

$$\left(\|f\|_{n,q}^{q} = n \int_{0}^{+\infty} |\Omega_{t}|^{\frac{q}{n}} t^{q-1} dt < \infty \quad |\Omega_{t}| = \{x \in \Omega : |f(x)| > t\}, t \ge 0\right)$$

THANK YOU FOR THE ATTENTION!

(日)

2