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Problem formulation

� let Ω be a regular bounded domain in Rd , d ≥ 2

� we study existence of a minimizer u ∈ u0 + W 1,1
0 (Ω) to∫

Ω
F (|∇u|) dx ≤

∫
Ω
F (|∇u0 +∇ϕ|) dx (F)

for all ϕ ∈ D(Ω) and F strictly convex having linear growth

� existence of minimizer to (F) ⇔ existence of (unique) solution
u ∈W 1,1(Ω) to

− div(a(|∇u|)∇u) = 0 in Ω,

u = u0 on ∂Ω
(a)

for s 7→ a(s)s increasing bounded function, where F and a are
connected via F′(s) = a(s)s for all s ∈ R+

� goal: characterize integrands F (or coefficient functions a) in terms of
properties only such that the minimization (or Dirichlet) problem
admits a regular solution which attains the trace for any regular
domain Ω and regular boundary values u0



Prototypic coefficient functions

� special case: for p > 0 and s ∈ R+, consider a(s) = ap(s) := 1

(1+sp)
1
p

� p = 2 represents the minimal surface problem, i.e.

− div
∇u√

1 + |∇u|2
= 0 in Ω, u = u0 on ∂Ω.

� result by Finn (1965) - if Ω is not (at least) pseudoconvex then there
always exist smooth boundary data u0 for which the problem does not
admit a minimizer (solution)

� result by Miranda (1971) - for any Ω locally pseudoconvex and any u0

continuous there exists a unique classical solution u ∈ C(Ω) ∩ C2(Ω)

� however, the solution in BV (Ω) exists for any domain and
u0 ∈ L1(∂Ω) (this is not of our interest because the trace may not be
attained)

� we want to characterize the functions ap (in terms of p) in such way
that the geometry of the domain does not play role anymore, only
regularity



Continuum mechanics motivation

� deformation of the body Ω ⊂ Rd (d = 3) with ΓD ∩ ΓN = ∅,
ΓD ∪ ΓN = ∂Ω

− divT = f in Ω, u = u0 on ΓD , Tn = g on ΓN , (1)

where u is displacement, T the Cauchy stress tensor, f the external
body forces, g the external surface forces

� εεε is the linearized strain tensor, i.e., εεε(u) := 1
2 (∇u + (∇u)T )

� under the assumption |∇u| � 1, in the constitutive relation for the
Cauchy stress we can replace the full strain tensor by the linearised
strain tensor

� model suggested by Rajagopal (R., Walton 2011; Kulvait, Málek, R.
2013): constitutive relation between the Cauchy stress tensor and the
strain

εεε(u) = εεε∗(T), where εεε∗(T) :=
T

(1 + |T|p)
1
p

for p > 0 (admits |εεε(u)| � 1 and |T| � 1 at the same time)



Special geometry

Figure: Anti-plane stress geometry.

� in the formulated problem (1), let

f (x) ≡ 0 and g(x) = (0, 0, g(x1, x2))

be given, we look for u, T of the form

u(x) = (0, 0, u(x1, x2)),

T(x) =

 0 0 T13(x1, x2)
0 0 T23(x1, x2)

T13(x1, x2) T23(x1, x2) 0





Equivalent reformulation

� find U : Ω→ R, U(x) = U(x1, x2) such that T13 = 1√
2
Ux2 and

T23 = − 1√
2
Ux1 , then divT = 0 is fulfiled

� on simply connected domain, U must satisfy (using εεε(u) = T
(1+|T|p)1/p )

− div

(
∇U

(1 + |∇U|p)
1
p

)
= 0 in Ω,

Ux2n1 − Ux1n2 =
√

2g on ΓN .

� Neumann boundary condition includes the tangential derivative of U,

∇U · τ = (Ux1 ,Ux2) · (−n2,n1) =
√

2g

� assume that ΓN is parameterized by a curve γ(s), then

U(γ(τ)) = U(γ(0)) +
√

2

∫ τ

0
g(γ(s)) |γ′(s)| ds =: U0(x)

for x = γ(τ) makes it a Dirichlet problem



By means of U

� we look for U ∈W 1,1(Ω), a weak solution to

− div

(
∇U

(1 + |∇U|p)
1
p

)
= 0 in Ω,

U = U0 on ∂Ω

(ap)

� this is precisely the original problem (a) formulated for the coefficient

function ap(s) := (1 + sp)−
1
p for p > 0

� there are some positive results by Buĺıček, Málek, Rajagopal, Walton
(2015), the weak solution exists:

X for p ∈ (0,∞) and Ω Lipschitz uniformly convex,
X for p ∈ (0, 2) and Ω Lipschitz piece-wise uniformly convex

,
Q: for p ∈? and Ω regular
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� there are some positive results by Buĺıček, Málek, Rajagopal, Walton
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X for p ∈ (0,∞) and Ω Lipschitz uniformly convex,
X for p ∈ (0, 2) and Ω Lipschitz piece-wise uniformly convex,
X for p ∈ (0, 1] and Ω ∈ C1 satisfying exterior ball condition



(non)Existence of solution on an annulus

� consider problem (ap) on domain BR \ Br ⊂ Rd , 0 < r < R <∞,

−div
∇U

(1 + |∇U|p)
1
p

= 0 in BR \ Br ,

U = 0 on ∂Br ,

U = K on ∂BR

(anp)

� we demand the solution to attain this boundary value for any K ∈ R+

Lemma 1

For p > 1, the problem (anp) has a weak solution U ∈W 1,1(BR \ Br ) if
and only if

K <

∫ R

r

r(
zp(d−1) − rp

) 1
p

dz .

If p ∈ (0, 1], then for any K ∈ R+ there exists a weak solution to
problem (anp).



Proof of the lemma

� the solution, if exists, is rotation invariant, i.e. U(x) =: u(|x |) and
ϕ(x) =: g(|x |)

� problem can be simplified significantly,∫
Ω

∇U(x)

(1 + |∇U(x)|p)
1
p

· ∇ϕ(x) dx = 0 ⇔ Hd

∫ R

r

zd−1u′(z)

(1 + (u′(z))p)
1
p

g ′(z) dz = 0,

where Hd is Hausdorff measure of the unit sphere in Rd , g ∈ D(r ,R)
arbitrary

� this gives condition u′(z)

(1+(u′(z))p)
1
p

= c
zd−1 with c ∈ (0, rd−1), which

implies

u(s) =

∫ s

r

c

(zp(d−1) − cp)
1
p

dz

(
and that u′(s) =

c

(sp(d−1) − cp)
1
p

)

� therefore K = u(R) is bounded if p > 1 and may be arbitrarily large
(achieved only by a proper choice of c) for p ∈ (0, 1]



Exterior ball condition

A domain Ω satisfies the exterior ball condition if there exists a number
r0 > 0 such that for every point x ∈ ∂Ω there is a ball Br0(y) with
Br0(y) ∩ Ω = {x}.
Convexity or C1,1-regularity of the domain are sufficient for the exterior
ball condition.



Main theorem

Theorem 2

Let F ∈ C2(R+) be a strictly convex function with lims→0 F
′(s) = 0 which

satisfies, for some constants C1,C2 > 0,

C1s − C2 ≤ F (s) ≤ C2(1 + s) for all s ∈ R+,

F ′′(s)

F ′′(t)
≤ C2 for all s ≥ 1 and t ∈ [s/2, 2s].

Then the following statements are equivalent:

i) For arbitrary domain Ω of class C1 satisfying an exterior ball condition and
arbitrary prescribed boundary value u0 ∈ C1,1(Ω) there exists a unique
function u ∈ C0,1(Ω) solving (a).

ii) The function F satisfies ∫ ∞

1

sF ′′(s) ds =∞.



Main theorem - ap case

� we prove the Theorem 2 only for the prototypic case with Fp, ap, (ap)

� Fp satisfies assumption ii) in Theorem 2 for p ∈ (0, 1] (and does not
satisfy it for p > 1), since

F ′′p (s) = (ap(s)s)′ =
1

(1 + sp)
1
p

(
1− sp

1 + sp

)
=

1

(1 + sp)
1
p

+1
,

and therefore∫ ∞
1

sF ′′p (s) ds =∞ ⇐⇒
∫ ∞

1

s

(1 + sp)
1
p

+1
ds =∞ ⇐⇒ p ∈ (0, 1]

Theorem 3

For any domain Ω ⊂ Rd of class C1,1, boundary condition u0 ∈ C1,1(∂Ω)
and p ∈ (0, 1], there exists up ∈ C0,1(Ω) a solution to problem (ap).



Scheme for the proof

� approximate, find uniform estimate and proceed with ε→ 0+

� elliptic problem, if we estimate the gradient on the boundary, we have
boundedness everywhere by the use of the maximum principle

� tangential derivative on the boundary is bounded since u = u0 on ∂Ω

� we have to take care of the normal derivative of u

� it is done by finding proper barrier functions ub, ub

� first idea - use the solution up from the annulus (for p ∈ (0, 1]),
however, this works only for locally constant boundary data

� second idea - add the tangential derivative

ub(x) := up(x) + (∇u0(x0))τ · (x − x0) + u0(x0)

however, this does not work

� third idea - try to weaken the convexity - it works!



Approximative problem

� for ε > 0, approximate the problem (ap) by

−ε∆uε − div
(
ap(|∇uε|)∇uε

)
= 0 in Ω,

uε = u0 on ∂Ω
(εap)

� a priori estimate

ε‖∇uε‖2
2 + ‖∇uε‖1 + ‖uε‖∞ ≤ C , (2)

and by difference quotient techniques we also have uε ∈W 2,2
loc (Ω)

� main goal is to show that the uniform estimate holds (for any
p ∈ (0, 1])

‖∇uε‖∞ ≤ C (Ω,F , u0) (independent of ε!) (3)

� indeed, having (3), there exists a subsequence converging weakly-∗ to
a function u ∈ u0 + W 1,∞

0 (Ω); also, when passing to the limit ε→ 0+

the limit function turns out to be the desired solution u

� it is Lipschitz regular, Theorem 3 is therefore proven, provided that
we can show that (3) holds



Subsolution |∇uε|, reduction to normal direction

Applying ∂
∂xk

=: Dk to (εap), multiplying the result by Dkuε and summing
over k = 1, . . . , d , we obtain

0 = −εDkuε∆Dkuε − DkuεDiDk

(
F ′p(|∇uε|)

Diuε
|∇uε|

)
= − ε

2
∆|∇uε|2 +ε|∇2uε|2−Di

(
Dk

(
F ′p(|∇uε|)

Diuε
|∇uε|

)
Dkuε

)
+DikuεDk

(
F ′p(|∇uε|)

Diuε
|∇uε|

)
= − ε

2
∆|∇uε|2 − Di

(
Aik(∇uε)Dk |∇uε|

)
+ ε|∇2uε|2 + F ′′p (|∇uε|)|∇|∇uε||2 + F ′p(|∇uε|)

|∇2uε|2 − |∇|∇uε||2

|∇uε|
,

where A = (Aik) is positively definite measurable matrix. Consequently,
|∇uε| is a sub-solution to the elliptic problem (εap), we only need a
uniform estimate on the boundary,

−ε
2

∆|∇uε|2 − Di (Aik(∇uε)Dk |∇uε|) ≤ 0 =⇒ ‖∇uε‖∞ ≤ ‖∇uε‖L∞(∂Ω).

In fact, only in the normal direction, as

‖∇uε‖∞ ≤ ‖∇uε‖L∞(∂Ω) ≤ ‖∇u0‖L∞(∂Ω) +

∥∥∥∥∂uε∂n

∥∥∥∥
∞
≤ C .



Estimates on normal derivatives

� let x0 ∈ ∂Ω be arbitrary, we want to find ub, ub the barriers fulfilling
for all (small) ε > 0 and for some Ω̃ ⊂ Ω (such that x0 ∈ ∂Ω̃))

ub ≤ uε ≤ ub in Ω̃, ub(x0) = uε(x0) = ub(x0)

� this allows to estimate the normal derivative

uε(x)− uε(x0)

|x − x0|
=

uε(x)− ub(x)

|x − x0|
+

ub(x)− ub(x0)

|x − x0|
≤ ‖ub‖1,∞

� we can use ub in a similar way and obtain in the passage x → x0 both
lower and upper bounds

C (Ω, ‖ub‖1,∞) ≤ ∂uε(x0)

∂n
≤ C (Ω, ‖ub‖1,∞),

� since x0 ∈ ∂Ω was arbitrary and ub, ub will be constructed
independently of ε, ∥∥∥∥∂uε∂n

∥∥∥∥
∞
≤ C



General scheme for finding the barrier

� upper barrier ub a super-solution to (εap) in Ω̃ for any ε > 0,

−ε∆ub − div
∇ub

(1 + |∇ub|p)
1
p

≥ 0 in Ω̃

ub ≥ u0 on ∂Ω̃

� it holds for every ε > 0, since −∆ub ≥ 0 and − div ∇ub

(1+|∇ub|p)
1
p
≥ 0

� having ub and using that uε is a solution to (εap),

− ε∆(ub − uε)− div

(
∇ub

(1 + |∇ub|p)
1
p

− ∇uε
(1 + |∇uε|p)

1
p

)
≥ 0 in Ω̃

� 0 ≤
∫

Ω̃

(
∇ub

(1+|∇ub|p)
1
p
− ∇uε

(1+|∇uε|p)
1
p

)
· ∇(ub − uε)− ≤ 0

� we can also find ub a lower barrier such that ub ≤ uε ≤ ub in Ω̃

� the problem admits setting ub(x0) = uε(x0) = ub(x0)



First idea for constructing the barriers

� first idea: use the solution up (p ∈ (0, 1]) from the annulus
problem (anp), and define

ub := up + u0(x0), ub := −up + u0(x0)

� good part: these barriers are super-/sub-solutions!
� bad part: it works only for u0 locally constant..



Other ideas for constructing the barriers

� second idea: use the solution up (p ∈ (0, 1]) from the annulus
problem (anp), and include some dependence on the tangential
derivative of u0

ub := up + (∇u0(x0))τ · (x − x0) + u0(x0)

� good part: we can control arbitrary, not only constant boundary data!

� bad part: it does not work.. (not a super-solution)

� third idea: instead of pairing up in the definition of barrier with the
parameter of the problem (ap), try to use the limiting admissible
solution u1,

ub := u1 + (∇u0(x0))τ · (x − x0) + u0(x0) (ub)

� good part: hooray, this works!

� bad part: only for problems with p < 1
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The construction itself

Lemma 4

For any u0 ∈ C0,1, there exists M > 0 such that for all r > 0 and ub

defined by (ub),

− ε∆ub − div
∇ub

(1 + |∇ub|p)
1
p

≥ 0 in Ω̃ (4)

for p ∈ (0, 1) and for all x ∈ Rd \ Br fulfilling |u′1(|x |)| ≥ M.

� find a value of M that satisfies |u′1(|x |)| ≥ M =⇒ (4)

� the condition |u′1(|x |)| ≥ M is achieved by a proper choice of constant
c ∈ (0, rd−1) in

u1(s) =

∫ s

r

c

zd−1 − c
dz

� finally, we fix r in such a way that the exterior ball condition is
satisfied in every x0 ∈ ∂Ω and ub ≥ uε also in the rest of Ω̃



Remarks on regularity of the domain

� convexity or C1,1 regularity of the domain are sufficient for the
exterior ball condition, thus, for example, the theorem holds for all
convex domains of class C1 and for arbitrary domains of class C1,1

� similar proof would work with C0,1 domains which are piece-wise C1,1

as well; except the corner points of the boundary, which one can not
attach the ball to - hence we control the trace up to the corner
points, which is however the set of zero ((d − 1)) measure

� the goal to get the existence of solution on arbitrary regular domain
ONLY by characterizing the functional F (or, equivalently, coefficient
function a) was fulfilled



Non-existence result on general domain

Theorem 5

Let F do not satisfy (ii) from Theorem 2. Then for arbitrary smooth
domain Ω satisfying interior ball condition there exists a smooth u0 such
that the problem (a) does not have solution in W 1,1(Ω) ∩ C(Ω).

We say that a domain Ω satisfies the interior ball condition if there exist
x0 ∈ ∂Ω, y0 /∈ Ω and r , ε > 0 such that x0 ∈ ∂Br (y0) and

x ∈ ∂Br (y0) ∩ (Bε(x0) \ x0) =⇒ x ∈ Ω.

For example, every non-convex domain in 2D fulfils the interior ball
condition.



More general growth

Theorem 6

Let F ∈ C2(R+) be a strictly convex function with lims→0 F
′(s) = 0 which

satisfies, for some constants C1,C2, δ0 > 0 and all δ0 > δ > 0,

C1s − C2 ≤ F (s) for all s ∈ R+,

lim inf
s→∞

s2−δF ′′(s)

F ′(s)
≥ 1

Then for arbitrary domain Ω of class C1 satisfying an exterior ball
condition and arbitrary prescribed boundary value u0 ∈ C1,1(Ω) there exists
a unique function u ∈ C0,1(Ω) solving (a).


