On the globally Lipschitz minimizers to variational problems

Erika Maringová (Vienna University of Technology)

Lisa Beck (University of Augsburg)
Miroslav Bulíček (Charles University)
Bianca Stroffolini, Anna Verde (University of Federico II, Naples)

online Nonstandard Seminar, University of Warsaw

December 21, 2020

Problem formulation

- let Ω be a regular bounded domain in $\mathbb{R}^{d}, d \geq 2$
- we study existence of a minimizer $u \in u_{0}+\bar{W}_{0}^{1,1}(\Omega)$ to

$$
\begin{equation*}
\int_{\Omega} F(|\nabla u|) \mathrm{d} x \leq \int_{\Omega} F\left(\left|\nabla u_{0}+\nabla \varphi\right|\right) \mathrm{d} x \tag{F}
\end{equation*}
$$

for all $\varphi \in \mathcal{D}(\Omega)$ and F strictly convex having linear growth

- existence of minimizer to $(F) \Leftrightarrow$ existence of (unique) solution $u \in W^{1,1}(\Omega)$ to

$$
\begin{align*}
-\operatorname{div}(a(|\nabla u|) \nabla u) & =0 & & \text { in } \Omega, \tag{a}\\
u & =u_{0} & & \text { on } \partial \Omega
\end{align*}
$$

for $s \mapsto a(s) s$ increasing bounded function, where F and a are connected via $\mathbf{F}^{\prime}(\mathbf{s})=\mathbf{a}(\mathbf{s}) \mathbf{s}$ for all $s \in \mathbb{R}^{+}$

- goal: characterize integrands F (or coefficient functions a) in terms of properties only such that the minimization (or Dirichlet) problem admits a regular solution which attains the trace for any regular domain Ω and regular boundary values u_{0}

Prototypic coefficient functions

- special case: for $p>0$ and $s \in \mathbb{R}^{+}$, consider $a(s)=a_{p}(s):=\frac{1}{\left(1+s^{p}\right)^{\frac{1}{p}}}$
- $p=2$ represents the minimal surface problem, i.e.

$$
-\operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=0 \quad \text { in } \Omega, \quad u=u_{0} \quad \text { on } \partial \Omega
$$

- result by Finn (1965) - if Ω is not (at least) pseudoconvex then there always exist smooth boundary data u_{0} for which the problem does not admit a minimizer (solution)
- result by Miranda (1971) - for any Ω locally pseudoconvex and any u_{0} continuous there exists a unique classical solution $u \in \mathcal{C}(\bar{\Omega}) \cap \mathcal{C}^{2}(\Omega)$
- however, the solution in $B V(\Omega)$ exists for any domain and $u_{0} \in L^{1}(\partial \Omega)$ (this is not of our interest because the trace may not be attained)
- we want to characterize the functions a_{p} (in terms of p) in such way that the geometry of the domain does not play role anymore, only regularity

Continuum mechanics motivation

- deformation of the body $\Omega \subset \mathbb{R}^{d}(d=3)$ with $\Gamma_{D} \cap \Gamma_{N}=\emptyset$, $\overline{\Gamma_{D} \cup \Gamma_{N}}=\partial \Omega$

$$
\begin{equation*}
-\operatorname{div} \mathbb{T}=\boldsymbol{f} \quad \text { in } \Omega, \quad \boldsymbol{u}=\boldsymbol{u}_{0} \quad \text { on } \Gamma_{D}, \quad \mathbb{T} \boldsymbol{n}=\boldsymbol{g} \quad \text { on } \Gamma_{N}, \tag{1}
\end{equation*}
$$

where \boldsymbol{u} is displacement, \mathbb{T} the Cauchy stress tensor, \boldsymbol{f} the external body forces, \boldsymbol{g} the external surface forces
$\square \varepsilon$ is the linearized strain tensor, i.e., $\varepsilon(\boldsymbol{u}):=\frac{1}{2}\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right)$

- under the assumption $|\nabla u| \ll 1$, in the constitutive relation for the Cauchy stress we can replace the full strain tensor by the linearised strain tensor
- model suggested by Rajagopal (R., Walton 2011; Kulvait, Málek, R. 2013): constitutive relation between the Cauchy stress tensor and the strain

$$
\varepsilon(\boldsymbol{u})=\varepsilon^{*}(\mathbb{T}), \text { where } \varepsilon^{*}(\mathbb{T}):=\frac{\mathbb{T}}{\left(1+|\mathbb{T}|^{p}\right)^{\frac{1}{p}}}
$$

for $p>0$ (admits $|\varepsilon(\boldsymbol{u})| \ll 1$ and $|\mathbb{T}| \gg 1$ at the same time)

Special geometry

Figure: Anti-plane stress geometry.

- in the formulated problem (1), let

$$
\boldsymbol{f}(\boldsymbol{x}) \equiv \mathbf{0} \quad \text { and } \quad \boldsymbol{g}(\boldsymbol{x})=\left(0,0, g\left(x_{1}, x_{2}\right)\right)
$$

be given, we look for $\boldsymbol{u}, \mathbb{T}$ of the form

$$
\begin{aligned}
\boldsymbol{u}(\boldsymbol{x}) & =\left(0,0, u\left(x_{1}, x_{2}\right)\right), \\
\mathbb{T}(\boldsymbol{x}) & =\left(\begin{array}{ccc}
0 & 0 & T_{13}\left(x_{1}, x_{2}\right) \\
0 & 0 & T_{23}\left(x_{1}, x_{2}\right) \\
T_{13}\left(x_{1}, x_{2}\right) & T_{23}\left(x_{1}, x_{2}\right) & 0
\end{array}\right)
\end{aligned}
$$

Equivalent reformulation

- find $U: \Omega \rightarrow \mathbb{R}, U(\boldsymbol{x})=U\left(x_{1}, x_{2}\right)$ such that $T_{13}=\frac{1}{\sqrt{2}} U_{x_{2}}$ and $T_{23}=-\frac{1}{\sqrt{2}} U_{x_{1}}$, then $\operatorname{div} \mathbb{T}=\mathbf{0}$ is fulfiled
- on simply connected domain, U must satisfy $\left(\right.$ using $\varepsilon(\boldsymbol{u})=\frac{\mathbb{T}}{\left(1+|\mathbb{T}|^{p}\right)^{1 / p}}$)

$$
\begin{aligned}
& -\operatorname{div}\left(\frac{\nabla U}{\left(1+|\nabla U|^{p}\right)^{\frac{1}{p}}}\right)=0 \quad \text { in } \Omega, \\
& U_{x_{2}} \boldsymbol{n}_{1}-U_{x_{1}} \boldsymbol{n}_{2}=\sqrt{2} g \text { on } \Gamma_{N} .
\end{aligned}
$$

- Neumann boundary condition includes the tangential derivative of U,

$$
\nabla U \cdot \tau=\left(U_{x_{1}}, U_{x_{2}}\right) \cdot\left(-\boldsymbol{n}_{2}, \boldsymbol{n}_{1}\right)=\sqrt{2} g
$$

- assume that Γ_{N} is parameterized by a curve $\gamma(s)$, then

$$
U(\gamma(\tau))=U(\gamma(0))+\sqrt{2} \int_{0}^{\tau} g(\gamma(s))\left|\gamma^{\prime}(s)\right| \mathrm{d} s=: U_{0}(\boldsymbol{x})
$$

for $\boldsymbol{x}=\gamma(\tau)$ makes it a Dirichlet problem

By means of U

- we look for $U \in W^{1,1}(\Omega)$, a weak solution to

$$
\begin{aligned}
-\operatorname{div}\left(\frac{\nabla U}{\left(1+|\nabla U|^{p}\right)^{\frac{1}{p}}}\right) & =0 \quad \text { in } \Omega \\
U & =U_{0} \quad \text { on } \partial \Omega
\end{aligned}
$$

- this is precisely the original problem (a) formulated for the coefficient function $a_{p}(s):=\left(1+s^{p}\right)^{-\frac{1}{p}}$ for $p>0$
- there are some positive results by Bulíček, Málek, Rajagopal, Walton (2015), the weak solution exists:
\checkmark for $p \in(0, \infty)$ and Ω Lipschitz uniformly convex,
\checkmark for $p \in(0,2)$ and Ω Lipschitz piece-wise uniformly convex

By means of U

- we look for $U \in W^{1,1}(\Omega)$, a weak solution to

$$
\begin{array}{rlr}
-\operatorname{div}\left(\frac{\nabla U}{\left(1+|\nabla U|^{p}\right)^{\frac{1}{p}}}\right) & =0 \quad \text { in } \Omega \\
U & =U_{0} & \text { on } \partial \Omega
\end{array}
$$

- this is precisely the original problem (a) formulated for the coefficient function $a_{p}(s):=\left(1+s^{p}\right)^{-\frac{1}{p}}$ for $p>0$
- there are some positive results by Bulíček, Málek, Rajagopal, Walton (2015), the weak solution exists:
\checkmark for $p \in(0, \infty)$ and Ω Lipschitz uniformly convex, \checkmark for $p \in(0,2)$ and Ω Lipschitz piece-wise uniformly convex,
Q: for $p \in$? and Ω regular

By means of U

- we look for $U \in W^{1,1}(\Omega)$, a weak solution to

$$
\begin{align*}
-\operatorname{div}\left(\frac{\nabla U}{\left(1+|\nabla U|^{p}\right)^{\frac{1}{p}}}\right) & =0 \quad \text { in } \Omega \tag{p}\\
U & =U_{0} \quad \text { on } \partial \Omega
\end{align*}
$$

- this is precisely the original problem (a) formulated for the coefficient function $a_{p}(s):=\left(1+s^{p}\right)^{-\frac{1}{p}}$ for $p>0$
- there are some positive results by Bulíček, Málek, Rajagopal, Walton (2015), the weak solution exists:
\checkmark for $p \in(0, \infty)$ and Ω Lipschitz uniformly convex,
\checkmark for $p \in(0,2)$ and Ω Lipschitz piece-wise uniformly convex,
\checkmark for $p \in(0,1]$ and $\Omega \in \mathcal{C}^{1}$ satisfying exterior ball condition

(non)Existence of solution on an annulus

- consider problem (a_{p}) on domain $B_{R} \backslash B_{r} \subset \mathbb{R}^{d}, 0<r<R<\infty$,

$$
\begin{aligned}
-\operatorname{div} \frac{\nabla U}{\left(1+|\nabla U|^{p}\right)^{\frac{1}{p}}} & =0 & & \text { in } B_{R} \backslash B_{r}, \\
U & =0 & & \text { on } \partial B_{r}, \\
U & =K & & \text { on } \partial B_{R}
\end{aligned}
$$

- we demand the solution to attain this boundary value for any $K \in \mathbb{R}^{+}$

Lemma 1

For $p>1$, the problem $\left(a n_{p}\right)$ has a weak solution $U \in W^{1,1}\left(B_{R} \backslash B_{r}\right)$ if and only if

$$
K<\int_{r}^{R} \frac{r}{\left(z^{p(d-1)}-r^{p}\right)^{\frac{1}{p}}} d z
$$

If $p \in(0,1]$, then for any $K \in \mathbb{R}^{+}$there exists a weak solution to problem $\left(a n_{p}\right)$.

Proof of the lemma

- the solution, if exists, is rotation invariant, i.e. $U(\boldsymbol{x})=: u(|\boldsymbol{x}|)$ and $\varphi(\boldsymbol{x})=: g(|\boldsymbol{x}|)$
- problem can be simplified significantly,

$$
\int_{\Omega} \frac{\nabla U(x)}{\left(1+|\nabla U(x)|^{p}\right)^{\frac{1}{p}}} \cdot \nabla \varphi(x) \mathrm{d} x=0 \Leftrightarrow H_{d} \int_{r}^{R} \frac{z^{d-1} u^{\prime}(z)}{\left(1+\left(u^{\prime}(z)\right)^{p}\right)^{\frac{1}{p}}} g^{\prime}(z) \mathrm{d} z=0,
$$

where H_{d} is Hausdorff measure of the unit sphere in $\mathbb{R}^{d}, g \in \mathcal{D}(r, R)$ arbitrary

- this gives condition $\frac{u^{\prime}(z)}{\left(1+\left(u^{\prime}(z)\right)^{p}\right)^{\frac{1}{p}}}=\frac{c}{z^{d-1}}$ with $c \in\left(0, r^{d-1}\right)$, which implies

$$
u(s)=\int_{r}^{s} \frac{c}{\left(z^{p(d-1)}-c^{p}\right)^{\frac{1}{p}}} \mathrm{~d} z \quad\left(\text { and that } u^{\prime}(s)=\frac{c}{\left(s^{p(d-1)}-c^{p}\right)^{\frac{1}{p}}}\right)
$$

- therefore $K=u(R)$ is bounded if $p>1$ and may be arbitrarily large (achieved only by a proper choice of c) for $p \in(0,1]$

Exterior ball condition

A domain Ω satisfies the exterior ball condition if there exists a number $r_{0}>0$ such that for every point $\boldsymbol{x} \in \partial \Omega$ there is a ball $B_{r_{0}}(\boldsymbol{y})$ with $\overline{B_{r_{0}}(\boldsymbol{y})} \cap \bar{\Omega}=\{\boldsymbol{x}\}$. Convexity or $\mathcal{C}^{1,1}$-regularity of the domain are sufficient for the exterior ball condition.

Main theorem

Theorem 2

Let $F \in \mathcal{C}^{2}\left(\mathbb{R}^{+}\right)$be a strictly convex function with $\lim _{s \rightarrow 0} F^{\prime}(s)=0$ which satisfies, for some constants $C_{1}, C_{2}>0$,

$$
\begin{aligned}
C_{1} s-C_{2} & \leq F(s) \leq C_{2}(1+s) & & \text { for all } s \in \mathbb{R}^{+}, \\
\frac{F^{\prime \prime}(s)}{F^{\prime \prime}(t)} & \leq C_{2} & & \text { for all } s \geq 1 \text { and } t \in[s / 2,2 s] .
\end{aligned}
$$

Then the following statements are equivalent:
i) For arbitrary domain Ω of class \mathcal{C}^{1} satisfying an exterior ball condition and arbitrary prescribed boundary value $u_{0} \in \mathcal{C}^{1,1}(\bar{\Omega})$ there exists a unique function $u \in \mathcal{C}^{0,1}(\bar{\Omega})$ solving (a).
ii) The function F satisfies

$$
\int_{1}^{\infty} s F^{\prime \prime}(s) d s=\infty
$$

Main theorem - a_{p} case

- we prove the Theorem 2 only for the prototypic case with $F_{p}, a_{p},\left(a_{p}\right)$
- F_{p} satisfies assumption ii) in Theorem 2 for $p \in(0,1]$ (and does not satisfy it for $p>1$), since

$$
F_{p}^{\prime \prime}(s)=\left(a_{p}(s) s\right)^{\prime}=\frac{1}{\left(1+s^{p}\right)^{\frac{1}{p}}}\left(1-\frac{s^{p}}{1+s^{p}}\right)=\frac{1}{\left(1+s^{p}\right)^{\frac{1}{p}+1}},
$$

and therefore

$$
\int_{1}^{\infty} s F_{p}^{\prime \prime}(s) \mathrm{d} s=\infty \Longleftrightarrow \int_{1}^{\infty} \frac{s}{\left(1+s^{p}\right)^{\frac{1}{p}+1}} \mathrm{~d} s=\infty \Longleftrightarrow p \in(0,1]
$$

Theorem 3

For any domain $\Omega \subset \mathbb{R}^{d}$ of class $\mathcal{C}^{1,1}$, boundary condition $u_{0} \in \mathcal{C}^{1,1}(\partial \Omega)$ and $p \in(0,1]$, there exists $u_{p} \in \mathcal{C}^{0,1}(\bar{\Omega})$ a solution to problem $\left(a_{p}\right)$.

Scheme for the proof

- approximate, find uniform estimate and proceed with $\varepsilon \rightarrow 0_{+}$
- elliptic problem, if we estimate the gradient on the boundary, we have boundedness everywhere by the use of the maximum principle
- tangential derivative on the boundary is bounded since $u=u_{0}$ on $\partial \Omega$
- we have to take care of the normal derivative of u
- it is done by finding proper barrier functions u^{b}, u_{b}
- first idea - use the solution u_{p} from the annulus (for $p \in(0,1]$), however, this works only for locally constant boundary data
- second idea - add the tangential derivative

$$
u^{b}(\boldsymbol{x}):=u_{p}(\boldsymbol{x})+\left(\nabla u_{0}\left(x_{0}\right)\right)_{\tau} \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+u_{0}\left(\boldsymbol{x}_{0}\right)
$$

however, this does not work

- third idea - try to weaken the convexity - it works!

Approximative problem

- for $\varepsilon>0$, approximate the problem (a_{p}) by

$$
\begin{aligned}
-\varepsilon \Delta u_{\varepsilon}-\operatorname{div}\left(a_{p}\left(\left|\nabla u_{\varepsilon}\right|\right) \nabla u_{\varepsilon}\right) & =0 \quad & & \text { in } \Omega, \\
u_{\varepsilon} & =u_{0} & & \text { on } \partial \Omega
\end{aligned}
$$

- a priori estimate

$$
\begin{equation*}
\varepsilon\left\|\nabla u_{\varepsilon}\right\|_{2}^{2}+\left\|\nabla u_{\varepsilon}\right\|_{1}+\left\|u_{\varepsilon}\right\|_{\infty} \leq C \tag{2}
\end{equation*}
$$

and by difference quotient techniques we also have $u_{\varepsilon} \in W_{l o c}^{2,2}(\Omega)$

- main goal is to show that the uniform estimate holds (for any $p \in(0,1])$

$$
\begin{equation*}
\left.\left\|\nabla u_{\varepsilon}\right\|_{\infty} \leq C\left(\Omega, F, u_{0}\right) \quad \text { (independent of } \varepsilon!\right) \tag{3}
\end{equation*}
$$

- indeed, having (3), there exists a subsequence converging weakly-* to a function $u \in u_{0}+W_{0}^{1, \infty}(\Omega)$; also, when passing to the limit $\varepsilon \rightarrow 0_{+}$ the limit function turns out to be the desired solution u
- it is Lipschitz regular, Theorem 3 is therefore proven, provided that we can show that (3) holds

Subsolution $\left|\nabla u_{\varepsilon}\right|$, reduction to normal direction

 Applying $\frac{\partial}{\partial x_{k}}=: D_{k}$ to $\left(\varepsilon a_{p}\right)$, multiplying the result by $D_{k} u_{\varepsilon}$ and summing over $k=1, \ldots, d$, we obtain$$
\begin{aligned}
0= & -\varepsilon D_{k} u_{\varepsilon} \Delta D_{k} u_{\varepsilon}-D_{k} u_{\varepsilon} D_{i} D_{k}\left(F_{p}^{\prime}\left(\left|\nabla u_{\varepsilon}\right|\right) \frac{D_{i} u_{\varepsilon}}{\left|\nabla u_{\varepsilon}\right|}\right) \\
= & -\frac{\varepsilon}{2} \Delta\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\left|\nabla^{2} u_{\varepsilon}\right|^{2}-D_{i}\left(D_{k}\left(F_{p}^{\prime}\left(\left|\nabla u_{\varepsilon}\right|\right) \frac{D_{i} u_{\varepsilon}}{\left|\nabla u_{\varepsilon}\right|}\right) D_{k} u_{\varepsilon}\right)+D_{i k} u_{\varepsilon} D_{k}\left(F_{p}^{\prime}\left(\left|\nabla u_{\varepsilon}\right|\right) \frac{D_{i} u_{\varepsilon}}{\left|\nabla u_{\varepsilon}\right|}\right) \\
= & -\frac{\varepsilon}{2} \Delta\left|\nabla u_{\varepsilon}\right|^{2}-D_{i}\left(A_{i k}\left(\nabla u_{\varepsilon}\right) D_{k}\left|\nabla u_{\varepsilon}\right|\right) \\
& +\varepsilon\left|\nabla^{2} u_{\varepsilon}\right|^{2}+F_{\rho}^{\prime \prime}\left(\left|\nabla u_{\varepsilon}\right|\right)|\nabla| \nabla u_{\varepsilon}| |^{2}+F_{\rho}^{\prime}\left(\left|\nabla u_{\varepsilon}\right|\right) \frac{\left|\nabla^{2} u_{\varepsilon}\right|^{2}-\left.|\nabla| \nabla u_{\varepsilon}\right|^{2}}{\left|\nabla u_{\varepsilon}\right|},
\end{aligned}
$$

where $A=\left(A_{i k}\right)$ is positively definite measurable matrix. Consequently, $\left|\nabla u_{\varepsilon}\right|$ is a sub-solution to the elliptic problem $\left(\varepsilon a_{p}\right)$, we only need a uniform estimate on the boundary,

$$
-\frac{\varepsilon}{2} \Delta\left|\nabla u_{\varepsilon}\right|^{2}-D_{i}\left(A_{i k}\left(\nabla u_{\varepsilon}\right) D_{k}\left|\nabla u_{\varepsilon}\right|\right) \leq 0 \Longrightarrow\left\|\nabla u_{\varepsilon}\right\|_{\infty} \leq\left\|\nabla u_{\varepsilon}\right\|_{L^{\infty}(\partial \Omega)}
$$

In fact, only in the normal direction, as

$$
\left\|\nabla u_{\varepsilon}\right\|_{\infty} \leq\left\|\nabla u_{\varepsilon}\right\|_{L^{\infty}(\partial \Omega)} \leq\left\|\nabla u_{0}\right\|_{L^{\infty}(\partial \Omega)}+\left\|\frac{\partial u_{\varepsilon}}{\partial \boldsymbol{n}}\right\|_{\infty} \leq C .
$$

Estimates on normal derivatives

- let $x_{0} \in \partial \Omega$ be arbitrary, we want to find u^{b}, u_{b} the barriers fulfilling for all (small) $\varepsilon>0$ and for some $\tilde{\Omega} \subset \Omega$ (such that $x_{0} \in \partial \tilde{\Omega}$))

$$
u_{b} \leq u_{\varepsilon} \leq u^{b} \quad \text { in } \tilde{\Omega}, \quad u_{b}\left(x_{0}\right)=u_{\varepsilon}\left(x_{0}\right)=u^{b}\left(x_{0}\right)
$$

- this allows to estimate the normal derivative

$$
\frac{u_{\varepsilon}(\boldsymbol{x})-u_{\varepsilon}\left(\boldsymbol{x}_{0}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right|}=\frac{u_{\varepsilon}(\boldsymbol{x})-u^{b}(\boldsymbol{x})}{\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right|}+\frac{u^{b}(\boldsymbol{x})-u^{b}\left(\boldsymbol{x}_{0}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right|} \leq\left\|u^{b}\right\|_{1, \infty}
$$

- we can use u_{b} in a similar way and obtain in the passage $\boldsymbol{x} \rightarrow \boldsymbol{x}_{0}$ both lower and upper bounds

$$
C\left(\Omega,\left\|u_{b}\right\|_{1, \infty}\right) \leq \frac{\partial u_{\varepsilon}\left(\boldsymbol{x}_{0}\right)}{\partial \boldsymbol{n}} \leq C\left(\Omega,\left\|u^{b}\right\|_{1, \infty}\right)
$$

- since $x_{0} \in \partial \Omega$ was arbitrary and u^{b}, u_{b} will be constructed independently of ε,

$$
\left\|\frac{\partial u_{\varepsilon}}{\partial \boldsymbol{n}}\right\|_{\infty} \leq C
$$

General scheme for finding the barrier

- upper barrier u^{b} a super-solution to $\left(\varepsilon a_{p}\right)$ in $\tilde{\Omega}$ for any $\varepsilon>0$,

$$
\begin{aligned}
-\varepsilon \Delta u^{b}-\operatorname{div} \frac{\nabla u^{b}}{\left(1+\left|\nabla u^{b}\right|^{p}\right)^{\frac{1}{p}}} & \geq 0
\end{aligned} \quad \text { in } \tilde{\Omega}, ~ u^{b} \geq u_{0} \quad \text { on } \partial \tilde{\Omega} .
$$

- it holds for every $\varepsilon>0$, since $-\Delta u^{b} \geq 0$ and $-\operatorname{div} \frac{\nabla u^{b}}{\left(1+\left|\nabla u^{b}\right|^{p}\right)^{\frac{1}{p}}} \geq 0$
- having u^{b} and using that u_{ε} is a solution to $\left(\varepsilon a_{p}\right)$,

$$
-\varepsilon \Delta\left(u^{b}-u_{\varepsilon}\right)-\operatorname{div}\left(\frac{\nabla u^{b}}{\left(1+\left|\nabla u^{b}\right|^{p}\right)^{\frac{1}{p}}}-\frac{\nabla u_{\varepsilon}}{\left(1+\left|\nabla u_{\varepsilon}\right|^{p}\right)^{\frac{1}{p}}}\right) \geq 0 \quad \text { in } \tilde{\Omega}
$$

- $0 \leq \int_{\tilde{\Omega}}\left(\frac{\nabla u^{b}}{\left(1+\left|\nabla u^{b}\right|^{p}\right)^{\frac{1}{p}}}-\frac{\nabla u_{\varepsilon}}{\left(1+\left|\nabla u_{\varepsilon}\right|^{p}\right)^{\frac{1}{p}}}\right) \cdot \nabla\left(u^{b}-u_{\varepsilon}\right)_{-} \leq 0$
- we can also find u_{b} a lower barrier such that $u_{b} \leq u_{\varepsilon} \leq u^{b}$ in $\tilde{\Omega}$
- the problem admits setting $u_{b}\left(x_{0}\right)=u_{\varepsilon}\left(x_{0}\right)=u^{b}\left(x_{0}\right)$

First idea for constructing the barriers

- first idea: use the solution $u_{p}(p \in(0,1])$ from the annulus problem ($a n_{p}$), and define

$$
u^{b}:=u_{p}+u_{0}\left(x_{0}\right), \quad u_{b}:=-u_{p}+u_{0}\left(x_{0}\right)
$$

- good part: these barriers are super-/sub-solutions!
- bad part: it works only for u_{0} locally constant..

Other ideas for constructing the barriers

- second idea: use the solution $u_{p}(p \in(0,1])$ from the annulus problem $\left(a n_{p}\right)$, and include some dependence on the tangential derivative of u_{0}

$$
u^{b}:=u_{p}+\left(\nabla u_{0}\left(x_{0}\right)\right)_{\tau} \cdot\left(\boldsymbol{x}-x_{0}\right)+u_{0}\left(x_{0}\right)
$$

- good part: we can control arbitrary, not only constant boundary data!
- bad part: it does not work.. (not a super-solution)

Other ideas for constructing the barriers

- second idea: use the solution $u_{p}(p \in(0,1])$ from the annulus problem $\left(a n_{p}\right)$, and include some dependence on the tangential derivative of u_{0}

$$
u^{b}:=u_{p}+\left(\nabla u_{0}\left(x_{0}\right)\right)_{\tau} \cdot\left(\boldsymbol{x}-x_{0}\right)+u_{0}\left(x_{0}\right)
$$

- good part: we can control arbitrary, not only constant boundary data!
- bad part: it does not work.. (not a super-solution)
- third idea: instead of pairing u_{p} in the definition of barrier with the parameter of the problem $\left(a_{p}\right)$, try to use the limiting admissible solution u_{1},

$$
\begin{equation*}
u^{b}:=u_{1}+\left(\nabla u_{0}\left(x_{0}\right)\right)_{\tau} \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+u_{0}\left(x_{0}\right) \tag{ub}
\end{equation*}
$$

- good part: hooray, this works!
- bad part: only for problems with $p<1$

The construction itself

Lemma 4

For any $u_{0} \in \mathcal{C}^{0,1}$, there exists $M>0$ such that for all $r>0$ and u^{b} defined by (ub),

$$
\begin{equation*}
-\varepsilon \Delta u^{b}-\operatorname{div} \frac{\nabla u^{b}}{\left(1+\left|\nabla u^{b}\right|^{p}\right)^{\frac{1}{p}}} \geq 0 \text { in } \tilde{\Omega} \tag{4}
\end{equation*}
$$

for $p \in(0,1)$ and for all $\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{d}} \backslash B_{r}$ fulfilling $\left|u_{1}^{\prime}(|\boldsymbol{x}|)\right| \geq M$.

- find a value of M that satisfies $\left|u_{1}^{\prime}(|\boldsymbol{x}|)\right| \geq M \Longrightarrow$ (4)
- the condition $\left|u_{1}^{\prime}(|\boldsymbol{x}|)\right| \geq M$ is achieved by a proper choice of constant $c \in\left(0, r^{d-1}\right)$ in

$$
u_{1}(s)=\int_{r}^{s} \frac{c}{z^{d-1}-c} d z
$$

- finally, we fix r in such a way that the exterior ball condition is satisfied in every $\boldsymbol{x}_{0} \in \partial \Omega$ and $u^{b} \geq u_{\varepsilon}$ also in the rest of $\tilde{\Omega}$

Remarks on regularity of the domain

- convexity or $\mathcal{C}^{1,1}$ regularity of the domain are sufficient for the exterior ball condition, thus, for example, the theorem holds for all convex domains of class \mathcal{C}^{1} and for arbitrary domains of class $\mathcal{C}^{1,1}$
- similar proof would work with $\mathcal{C}^{0,1}$ domains which are piece-wise $\mathcal{C}^{1,1}$ as well; except the corner points of the boundary, which one can not attach the ball to - hence we control the trace up to the corner points, which is however the set of zero $((d-1))$ measure
- the goal to get the existence of solution on arbitrary regular domain ONLY by characterizing the functional F (or, equivalently, coefficient function a) was fulfilled

Non-existence result on general domain

```
Theorem 5
Let F do not satisfy (ii) from Theorem 2. Then for arbitrary smooth
domain \Omega satisfying interior ball condition there exists a smooth u}\mp@subsup{u}{0}{}\mathrm{ such that the problem (a) does not have solution in \(W^{1,1}(\Omega) \cap \mathcal{C}(\bar{\Omega})\).
```

We say that a domain Ω satisfies the interior ball condition if there exist $x_{0} \in \partial \Omega, \boldsymbol{y}_{0} \notin \Omega$ and $r, \varepsilon>0$ such that $\boldsymbol{x}_{0} \in \partial B_{r}\left(\boldsymbol{y}_{0}\right)$ and

$$
\boldsymbol{x} \in \partial B_{r}\left(\boldsymbol{y}_{0}\right) \cap\left(B_{\varepsilon}\left(\boldsymbol{x}_{0}\right) \backslash \boldsymbol{x}_{0}\right) \Longrightarrow \boldsymbol{x} \in \Omega
$$

For example, every non-convex domain in 2D fulfils the interior ball condition.

More general growth

Theorem 6

Let $F \in \mathcal{C}^{2}\left(\mathbb{R}^{+}\right)$be a strictly convex function with $\lim _{s \rightarrow 0} F^{\prime}(s)=0$ which satisfies, for some constants $C_{1}, C_{2}, \delta_{0}>0$ and all $\delta_{0}>\delta>0$,

$$
\begin{aligned}
C_{1} s-C_{2} & \leq F(s) \quad \text { for all } s \in \mathbb{R}^{+}, \\
\liminf _{s \rightarrow \infty} \frac{s^{2-\delta} F^{\prime \prime}(s)}{F^{\prime}(s)} & \geq 1
\end{aligned}
$$

Then for arbitrary domain Ω of class \mathcal{C}^{1} satisfying an exterior ball condition and arbitrary prescribed boundary value $u_{0} \in \mathcal{C}^{1,1}(\bar{\Omega})$ there exists a unique function $u \in \mathcal{C}^{0,1}(\bar{\Omega})$ solving (a).

