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∆∞: The infinity Laplacian

The infinity Laplacian

∆∞u := 〈∇u,D2u∇u〉 =
n∑

i,j=1

∂u
∂xi

∂u
∂xj

∂2u
∂xi∂xj

Solutions of
∆∞u = 0

are called∞-harmonic functions.

Discovered by Gunnar Aronsson in the 60’s in connection to
Lipschitz extensions.
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Motivation via ∆p

If up minimizes∫
Ω
|∇u|p, among functions coinciding on ∂Ω,

then
∆pup = div(|∇up|p−2∇up) = 0 in Ω

Solutions are called p-harmonic functions.

Note: For p = 2 we get the usual Laplace equation.
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∆∞ via the p-Laplacian

As p →∞
‖∇u‖Lp(Ω) → ‖∇u‖L∞(Ω),

∆pu = |∇u|p−2∆u + (p − 2)|∇u|p−4∆∞u → ∆∞u

Reasonable that up → u where u minimizes

‖∇u‖L∞(Ω), among functions coinciding on ∂Ω

and solves ∆∞u = 0 in Ω.

Aronsson 66. Bhattacharya, DiBenedetto and Manfredi 89.
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Lipschitz extensions and ∆∞

Let Ω be open and bounded, g : ∂Ω→ R be Lipschitz and{
∆∞u = 0 in Ω

u = g on ∂Ω.

Then
sup

x ,y∈Ω

|u(x)− u(y)|
|x − y |

= sup
x ,y∈∂Ω

|g(x)− g(y)|
|x − y |

.

This equality also holds in any open U ⊂ Ω (AMLE).

This was first proved by Aronsson for C2 functions.
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Properties of the∞-Laplace equation

Classical solutions is not a good notion of solutions.
Instead: viscosity solutions.
Existence and uniqueness of solutions of the Dirichlet
problem on bounded domains, Aronsson 67, Jensen 93.
Solutions⇔ AMLE⇔ minimizers of ‖∇u‖, Aronsson 67,
Jensen 93, Crandall-Evans-Gariepy 2001
Differentiability in any dimension, Evans-Smart 2011
C1,α-regularity in the plane, Savin-Evans 2008
C2 + uxxuyy − u2

xy 6= 0⇒ C∞, Aronsson 67.
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Some∞-harmonic functions

Cones: |x − x0| for x 6= x0

Aronsson’s function x
4
3 − y

4
3 . It is merely C1,1/3 which is

believed to be the optimal regularity of solutions.
Any C1 solution of the eikonal equation |∇u| =constant.
Note that

∆∞u =
1
2
〈∇u,∇|∇u|2〉.

The distance function to a set is∞-harmonic wherever it is
C1.
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Streamlines for smooth solutions

A streamline α = α(t), is a solution of

dα
dt

= ∇u(α(t)).

If u is∞-harmonic

d
dt
|∇u(α(t))|2 = 2∆∞u(α(t)) = 0.

Hence,
|∇u(α(t))| = the speed = constant.

Requires second order derivatives! We will see that this may
fail quite often in general for non-smooth solutions.
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Streamlines cont’d

In general, the solution of

dα
dt

= ∇u(α(t))

may not be unique, even if ∇u is Hölder continuous. For
instance, the Picard–Lindelöf theorem requires ∇u to be
Lipschitz.

A sufficient condition for uniqueness is that u is semiconcave.
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Streamlines cont’d

We will discuss the ascending streamlines:

dα
dt

= +∇u(α(t))

and the descending streamlines:

dα
dt

= −∇u(α(t))

In our setup, the ascending streamlines are unique but the
descending ones are not in general. We will characterize
certain attracting streamlines which are the special streamlines
on which streamlines may meet.
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Our setup

Ω - convex bounded domain in R2

K - a closed convex set in Ω (possibly a single point)

The Dirichlet boundary value problem in the convex ring Ω \ K :
∆∞u = 0 in Ω \ K
u = 0 on ∂Ω

u = 1 on ∂K
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Basic properties

The solution of the Dirichlet problem satisfies
There is a unique (viscosity) solution.
The boundary values are in the classical sense.
The solution is locally C1,α, i.e., the gradient is Hölder
continuous.
The gradient does not vanish and

‖∇u‖L∞(Ω) =
1

dist(∂K , ∂Ω)
.

The superlevel sets are convex.
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Explicit solutions

1 If Ω is the unit ball and K the origin, then

u(x) = 1− |x |.

2 Suppose Ω is a “stadium”: the distance function is
differentiable everywhere except at its maximum point. If K
is the set of maximum points of the distance function, then
u is the distance function:

u(x) = dist(x , ∂Ω).

The set where the distance function attains its max is called the
high ridge.
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Our results I

The ascending gradient flow is unique and terminates at
∂K .

The descending gradient flow is in general not unique and
we have a device for detecting these situations.

Suppose ∂K = K is a subset of the high ridge of Ω. Unless
Ω is a stadium and ∂K its high ridge, there are streamlines
that meet. In particular, u is not even locally semiconvex.
In particular, if ∂K is a single point, then either Ω is a ball
or there are streamlines that meet. Instability!
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Main theorem

Structure: The streamlines starting in the corners constitutes
the attracting streamlines. |∇u| is constant along the streamline
α from the initial point on until it meets one of the attracting
streamlines, after which the speed is non-decreasing. It cannot
meet any other streamline before it meets an attracting one.

Holds also in more general convex domains under certain
assumptions.
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Example 1: The square

Let Ω be a square and K the center. The attracting streamlines
are the four half-diagonals. All streamlines meet at a diagonal,
except the four segments along the coordinate axes.
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Example 2: A truncated square

Ω

K

The attracting streamlines are in red. The only streamlines that
do not meet any other before reaching origin, are the medians.
The streamline starting in the middle of the truncated corner will
be a straight line to the origin and will be joined by the attracting
streamlines from both sides before terminating at the origin.
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The speed

We will prove that the speed along a streamline α∣∣∣∣dα(t)
dt

∣∣∣∣ = |∇u∞(α(t))|

is non-decreasing.
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p-harmonic approximation

We use 
∆pup = 0 in Ω \ K ,

up = 0 on ∂Ω,

up = 1 on ∂K ,

for p > 2. It is known that up ∈ C(Ω \ K ) and it takes the correct
values (in the classical sense) at each boundary point. Also:

1 up ↗ u∞ uniformly in Ω \ K ,
2 up is real analytic in Ω \ K ,
3 ∆up ≤ 0.
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Convexity

Let Fp(t) = up(αp(t)). Then

dFp(t)
dt

=
〈
∇up(αp(t)),

dαp(t)
dt

〉
= |∇up(αp(t))|2

and

d2Fp(t)
dt2 = 2 ∆∞up(αp(t)) = − 2

p − 2
∆up(αp(t)) |∇up(αp(t))|2.

Recall that ∆up ≤ 0. Thus,

d2Fp(t)
dt2 ≥ 0

and so Fp(t) is convex.
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Koch-Zhang-Zhou

To pass to the limit we need some convergence. But in general
we don’t know if ∇up converges to ∇u in a pointwise sense.

However, from the recent pathbreaking work by H. Koch, Y. R-Y.
Zhang and Y. Zhou, one can extract that

|∇up| → |∇u|

in a pointwise sense. This is enough to conclude that the speed
is non-decreasing.

E. Lindgren The streamlines of ∞-harmonic potentials



Introduction to ∆∞
Main results

Ideas of the proofs

Speed
The fundamental inequality
The Quadrilateral rule
The main theorem

A fundamental inequality

Assume that D ⊂⊂ Ω \ ∂K has a Lipschitz boundary and p > 2.
Then ∮

∂D
|∇u|p−2〈∇u,n〉ds ≤ 0

where n is the outer normal.

If u is C2, then the inequality follows from that:∮
∂D
|∇u|p−2〈∇u,n〉ds =

∫
D

∆pu dx ≤ 0,

since ∆pu ≤ 0.
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The proof of the fundamental inequality

Based on an idea of Juhlin-Juutinen which uses two
regularizations:
1) the infimal convolution

uε(x) = inf
y

(
u(y) +

|x − y |2

2ε

)
,

and 2) a mollification:

uε,j = uε ? φj .

The proof requires C1-estimates, therefore it only works in the
plane.
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Uniqueness of ascending streamlines

1 Take two streamlines α1(t) and α2(t) that separate at a
point x∗.

2 Suppose they intersect some level curve at the points y1
and y2 and y1 6= y2.

3 The fundamental inequality implies

0 ≥
∮
∂D
|∇u|p−2〈∇u,n〉ds =

∫ y2

y1

|∇u|p−1 ds

4 Since |∇u| 6= 0 this is a contradiction.
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A device for detecting bifurcations

The gradient is non-increasing along streamlines as long as
they do not meet.

In other words, if x is on a higher level curve u = b and y on a
higher level u = a and

|∇u(x)| > |∇u(y)|,

then any pair of stream lines connecting a neighborhood of ξ0
with a neighborhood of ξ1 must meet.
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A device for detecting bifurcations cont.

Sketch of proof:
Assume that there are no streamlines meeting and

the points x1 and x2 are on the same level curve u = a,
the points y1 and y2 both are on the higher level curve
u = b > a,
ascending streamlines join x1 with y1 and x2 with y2.

Then
‖∇u‖∞,y1y2

≤ ‖∇u‖∞,x1x2
,

that is, the lower level curve has the larger gradient.

E. Lindgren The streamlines of ∞-harmonic potentials



Introduction to ∆∞
Main results

Ideas of the proofs

Speed
The fundamental inequality
The Quadrilateral rule
The main theorem

Quadrilateral rule

Recap so far: The speed is non-decreasing. Sometimes, when
the streamlines do not meet, it is also non-increasing, so that it
is constant along suitable arcs of streamlines.

This is the idea behind the Quadrilateral rule.
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A quadrilateral

Quadrilateral rule: Suppose |∇u(ξ)| = M = maxσ |∇u|. If
|∇u(β(t))| is strictly monotone on the arcs aξ and ξb of the
level curve σ, then no streamlines can meet inside the
quadrilateral. A streamline with initial point on the arc ab (but
not a or b) has constant speed till it meets α, β or reaches ω.

ba

b′a′
η

ξ

µ

σ

α β

ω
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The proof of the quadrilateral rule

ba

b′a′

η

ξ

µ

σ

α β

ω
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Proof of the main theorem

Recall, Ω is a convex polygon with vertices P1,P2, . . . ,PN .

|∇u(Pj)| = 0, j = 1,2, . . . ,N.

From each vertex Pj , there is a unique streamline γ j that
terminates on K . They are the attracting streamlines.

Let Mj denote a point on the edge PjPj+1 at which |∇u| attains
its maximum and µj be the streamline starting at the point Mj .

From the convexity of the boundary it follows that the normal
derivative (= |∇u|) is monotone along the half-edges PjMj .
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Proof of the main theorem cont’d

Consider the region bounded by P1P2,γ1,γ2 and by ∂K . The
quadrilateral rule imply that no streamlines can meet (on either
side of µ1) and that they have constant speed until they meet
γ1 or γ2, or hit ∂K .
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The potential and its streamlines in the square.
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Things I would like to understand:

Convergence ∇up → ∇u?
Is the solution convex or concave in anyway?
Classification of singularities? Maybe where the speed is
constant, the function is more regular?
Detect bifurcation or singularities in other geometries?
Detect regularity?
Can we without the convexity assumption prove something
similar?
Higher dimensions?
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Thank you for listening!

Some references:

Extension of functions satisfying Lipschitz conditions, Aronsson 66.

On the partial differential equation u2
x uxx + 2ux uy uxy + u2

y uyy = 0, Aronsson 67.

A tour of the theory of absolutely minimizing functions, Aronsson, Crandall, and Juutinen, 2003.

An asymptotic sharp Sobolev regularity for planar infinity harmonic functions, H. Koch, Y. Zhang, Y. Zhou,
2019

Capacitary functions in convex rings, J. Lewis, 1977

Notes on the infinity-Laplace equation, Lindqvist 2016.

Infinity-Harmonic Potentials and Their Streamlines, L.-Lindqvist 2019

The Gradient Flow of Infinity-Harmonic Potentials, joint, L.-Lindqvist 2020
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