A variational approach to doubly nonlinear equations with nonstandard growth

Christoph Scheven University of Duisburg-Essen, Germany

Monday's Nonstandard Seminar December 21, 2020

Overview

- 1 Variational formulation of the problem
- Existence results
- 3 Strategy of the proof

The main results are due to a joint work with

- Verena Bögelein (Salzburg)
- Frank Duzaar (Erlangen-Nürnberg)
- Paolo Marcellini (Firenze)

The model case The nonstandard case

I. Variational formulation of the problem

Christoph Scheven, University Duisburg-Essen A variational approach to doubly nonlinear equations

The model case The nonstandard case

The model problem

Cauchy-Dirichlet problem:

Find $u \colon \Omega_T \to [0,\infty)$ with

$$\begin{cases} \partial_t u^m - \operatorname{div}(|Du|^{p-2}Du) = 0 & \text{in } \Omega_T, \\ u = g & \text{on } \partial_{\operatorname{par}}\Omega_T, \end{cases}$$
(1)

where here,

- $\Omega \subset \mathbb{R}^n$ is a bounded domain, T > 0, $\Omega_T := \Omega \times (0, T)$.
- m > 0, p > 1.
- $g: \partial_{\mathrm{par}}\Omega_{\mathcal{T}} \to [0,\infty)$ are prescribed boundary values.

This generalizes both the porous medium equation (p = 2) and the parabolic *p*-Laplace equation (m = 1).

The model case The nonstandard case

Variational Formulation I

We test (1) with

$$\varphi = w - u$$

for a comparison map $w \colon \Omega_T \to [0, \infty)$ with w = u on the lateral boundary $\partial \Omega \times (0, T)$. This leads to

$$\underbrace{\iint_{\Omega_{\tau}} \partial_t u^m (w-u) \mathrm{d}x \mathrm{d}t}_{=: \mathrm{I}} + \underbrace{\iint_{\Omega_{\tau}} |Du|^{p-2} Du \cdot (Dw - Du) \mathrm{d}x \mathrm{d}t}_{=: \mathrm{II}} = 0$$

By the convexity of $\mathbb{R}^n \ni \xi \mapsto \frac{1}{p} |\xi|^p$ we have

$$\frac{1}{p}|Du|^p+|Du|^{p-2}Du\cdot (Dw-Du)\leq \frac{1}{p}|Dw|^p.$$

The model case The nonstandard case

Variational Formulation II

$$\underbrace{\iint_{\Omega_{T}} \partial_{t} u^{m}(w-u) \mathrm{d} x \mathrm{d} t}_{=: \mathrm{I}} + \underbrace{\iint_{\Omega_{T}} |Du|^{p-2} Du \cdot (Dw - Du) \mathrm{d} x \mathrm{d} t}_{=: \mathrm{II}} = 0$$

By convexity,

with

$$\mathrm{II} \leq \frac{1}{\rho} \iint_{\Omega_{\mathcal{T}}} |Dw|^{\rho} \mathrm{d}x \mathrm{d}t - \frac{1}{\rho} \iint_{\Omega_{\mathcal{T}}} |Du|^{\rho} \mathrm{d}x \mathrm{d}t$$

Integration by parts and elementary calculations imply

$$I = \iint_{\Omega_T} \partial_t w (w^m - u^m) dx$$
$$+ \int_{\Omega} \mathfrak{b}[u(0), w(0)] dx - \int_{\Omega} \mathfrak{b}[u(T), w(T)] dx$$
$$\mathfrak{b}[u, w] := \frac{1}{m+1} w^{m+1} - \left[\frac{1}{m+1} u^{m+1} + u^m (w - u)\right] \ge 0$$

The model case The nonstandard case

Variational Formulation III

This leads to the variational inequality

$$\begin{split} \iint_{\Omega_{\mathcal{T}}} \frac{1}{p} |Du|^{p} \mathrm{d}x \mathrm{d}t &\leq \iint_{\Omega_{\mathcal{T}}} \left[\frac{1}{p} |Dw|^{p} + \partial_{t} w \left(w^{m} - u^{m} \right) \right] \mathrm{d}x \mathrm{d}t \\ &+ \underbrace{\int_{\Omega} \mathfrak{b}[u(0), w(0)] \mathrm{d}x - \int_{\Omega} \mathfrak{b}[u(\mathcal{T}), w(\mathcal{T})] \mathrm{d}x}_{=:\mathfrak{B}[u(0), w(0)] - \mathfrak{B}[u(\mathcal{T}), w(\mathcal{T})]} \end{split}$$

for any $w: \Omega_T \to [0, \infty)$ with $\partial_t w \in L^{\frac{m+1}{m}}(\Omega_T)$ and w = u on $\partial\Omega \times (0, T)$.

In the case m = 1 the boundary term simplifies to

$$\mathfrak{b}[u,w] = \frac{1}{2}|u-w|^2$$

so that the usual $\mathrm{L}^2(\Omega)\text{-boundary terms appear in the variational inequality.$

The model case The nonstandard case

The Nonlinearity b

We replace the term u^m by a nonlinearity $b \colon [0,\infty) \to [0,\infty)$

- which is continuous and piecewise C^1 with b(0) = 0,
- and satisfies

$$0 < \ell \le \frac{ub'(u)}{b(u)} \le m \tag{2}$$

whenever u > 0, b(u) > 0 and b'(u) exists.

Assumption (2) implies the nonstandard growth condition

$$b(1)\min\{u^\ell,u^m\}\leq b(u)\leq b(1)\max\{u^\ell,u^m\}$$
 for all $u>0.$

The model case The nonstandard case

The primitive $\phi \colon [0,\infty) \to [0,\infty)$ is defined by

$$\phi(u) := \int_0^u b(s) \mathrm{d}s \quad \forall u \ge 0.$$

Note that ϕ is convex with $\phi(0) = 0$ and that (2) implies that ϕ satisfies the Δ_{2} - and ∇_{2} -conditions. We consider the Orlicz-space

$$\mathrm{L}^{\phi}(\Omega) = \left\{ w \colon \Omega o \mathbb{R}, ext{ measurable} \colon \int_{\Omega} \phi(|w|) \mathrm{d}x < \infty
ight\}$$

Assumption (2) implies the nonstandard growth condition

$$\phi(1)\min\{u^{\ell+1}, u^{m+1}\} \le \phi(u) \le \phi(1)\max\{u^{\ell+1}, u^{m+1}\}$$

for all $u \ge 0$.

Orlicz Spaces

The model case The nonstandard case

The Integrand f

Instead of the model integrand $\frac{1}{p}|\xi|^p$, we consider an general integrand $f: \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ such that the following convexity and coercivity conditions hold:

$$\mathbb{R} imes \mathbb{R}^n
i (u, \xi) o f(x, u, \xi)$$
 is convex for a.e. $x \in \Omega$,
 $f(x, u, \xi) \ge \nu |\xi|^p$ for $(x, u, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^n$.

- We do not require any growth condition from above.
- More generally, we can assume

$$f(x, u, \xi) \geq \nu |\xi|^p - g(x) (1 + |u|)$$

for $(x, u, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^n$, with $g \in L^1(\Omega) \cap L^{\phi^*}(\Omega)$.

The model case The nonstandard case

The (time-independent) boundary values

We consider initial values $u_o: \Omega \to [0, \infty)$ (which also play the role of time-independent boundary values) that satisfy

$$u_o \in \mathrm{L}^\phi(\Omega) \quad ext{and} \quad \int_\Omega f(x, u_o, Du_o) \mathrm{d} x < \infty.$$

For the given data, we wish to solve the Cauchy-Dirichlet problem

$$\begin{array}{ll} & (\partial_t b(u) - \operatorname{div} D_\xi f(x, u, Du) = -D_u f(x, u, Du) & \text{in } \Omega_T, \\ & u = u_o & \text{on } \partial_{\operatorname{par}} \Omega_T, \end{array}$$

which generalizes the model case (1) from above.

The model case The nonstandard case

Variational formulation and integral convexity

Similarly as in the model case, the convexity of f implies

$$D_{\xi} f(x, u, Du) \cdot D(w - u) + D_u f(x, u, Du)(w - u)$$

$$\leq f(x, w, Dw) - f(x, u, Du).$$

Actually, what we need in the argument is the **convexity of the integral**

$$\boldsymbol{F}(\boldsymbol{u}) := \int_{\Omega} f(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{D}\boldsymbol{u}) \, \mathrm{d}\boldsymbol{x}$$

rather than the convexity of the integrand.

Theorem (Bögelein, Dacorogna, Duzaar, Marcellini, S., 2020)

For gradient flows (b(u) = u) for functionals with p-growth, integral convexity is necessary and sufficient for existence of variational solutions. (Also in the case of systems.)

The model case The nonstandard case

Variational formulation: the time term

For the term involving the time derivative, we calculate (formally)

$$\iint_{\Omega_{T}} \partial_{t} b(u)(w-u) dx$$
$$= \iint_{\Omega_{T}} \partial_{t} w(b(w) - b(u)) dx$$
$$+ \int_{\Omega} \mathfrak{b}[u(0), w(0)] dx - \int_{\Omega} \mathfrak{b}[u(T), w(T)] dx$$

with the boundary term

$$\mathfrak{b}[u,w] := \phi(w) - \left[\phi(u) + b(u)(w-u)\right] \ge 0$$

As mentioned before, $\mathfrak{b}[u, w] = \frac{1}{2}|u - w|^2$ in the case b(u) = u.

The model case The nonstandard case

Variational Solutions

Definition

A non-negative measurable map $u\colon \Omega_{\mathcal{T}} \to [0,\infty)$ in the class

$$u \in \mathrm{C}^{0}ig([0,T];\mathrm{L}^{\phi}(\Omega)ig) \cap \mathrm{L}^{p}ig(0,T;u_{o}+\mathrm{W}^{1,p}_{0}(\Omega)ig)$$

is called variational solution if and only if the variational inequality

$$\begin{split} \mathfrak{B}[u(\tau), w(\tau)] &+ \iint_{\Omega_{\tau}} f(x, u, Du) \mathrm{d} x \mathrm{d} t \\ &\leq \mathfrak{B}[u_o, w(0)] + \iint_{\Omega_{\tau}} \Big[f(x, w, Dw) + \partial_t w \big(b(w) - b(u) \big) \Big] \mathrm{d} x \mathrm{d} t \end{split}$$

holds true for any $\tau \in [0, T]$, and any $w \in L^{p}(0, T; u_{o} + W_{0}^{1,p}(\Omega))$ with $\partial_{t}w \in L^{\phi}(\Omega_{T})$ and $w(0) \in L^{\phi}(\Omega)$.

Here, $\mathfrak{B}[u, w] := \int_{\Omega} \left[\phi(w) - \phi(u) - b(u)(w-u) \right] dx$. Here, $\mathfrak{B}[u, w] := \frac{1}{2} \int_{\Omega} |w - u|^2 dx$ if b(u) = uChristoph Scheven, University Duisburg-Essen A variational approach to doubly nonlinear equations

Variational formulation of the problem	
Existence results	
Strategy of the proof	Comparison with known results

II. Existence results

Existence of variational solutions Extensions Comparison with known results

The General Existence Result

Theorem (Bögelein, Duzaar, Marcellini, S., ARMA 2018)

Suppose that the non-linearity b, the integrand f and the initial datum u_o are as before. Then there exists a variational solution

$$u \in \mathrm{C}^{\mathsf{0}}ig([0,\,T];\mathrm{L}^{\phi}(\Omega)ig) \cap \mathrm{L}^{p}ig(0,\,T;u_{o}+\mathrm{W}^{1,p}_{0}(\Omega)ig)$$

in the sense of the previous definition. The solution satisfies

$$\partial_t \sqrt{\phi(u)} \in \mathrm{L}^2(\Omega_T)$$

and attains the initial datum u_o in the C^0-L^{ϕ} -sense.

Existence of variational solutions Extensions Comparison with known results

Weak solutions

Under additional assumptions, the variational solutions constructed in the preceding theorem are distributional solutions of

The examples include general nonlinearities b(u) with

$$1 \le \ell \le \frac{ub'(u)}{b(u)} \le m$$

and functionals with nonstandard growth such as

•
$$f(x,\xi) := \alpha(x)|\xi|^p + \beta(x)|\xi|^q$$
,
 $(1 0)$;
• $f(\xi) := |\xi|^p \log(1 + |\xi|)$;
• $f(\xi) := e^{\sqrt{1+|\xi|^2}}$.

Extensions

The preceding existence result has been extended in various directions:

- to unbounded domains, in particular to the Cauchy-problem on Ω = ℝⁿ (Bögelein, Duzaar, Marcellini, S., ARMA 2018);
- to time-dependent boundary values (Bögelein, Duzaar, Marcellini, S., Rend. Lincei 2018);
- to doubly nonlinear systems with $b(u) = u^m$, m > 1, and time-dependent boundary values (Schätzler, J. Elliptic Parabol. Equ 2019)

Existence of variational solutions Extensions Comparison with known results

Known Results I

• Grange & Mignot (1972), Alt & Luckhaus (1983): equations/systems of the type

$$\partial_t b(u) - \operatorname{div} (\boldsymbol{A}(b(u), Du)) = f(b(u))$$

with u = g on $\partial_{par} \Omega_T$. The coefficients **A** satisfy

$$\left\{egin{array}{ll} |oldsymbol{A}(s,\xi)| \leq C(1+|\xi|^{p-1}), \ egin{array}{ll} (oldsymbol{A}(s,\xi)-oldsymbol{A}(s,\eta))\cdot(\xi-\eta)\geq C_o|\xi-\eta|^p, \end{array}
ight.$$

b is the continuous gradient of a convex C^1 -function ϕ .

The boundary values satisfy

$$\left\{ \begin{array}{l} g \in \mathrm{L}^p\big(0, \, T ; \mathrm{W}^{1,p}(\Omega)\big) \cap \mathrm{L}^\infty(\Omega_{\mathcal{T}}), \\ \partial_t g \in \mathrm{L}^1(0, \, T ; \mathrm{L}^\infty(\Omega)) \end{array} \right.$$

Proof by Galerkin type method.

Existence of variational solutions Extensions Comparison with known results

Known Results II

- Bernis (1988): Higher order doubly non-linear equations on unbounded domains.
- Ivanov & Mkrtychyan (1992, 1997): Existence of Hölder continuous solutions to equations of the type

$$\partial_t u - \operatorname{div} \left(u^{m-1} |Du|^{p-2} Du \right) = 0.$$

Existence via approximation by strictly positive solutions and a-priori Hölder-estimates.

• Akagi & Stefanelli (2011): Equations of the type

$$b(\partial_t u) - \operatorname{div}(|Du|^{p-2}Du) = 0$$

Existence via elliptic regularization.

Existence of variational solutions Extensions Comparison with known results

Known Results III

• Akagi & Stefanelli (2014):

$$\partial_t b(u) - \operatorname{div}(\boldsymbol{A}(Du)) = f$$

$$\underset{v:=b(u)}{\longleftrightarrow} \quad -\operatorname{div}(\boldsymbol{A}(Db^{-1}(v))) = f - \partial_t v$$

for b and A with polynomial growth. Existence for the dual problem via elliptic regularization.

 Ambrosio & Gigli & Savare (2008): Gradient flows in metric spaces.

Variational formulation of the problem	Modified Minimizing Movements
Strategy of the proof	

III. Strategy of the proof

Modified Minimizing Movements Passing to the limit Properties of the limit map

Modified Minimizing Movements

- Fix a step size h ∈ (0,1]. The goal is to construct approximations u_i of the solution at times t = ih, i ∈ N₀.
- Let $u_0 = u_o$.
- Suppose that for some $i \in \mathbb{N}$ with $ih \leq T$ the non-negative map $0 \leq u_{i-1} \in L^{\phi}(\Omega) \cap \left(u_o + W_0^{1,p}(\Omega)\right)$ has been defined.
- In the case b(u) = u, we define u_i as the minimizer of

$$\boldsymbol{F}_{i}[\boldsymbol{v}] := \int_{\Omega} f(\boldsymbol{x}, \boldsymbol{v}, D\boldsymbol{v}) \mathrm{d}\boldsymbol{x} + \frac{1}{2\hbar} \int_{\Omega} \left| \boldsymbol{u}_{i-1} - \boldsymbol{v} \right|^{2} \mathrm{d}\boldsymbol{x}.$$

in the class of functions $0 \le v \in L^2(\Omega) \cap (u_o + W_0^{1,p}(\Omega))$. • In the general case, we define u_i as the minimizer of

$$\boldsymbol{F}_{i}[\boldsymbol{v}] := \int_{\Omega} f(\boldsymbol{x}, \boldsymbol{v}, D\boldsymbol{v}) \mathrm{d}\boldsymbol{x} + \frac{1}{h} \int_{\Omega} \mathfrak{b}[\boldsymbol{u}_{i-1}, \boldsymbol{v}] \mathrm{d}\boldsymbol{x}.$$

in the class of functions $0 \leq v \in L^{\phi}(\Omega) \cap \left(u_o + W^{1,p}_0(\Omega)\right).$

Minimizers exist by the Direct Method of the Calculus of Christoph Scheven, University Duisburg-Essen A variational approach to doubly nonlinear equations

Modified Minimizing Movements Passing to the limit Properties of the limit map

The Euler operator for the time term

For a test function $\psi \in C_0^{\infty}(\Omega)$, we consider variations $u_i + s\psi$, $s \in (-\varepsilon, \varepsilon)$, of the minimizers u_i and calculate

$$\begin{split} \frac{d}{ds}\Big|_{s=0} &\left(\frac{1}{h} \int_{\Omega} \mathfrak{b}[u_{i-1}, u_i + s\psi] \mathrm{d}x\right) \\ &= \frac{1}{h} \int_{\Omega} \frac{\partial}{\partial s}\Big|_{s=0} \Big[\phi(u_i + s\psi) - \phi(u_{i-1}) - b(u_{i-1})(u_i + s\psi - u_{i-1})\Big] \,\mathrm{d}x \\ &= \frac{1}{h} \int_{\Omega} \Big[\phi'(u_i)\psi - b(u_{i-1})\psi\Big] \,\mathrm{d}x \\ &= \int_{\Omega} \frac{b(u_i) - b(u_{i-1})}{h} \psi \,\mathrm{d}x \end{split}$$

Modified Minimizing Movements Passing to the limit Properties of the limit map

Energy Estimates I

Observe that u_{i-1} is an admissible competitor for u_i , and therefore $F_i[u_i] \leq F_i[u_{i-1}]$. This can be iterated and leads to

$$\underbrace{\int_{\Omega} f(x, u_k, Du_k) \mathrm{d}x}_{\geq \nu |Du_k|^p} + \frac{1}{h} \sum_{i=1}^k \int_{\Omega} \mathfrak{b}[u_{i-1}, u_i] \mathrm{d}x \leq \underbrace{\int_{\Omega} f(x, u_o, Du_o) \mathrm{d}x}_{=:M < \infty},$$

whenever $k \in \mathbb{N}$ with $kh \leq T$.

Modified Minimizing Movements Passing to the limit Properties of the limit map

Monotonicity

For the boundary term $\mathfrak{b}[u, w]$, we have the following bounds:

Lemma

For any $u, w \ge 0$, we have

with a constant $C = C(\ell, m) \ge 1$.

The proof relies on the assumption

$$\ell \leq \frac{ub'(u)}{b(u)} \leq m.$$

Modified Minimizing Movements Passing to the limit Properties of the limit map

Energy Estimates II

From the previous energy estimate we immediately obtain:

$$\frac{1}{h} \sum_{i=1}^{k} \int_{\Omega} \left| \sqrt{\phi(u_i)} - \sqrt{\phi(u_{i-1})} \right|^2 \mathrm{d}x$$
$$\leq \frac{c}{h} \sum_{i=1}^{k} \int_{\Omega} \mathfrak{b}[u_{i-1}, u_i] \mathrm{d}x \leq C(\ell, m) M$$
(3)

and

$$\int_{\Omega} |Du_k|^p \mathrm{d}x \le \frac{M}{\nu},\tag{4}$$

whenever $k \in \mathbb{N}$ with $kh \leq T$. Furthermore,

$$\int_{\Omega} \phi(u_k) \mathrm{d}x \leq 2k \sum_{i=1}^k \int_{\Omega} \left| \sqrt{\phi(u_i)} - \sqrt{\phi(u_{i-1})} \right|^2 \mathrm{d}x + 2 \int_{\Omega} \phi(u_o) \mathrm{d}x$$
$$\leq 2TM + 2 \int_{\Omega} \phi(u_o) \mathrm{d}x. \tag{5}$$

Christoph Scheven, University Duisburg-Essen A variational approach to doubly nonlinear equations

Modified Minimizing Movements Passing to the limit Properties of the limit map

Construction of the Limit Map I

From now on we consider only such $h \in (0, 1]$ such that $h_k = T/k$ with $k \in \mathbb{N}$. From the construction before we obtain minimizers $u_i^{(k)}$ with $i \in \{0, 1, \dots, k\}$.

We define
$$u^{(k)}: \Omega \times (-h_k, T] \to [0, \infty)$$
 by

$$u^{(k)}(\cdot, t) := u_i^{(k)}$$
 for $t \in ((i-1)h_k, ih_k]$, $i \in \{0, \dots, k\}$

The preceding estimates for $u_i^{(k)}$ imply the uniform energy bound

$$\sup_{t\in[0,T]} \int_{\Omega} \left[\phi(u^{(k)}(t)) + \left| Du^{(k)}(t) \right) \right|^{p} \right] \mathrm{d}x + \iint_{\Omega_{T}} \left| \partial_{t}^{(-h_{k})} \sqrt{\phi(u^{(k)})} \right|^{2} \mathrm{d}x \, \mathrm{d}t \leq C,$$
(6)

where the constant C is independent of k.

Modified Minimizing Movements Passing to the limit Properties of the limit map

Construction of the Limit Map II

From (6) we conclude that

 $(u^{(k)})_{k\in\mathbb{N}}$ is uniformly bounded in $L^{\infty}(0, T; W^{1,p}(\Omega))$.

Therefore, we find a subsequence (still denoted by k) and

$$u \in L^{\infty}(0, T; u_o + W^{1,p}_0(\Omega))$$

such that

$$u^{(k)} \stackrel{*}{\rightharpoondown} u$$
 weakly* in $L^{\infty}(0, T; W^{1,p}(\Omega))$.

Modified Minimizing Movements Passing to the limit Properties of the limit map

Construction of the Limit Map III: Compactness

Compactness lemma

The energy estimate

$$\max_{i \in \{0,1,\dots,k\}} \int_{\Omega} \phi(u_i^{(k)}) \mathrm{d}x + \sup_{i \in \{0,1,\dots,k\}} \int_{\Omega} \left| Du_i^{(k)} \right|^p \mathrm{d}x \le C, \qquad (7)$$

and the continuity estimate

$$\frac{1}{h}\sum_{i=1}^{k}\int_{\Omega}\left|\sqrt{\phi(u_{i}^{(k)})}-\sqrt{\phi(u_{i-1}^{(k)})}\right|^{2}\mathrm{d}x\leq C(\ell,m)M,\qquad(8)$$

imply, after passing to a subsequence, that

$$\begin{cases} \sqrt{\phi(u^{(k)})} \to \sqrt{\phi(u)} & \text{strongly in } L^1(\Omega_T), \\ u^{(k)} \to u & \text{a.e. in } \Omega_T. \end{cases}$$

Christoph Scheven, University Duisburg-Essen A variational approach to doubly nonlinear equations

Variational formulation of the problem Existence results Strategy of the proof Passing to the limit Properties of the limit map

Compactness lemma

$$\max_{i \in \{0,1,\dots,k\}} \int_{\Omega} \phi(u_i^{(k)}) dx + \sup_{i \in \{0,1,\dots,k\}} \int_{\Omega} |Du_i^{(k)}|^p dx \le C, \quad (7)$$

and
$$\frac{1}{h} \sum_{i=1}^k \int_{\Omega} \left| \sqrt{\phi(u_i^{(k)})} - \sqrt{\phi(u_{i-1}^{(k)})} \right|^2 dx \le C(\ell, m)M, \quad (8)$$
$$\implies \begin{cases} \sqrt{\phi(u^{(k)})} \to \sqrt{\phi(u)} & \text{strongly in } L^1(\Omega_T), \\ u^{(k)} \to u & \text{a.e. in } \Omega_T. \end{cases}$$

- This lemma can be interpreted as a Jacques Simon type compactness result adapted to doubly nonlinear equations.
- For the proof, we relied on techniques by Alt & Luckhaus.

Modified Minimizing Movements Passing to the limit Properties of the limit map

Construction of the Limit Map IV: Time Derivative

From (6), we recall the uniform estimate

$$\iint_{\Omega_{\mathcal{T}}} \left|\partial_t^{(-h_k)} \sqrt{\phi(u^{(k)})}\right|^2 \mathrm{d} x \, \mathrm{d} t \leq CM$$

Extract a further subsequence such that

•

$$\partial_t^{(-h_k)} \sqrt{\phi(u^{(k)})} \to w \quad \text{weakly in } L^2(\Omega_T).$$

Since $\sqrt{\phi(u^{(k)})} \to \sqrt{\phi(u)}$ strongly in $L^1(\Omega_T)$, we have
 $w = \partial_t \sqrt{\phi(u)}.$

We deduce $\partial_t \sqrt{\phi(u)} \in L^2(\Omega_T)$, with the estimate

$$\iint_{\Omega_{T}} \left| \partial_{t} \sqrt{\phi(u)} \right|^{2} \mathrm{d}x \mathrm{d}t \leq C \underbrace{\int_{\Omega} f(x, u_{o}, Du_{o}) \mathrm{d}x}_{\equiv M}.$$

Modified Minimizing Movements Passing to the limit **Properties of the limit map**

Variational Inequality for the Limit Map I

Let

$$\boldsymbol{F}^{k}[\boldsymbol{v}] := \iint_{\Omega_{T}} \Big(f(\boldsymbol{x},\boldsymbol{v},\boldsymbol{D}\boldsymbol{v}) + \frac{1}{h_{k}} \mathfrak{b} \big[u^{(k)}(t-h_{k}), \boldsymbol{v}(t) \big] \Big) \mathrm{d} \boldsymbol{x} \mathrm{d} t.$$

Then, $u^{(k)}$ minimizes F^k , i.e.

$$\boldsymbol{F}^{k}[u^{(k)}] \leq \boldsymbol{F}^{k}[v]$$

for any $0 \leq v \in L^{\phi}(\Omega_{\mathcal{T}}) \cap L^{\rho}(0, \mathcal{T}; u_{o} + W_{0}^{1,\rho}(\Omega))$. We test the minimality with the admissible comparison map

$$w_s := u^{(k)} + s(v - u^{(k)}), \quad s \in (0, 1),$$

and use the **convexity** of $\int_{\Omega} f(x, v, Dv)$. Letting $s \downarrow 0$, we get

$$\begin{split} \iint_{\Omega_{T}} f(x, u^{(k)}, Du^{(k)}) \mathrm{d}x \mathrm{d}t \\ &\leq \iint_{\Omega_{T}} \left(f(x, v, Dv) + \Delta_{-h_{k}} b(u^{(k)}) \left(v - u^{(k)} \right) \right) \mathrm{d}x \mathrm{d}t \end{split}$$

Christoph Scheven, University Duisburg-Essen

Modified Minimizing Movements Passing to the limit Properties of the limit map

Variational Inequality for the Limit Map II

By lower semicontinuity

$$\iint_{\Omega_{\tau}} f(x, u, Du) \mathrm{d}x \mathrm{d}t \leq \liminf_{k \to \infty} \iint_{\Omega_{\tau}} f(x, u^{(k)}, Du^{(k)}) \mathrm{d}x \mathrm{d}t.$$

Formally, in the limit $k
ightarrow \infty$ we have

$$\begin{split} \iint_{\Omega_{T}} \underbrace{\Delta_{-h_{k}} b(u^{(k)})}_{\to \partial_{t} b(u)} (\underbrace{v - u^{(k)}}_{\to v - u}) \mathrm{d}x \mathrm{d}t \to \iint_{\Omega_{T}} \partial_{t} b(u) (v - u) \mathrm{d}x \mathrm{d}t \\ &= \iint_{\Omega_{T}} \partial_{t} v (b(v) - b(u)) \mathrm{d}x \mathrm{d}t + \mathfrak{B}[u_{o}, v(0)] - \mathfrak{B}[u(T), v(T)]. \end{split}$$

This formal argument can be made rigorous by a discrete integration by parts formula.

Modified Minimizing Movements Passing to the limit Properties of the limit map

The Initial Datum I

Testing the variational equation with u_o on $\Omega_{\tau} = \Omega \times (0, \tau)$ for a (small) time $\tau > 0$, we obtain

$$\mathfrak{B}[u(\tau), u_o] + \iint_{\Omega_{\tau}} \underbrace{f(x, u, Du)}_{\geq 0} \mathrm{d}x \mathrm{d}t \leq \tau \underbrace{\int_{\Omega} f(x, u_o, Du_o) \mathrm{d}x}_{=:M < \infty}$$

Letting $\tau \downarrow 0$, we deduce

 $\lim_{\tau\downarrow 0}\mathfrak{B}[u(\tau),u_o]=0.$

Modified Minimizing Movements Passing to the limit Properties of the limit map

The Initial Datum II

Now with the Cauchy-Schwarz inequality and the monotonicity lemma

$$\begin{split} &\int_{\Omega} \left| \phi(u(\tau)) - \phi(u_o) \right| \mathrm{d}x \\ &\leq C \left[\int_{\Omega} \left| \sqrt{\phi(u(\tau))} - \sqrt{\phi(u_o)} \right|^2 \mathrm{d}x \right]^{\frac{1}{2}} \left[\int_{\Omega} \left[\phi(u(\tau)) + \phi(u_o) \right] \mathrm{d}x \right]^{\frac{1}{2}} \\ &\leq C \underbrace{\sqrt{\mathfrak{B}[u(\tau), u_o]}}_{\longrightarrow 0} \left[\int_{\Omega} \left[\phi(u(\tau)) + \phi(u_o) \right] \mathrm{d}x \right]^{\frac{1}{2}}. \end{split}$$

This implies that u attains the initial data in the sense

$$u(\tau) \to u_o \text{ in } L^{\phi}(\Omega) \text{ as } \tau \downarrow 0.$$

Variational formulation of the problem	Modified Minimizing Movements
	Passing to the limit
Strategy of the proof	Properties of the limit map

Merry Christmas!