A variational approach to doubly nonlinear equations with nonstandard growth

Christoph Scheven University of Duisburg-Essen, Germany

Monday's Nonstandard Seminar
December 21, 2020

Overview

(1) Variational formulation of the problem
2. Existence results
(3) Strategy of the proof

The main results are due to a joint work with

- Verena Bögelein (Salzburg)
- Frank Duzaar (Erlangen-Nürnberg)
- Paolo Marcellini (Firenze)

I. Variational formulation of the problem

The model problem

Cauchy-Dirichlet problem:

Find $u: \Omega_{T} \rightarrow[0, \infty)$ with

$$
\left\{\begin{array}{cl}
\partial_{t} u^{m}-\operatorname{div}\left(|D u|^{p-2} D u\right)=0 & \text { in } \Omega_{T} \tag{1}\\
u=g & \text { on } \partial_{\mathrm{par}} \Omega_{T}
\end{array}\right.
$$

where here,

- $\Omega \subset \mathbb{R}^{n}$ is a bounded domain, $T>0, \Omega_{T}:=\Omega \times(0, T)$.
- $m>0, p>1$.
- $g: \partial_{\mathrm{par}} \Omega_{T} \rightarrow[0, \infty)$ are prescribed boundary values.

This generalizes both the porous medium equation $(p=2)$ and the parabolic p-Laplace equation $(m=1)$.

Variational Formulation I

We test (1) with

$$
\varphi=w-u
$$

for a comparison map $w: \Omega_{T} \rightarrow[0, \infty)$ with $w=u$ on the lateral boundary $\partial \Omega \times(0, T)$. This leads to

$$
\underbrace{\iint_{\Omega_{T}} \partial_{t} u^{m}(w-u) \mathrm{d} x \mathrm{~d} t}_{=: \mathrm{I}}+\underbrace{\iint_{\Omega_{T}}|D u|^{p-2} D u \cdot(D w-D u) \mathrm{d} x \mathrm{~d} t}_{=: \mathrm{II}}=0
$$

By the convexity of $\mathbb{R}^{n} \ni \xi \mapsto \frac{1}{p}|\xi|^{p}$ we have

$$
\frac{1}{p}|D u|^{p}+|D u|^{p-2} D u \cdot(D w-D u) \leq \frac{1}{p}|D w|^{p} .
$$

Variational Formulation II

$$
\underbrace{\iint_{\Omega_{T}} \partial_{t} u^{m}(w-u) \mathrm{d} x \mathrm{~d} t}_{=: \mathrm{I}}+\underbrace{\iint_{\Omega_{T}}|D u|^{p-2} D u \cdot(D w-D u) \mathrm{d} x \mathrm{~d} t}_{=: \mathrm{II}}=0
$$

By convexity,

$$
\mathrm{II} \leq \frac{1}{p} \iint_{\Omega_{T}}|D w|^{p} \mathrm{~d} x \mathrm{~d} t-\frac{1}{p} \iint_{\Omega_{T}}|D u|^{p} \mathrm{~d} x \mathrm{~d} t
$$

Integration by parts and elementary calculations imply

$$
\begin{aligned}
& \mathrm{I}=\iint_{\Omega_{T}} \partial_{t} w\left(w^{m}-u^{m}\right) \mathrm{d} x \\
&+\int_{\Omega} \mathfrak{b}[u(0), w(0)] \mathrm{d} x-\int_{\Omega} \mathfrak{b}[u(T), w(T)] \mathrm{d} x
\end{aligned}
$$

with $\mathfrak{b}[u, w]:=\frac{1}{m+1} w^{m+1}-\left[\frac{1}{m+1} u^{m+1}+u^{m}(w-u)\right] \geq 0$

Variational Formulation III

This leads to the variational inequality

$$
\left.\begin{array}{rl}
\iint_{\Omega_{T}} \frac{1}{p}|D u|^{p} \mathrm{~d} x \mathrm{~d} t \leq \iint_{\Omega_{T}}\left[\frac{1}{p}|D w|^{p}+\partial_{t} w\left(w^{m}-u^{m}\right)\right] \mathrm{d} x \mathrm{~d} t
\end{array}\right] . \underbrace{\int_{\Omega} \mathfrak{b}[u(0), w(0)] \mathrm{d} x-\int_{\Omega} \mathfrak{b}[u(T), w(T)] \mathrm{d} x}_{=: \mathfrak{B}[u(0), w(0)]-\mathfrak{B}[u(T), w(T)]}]
$$

for any $w: \Omega_{T} \rightarrow[0, \infty)$ with $\partial_{t} w \in L^{\frac{m+1}{m}}\left(\Omega_{T}\right)$ and $w=u$ on $\partial \Omega \times(0, T)$.
In the case $m=1$ the boundary term simplifies to

$$
\mathfrak{b}[u, w]=\frac{1}{2}|u-w|^{2}
$$

so that the usual $L^{2}(\Omega)$-boundary terms appear in the variational inequality.

The Nonlinearity b

We replace the term u^{m} by a nonlinearity $b:[0, \infty) \rightarrow[0, \infty)$

- which is continuous and piecewise C^{1} with $b(0)=0$,
- and satisfies

$$
\begin{equation*}
0<\ell \leq \frac{u b^{\prime}(u)}{b(u)} \leq m \tag{2}
\end{equation*}
$$

whenever $u>0, b(u)>0$ and $b^{\prime}(u)$ exists.

Assumption (2) implies the nonstandard growth condition

$$
b(1) \min \left\{u^{\ell}, u^{m}\right\} \leq b(u) \leq b(1) \max \left\{u^{\ell}, u^{m}\right\} \quad \text { for all } u>0 .
$$

Orlicz Spaces

The primitive $\phi:[0, \infty) \rightarrow[0, \infty)$ is defined by

$$
\phi(u):=\int_{0}^{u} b(s) \mathrm{d} s \quad \forall u \geq 0
$$

Note that ϕ is convex with $\phi(0)=0$ and that (2) implies that ϕ satisfies the $\Delta_{2^{-}}$and $\nabla_{2^{-}}$-conditions. We consider the Orlicz-space

$$
\mathrm{L}^{\phi}(\Omega)=\left\{w: \Omega \rightarrow \mathbb{R}, \text { measurable }: \int_{\Omega} \phi(|w|) \mathrm{d} x<\infty\right\}
$$

Assumption (2) implies the nonstandard growth condition

$$
\phi(1) \min \left\{u^{\ell+1}, u^{m+1}\right\} \leq \phi(u) \leq \phi(1) \max \left\{u^{\ell+1}, u^{m+1}\right\}
$$

for all $u \geq 0$.

The Integrand f

Instead of the model integrand $\frac{1}{p}|\xi|^{p}$, we consider an general integrand $f: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that the following convexity and coercivity conditions hold:

$$
\left\{\begin{array}{c}
\mathbb{R} \times \mathbb{R}^{n} \ni(u, \xi) \rightarrow f(x, u, \xi) \text { is convex for a.e. } x \in \Omega \\
f(x, u, \xi) \geq \nu|\xi|^{p} \text { for }(x, u, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^{n} .
\end{array}\right.
$$

- We do not require any growth condition from above.
- More generally, we can assume

$$
f(x, u, \xi) \geq \nu|\xi|^{p}-g(x)(1+|u|)
$$

for $(x, u, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^{n}$, with $g \in \mathrm{~L}^{1}(\Omega) \cap \mathrm{L}^{\phi^{*}}(\Omega)$.

The (time-independent) boundary values

We consider initial values $u_{0}: \Omega \rightarrow[0, \infty)$ (which also play the role of time-independent boundary values) that satisfy

$$
u_{0} \in L^{\phi}(\Omega) \text { and } \int_{\Omega} f\left(x, u_{0}, D u_{0}\right) \mathrm{d} x<\infty .
$$

For the given data, we wish to solve the Cauchy-Dirichlet problem

$$
\left\{\begin{array}{cl}
\partial_{t} b(u)-\operatorname{div} D_{\xi} f(x, u, D u)=-D_{u} f(x, u, D u) & \text { in } \Omega_{T} \\
u=u_{o} & \text { on } \partial_{\mathrm{par}} \Omega_{T}
\end{array}\right.
$$

which generalizes the model case (1) from above.

Variational formulation and integral convexity

Similarly as in the model case, the convexity of f implies

$$
\begin{aligned}
& D_{\xi} f(x, u, D u) \cdot D(w-u)+D_{u} f(x, u, D u)(w-u) \\
& \quad \leq f(x, w, D w)-f(x, u, D u) .
\end{aligned}
$$

Actually, what we need in the argument is the convexity of the integral

$$
\boldsymbol{F}(u):=\int_{\Omega} f(x, u, D u) \mathrm{d} x
$$

rather than the convexity of the integrand.
Theorem (Bögelein, Dacorogna, Duzaar, Marcellini, S., 2020)
For gradient flows $(b(u)=u)$ for functionals with p-growth, integral convexity is necessary and sufficient for existence of variational solutions. (Also in the case of systems.)

Variational formulation: the time term

For the term involving the time derivative, we calculate (formally)

$$
\begin{aligned}
& \iint_{\Omega_{T}} \quad \partial_{t} b(u)(w-u) \mathrm{d} x \\
& =\iint_{\Omega_{T}} \partial_{t} w(b(w)-b(u)) \mathrm{d} x \\
& \quad \quad+\int_{\Omega} \mathfrak{b}[u(0), w(0)] \mathrm{d} x-\int_{\Omega} \mathfrak{b}[u(T), w(T)] \mathrm{d} x
\end{aligned}
$$

with the boundary term

$$
\mathfrak{b}[u, w]:=\phi(w)-[\phi(u)+b(u)(w-u)] \geq 0
$$

As mentioned before, $\mathfrak{b}[u, w]=\frac{1}{2}|u-w|^{2}$ in the case $b(u)=u$.

Variational Solutions

Definition

A non-negative measurable map $u: \Omega_{T} \rightarrow[0, \infty)$ in the class

$$
u \in \mathrm{C}^{0}\left([0, T] ; \mathrm{L}^{\phi}(\Omega)\right) \cap \mathrm{L}^{p}\left(0, T ; u_{o}+\mathrm{W}_{0}^{1, p}(\Omega)\right)
$$

is called variational solution if and only if the variational inequality

$$
\begin{aligned}
& \mathfrak{B}[u(\tau), w(\tau)]+\iint_{\Omega_{\tau}} f(x, u, D u) \mathrm{d} x \mathrm{~d} t \\
& \quad \leq \mathfrak{B}\left[u_{o}, w(0)\right]+\iint_{\Omega_{\tau}}\left[f(x, w, D w)+\partial_{t} w(b(w)-b(u))\right] \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

holds true for any $\tau \in[0, T]$, and any $w \in \mathrm{~L}^{p}\left(0, T ; u_{o}+\mathrm{W}_{0}^{1, p}(\Omega)\right)$ with $\partial_{t} w \in \mathrm{~L}^{\phi}\left(\Omega_{T}\right)$ and $w(0) \in \mathrm{L}^{\phi}(\Omega)$.

Here, $\mathfrak{B}[u, w]:=\int_{\Omega}[\phi(w)-\phi(u)-b(u)(w-u)] \mathrm{d} x$. Here, $\mathfrak{R}[\mu \quad \mathrm{w}] \cdot=\underline{1} \int|w-\mu|^{2} \mathrm{~d} x$ if $h(\mu)=\mu$

II. Existence results

The General Existence Result

Theorem (Bögelein, Duzaar, Marcellini, S., ARMA 2018)

Suppose that the non-linearity b, the integrand f and the initial datum u_{0} are as before. Then there exists a variational solution

$$
u \in \mathrm{C}^{0}\left([0, T] ; \mathrm{L}^{\phi}(\Omega)\right) \cap \mathrm{L}^{p}\left(0, T ; u_{o}+\mathrm{W}_{0}^{1, p}(\Omega)\right)
$$

in the sense of the previous definition. The solution satisfies

$$
\partial_{t} \sqrt{\phi(u)} \in \mathrm{L}^{2}\left(\Omega_{T}\right)
$$

and attains the initial datum u_{0} in the $\mathrm{C}^{0}-\mathrm{L}^{\phi}$-sense.

Weak solutions

Under additional assumptions, the variational solutions constructed in the preceding theorem are distributional solutions of

$$
\left\{\begin{array}{cl}
\partial_{t} b(u)-\operatorname{div} D_{\xi} f(x, u, D u)=-D_{u} f(x, u, D u) & \text { in } \Omega_{T}, \\
u=u_{0} & \text { on } \partial_{\mathrm{par}} \Omega_{T},
\end{array}\right.
$$

The examples include general nonlinearities $b(u)$ with

$$
1 \leq \ell \leq \frac{u b^{\prime}(u)}{b(u)} \leq m
$$

and functionals with nonstandard growth such as

- $f(x, \xi):=\alpha(x)|\xi|^{p}+\beta(x)|\xi|^{q}$,

$$
(1<p<q \leq p+1, \alpha(x)+\beta(x)>0)
$$

- $f(\xi):=|\xi|^{p} \log (1+|\xi|)$;
- $f(\xi):=e^{\sqrt{1+|\xi|^{2}}}$.

Extensions

The preceding existence result has been extended in various directions:

- to unbounded domains, in particular to the Cauchy-problem on $\Omega=\mathbb{R}^{n}$ (Bögelein, Duzaar, Marcellini, S., ARMA 2018);
- to time-dependent boundary values (Bögelein, Duzaar, Marcellini, S., Rend. Lincei 2018);
- to doubly nonlinear systems with $b(u)=u^{m}, m>1$, and time-dependent boundary values (Schätzler, J. Elliptic Parabol. Equ 2019)

Known Results I

- Grange \& Mignot (1972), Alt \& Luckhaus (1983): equations/systems of the type

$$
\partial_{t} b(u)-\operatorname{div}(\boldsymbol{A}(b(u), D u))=f(b(u))
$$

with $u=g$ on $\partial_{\text {par }} \Omega_{T}$. The coefficients \boldsymbol{A} satisfy

$$
\begin{gathered}
|\boldsymbol{A}(s, \xi)| \leq C\left(1+|\xi|^{p-1}\right) \\
(\boldsymbol{A}(s, \xi)-\boldsymbol{A}(s, \eta)) \cdot(\xi-\eta) \geq C_{o}|\xi-\eta|^{p}
\end{gathered}
$$

b is the continuous gradient of a convex C^{1}-function ϕ.
The boundary values satisfy

$$
\left\{\begin{array}{l}
g \in \mathrm{~L}^{p}\left(0, T ; \mathrm{W}^{1, p}(\Omega)\right) \cap \mathrm{L}^{\infty}\left(\Omega_{T}\right), \\
\partial_{t} g \in \mathrm{~L}^{1}\left(0, T ; \mathrm{L}^{\infty}(\Omega)\right)
\end{array}\right.
$$

Proof by Galerkin type method.

Known Results II

- Bernis (1988): Higher order doubly non-linear equations on unbounded domains.
- Ivanov \& Mkrtychyan (1992, 1997): Existence of Hölder continuous solutions to equations of the type

$$
\partial_{t} u-\operatorname{div}\left(u^{m-1}|D u|^{p-2} D u\right)=0 .
$$

Existence via approximation by strictly positive solutions and a-priori Hölder-estimates.

- Akagi \& Stefanelli (2011): Equations of the type

$$
b\left(\partial_{t} u\right)-\operatorname{div}\left(|D u|^{p-2} D u\right)=0
$$

Existence via elliptic regularization.

Known Results III

- Akagi \& Stefanelli (2014):

$$
\begin{aligned}
\partial_{t} b(u) & -\operatorname{div}(\boldsymbol{A}(D u))=f \\
\underset{v:=b(u)}{\Longleftrightarrow} & -\operatorname{div}\left(\boldsymbol{A}\left(D b^{-1}(v)\right)\right)=f-\partial_{t} v
\end{aligned}
$$

for b and \boldsymbol{A} with polynomial growth.
Existence for the dual problem via elliptic regularization.

- Ambrosio \& Gigli \& Savare (2008): Gradient flows in metric spaces.

III. Strategy of the proof

Modified Minimizing Movements
Passing to the limit
Properties of the limit map

Modified Minimizing Movements

- Fix a step size $h \in(0,1]$. The goal is to construct approximations u_{i} of the solution at times $t=i h, i \in \mathbb{N}_{0}$.
- Let $u_{0}=u_{0}$.
- Suppose that for some $i \in \mathbb{N}$ with ih $\leq T$ the non-negative $\operatorname{map} 0 \leq u_{i-1} \in \mathrm{~L}^{\phi}(\Omega) \cap\left(u_{o}+\mathrm{W}_{0}^{1, p}(\Omega)\right)$ has been defined.
- In the case $b(u)=u$, we define u_{i} as the minimizer of

$$
\boldsymbol{F}_{i}[v]:=\int_{\Omega} f(x, v, D v) \mathrm{d} x+\frac{1}{2 h} \int_{\Omega}\left|u_{i-1}-v\right|^{2} \mathrm{~d} x
$$

in the class of functions $0 \leq v \in \mathrm{~L}^{2}(\Omega) \cap\left(u_{o}+\mathrm{W}_{0}^{1, p}(\Omega)\right)$.

- In the general case, we define u_{i} as the minimizer of

$$
\boldsymbol{F}_{i}[v]:=\int_{\Omega} f(x, v, D v) \mathrm{d} x+\frac{1}{h} \int_{\Omega} \mathfrak{b}\left[u_{i-1}, v\right] \mathrm{d} x
$$

in the class of functions $0 \leq v \in \mathrm{~L}^{\phi}(\Omega) \cap\left(u_{o}+\mathrm{W}_{0}^{1, p}(\Omega)\right)$.
Minimizers exist by the Direct Method of the Calculus of

The Euler operator for the time term

For a test function $\psi \in C_{0}^{\infty}(\Omega)$, we consider variations $u_{i}+s \psi$, $s \in(-\varepsilon, \varepsilon)$, of the minimizers u_{i} and calculate

$$
\begin{aligned}
& \left.\frac{d}{d s}\right|_{s=0}\left(\frac{1}{h} \int_{\Omega} \mathfrak{b}\left[u_{i-1}, u_{i}+s \psi\right] \mathrm{d} x\right) \\
& =\left.\frac{1}{h} \int_{\Omega} \frac{\partial}{\partial s}\right|_{s=0}\left[\phi\left(u_{i}+s \psi\right)-\phi\left(u_{i-1}\right)-b\left(u_{i-1}\right)\left(u_{i}+s \psi-u_{i-1}\right)\right] \mathrm{d} x \\
& =\frac{1}{h} \int_{\Omega}\left[\phi^{\prime}\left(u_{i}\right) \psi-b\left(u_{i-1}\right) \psi\right] \mathrm{d} x \\
& =\int_{\Omega} \frac{b\left(u_{i}\right)-b\left(u_{i-1}\right)}{h} \psi \mathrm{~d} x
\end{aligned}
$$

Energy Estimates I

Observe that u_{i-1} is an admissible competitor for u_{i}, and therefore $\boldsymbol{F}_{i}\left[u_{i}\right] \leq \boldsymbol{F}_{i}\left[u_{i-1}\right]$. This can be iterated and leads to

$$
\underbrace{\int_{\Omega} f\left(x, u_{k}, D u_{k}\right) \mathrm{d} x}_{\geq \nu\left|D u_{k}\right|^{p}}+\frac{1}{h} \sum_{i=1}^{k} \int_{\Omega} \mathfrak{b}\left[u_{i-1}, u_{i}\right] \mathrm{d} x \leq \underbrace{\int_{\Omega} f\left(x, u_{o}, D u_{o}\right) \mathrm{d} x}_{=: M<\infty}
$$

whenever $k \in \mathbb{N}$ with $k h \leq T$.

Monotonicity

For the boundary term $\mathfrak{b}[u, w]$, we have the following bounds:

Lemma

For any $u, w \geq 0$, we have

$$
\begin{aligned}
\mathfrak{b}[u, w] & \leq(b(u)-b(w))(u-w) \\
& \leq C|\sqrt{\phi(u)}-\sqrt{\phi(w)}|^{2} \\
& \leq C^{2} \mathfrak{b}[u, w]
\end{aligned}
$$

with a constant $C=C(\ell, m) \geq 1$.
The proof relies on the assumption

$$
\ell \leq \frac{u b^{\prime}(u)}{b(u)} \leq m
$$

Energy Estimates II

From the previous energy estimate we immediately obtain:

$$
\begin{align*}
& \frac{1}{h} \sum_{i=1}^{k} \int_{\Omega}\left|\sqrt{\phi\left(u_{i}\right)}-\sqrt{\phi\left(u_{i-1}\right)}\right|^{2} \mathrm{~d} x \\
& \quad \leq \frac{c}{h} \sum_{i=1}^{k} \int_{\Omega} \mathfrak{b}\left[u_{i-1}, u_{i}\right] \mathrm{d} x \leq C(\ell, m) M \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left|D u_{k}\right|^{p} \mathrm{~d} x \leq \frac{M}{\nu} \tag{4}
\end{equation*}
$$

whenever $k \in \mathbb{N}$ with $k h \leq T$. Furthermore,

$$
\begin{align*}
\int_{\Omega} \phi\left(u_{k}\right) \mathrm{d} x & \leq 2 k \sum_{i=1}^{k} \int_{\Omega}\left|\sqrt{\phi\left(u_{i}\right)}-\sqrt{\phi\left(u_{i-1}\right)}\right|^{2} \mathrm{~d} x+2 \int_{\Omega} \phi\left(u_{o}\right) \mathrm{d} x \\
& \leq 2 T M+2 \int_{\Omega} \phi\left(u_{o}\right) \mathrm{d} x . \tag{5}
\end{align*}
$$

Construction of the Limit Map I

From now on we consider only such $h \in(0,1]$ such that $h_{k}=T / k$ with $k \in \mathbb{N}$. From the construction before we obtain minimizers $u_{i}^{(k)}$ with $i \in\{0,1, \ldots k\}$.

We define $u^{(k)}: \Omega \times\left(-h_{k}, T\right] \rightarrow[0, \infty)$ by

$$
u^{(k)}(\cdot, t):=u_{i}^{(k)} \text { for } t \in\left((i-1) h_{k}, i h_{k}\right], i \in\{0, \ldots, k\} .
$$

The preceding estimates for $u_{i}^{(k)}$ imply the uniform energy bound

$$
\begin{align*}
& \left.\left.\sup _{t \in[0, T]} \int_{\Omega}\left[\phi\left(u^{(k)}(t)\right)+\mid D u^{(k)}(t)\right)\right|^{p}\right] \mathrm{d} x \\
& \quad+\iint_{\Omega_{T}}\left|\partial_{t}^{\left(-h_{k}\right)} \sqrt{\phi\left(u^{(k)}\right)}\right|^{2} \mathrm{~d} x \mathrm{~d} t \leq C \tag{6}
\end{align*}
$$

where the constant C is independent of k.

Construction of the Limit Map II

From (6) we conclude that

$$
\left(u^{(k)}\right)_{k \in \mathbb{N}} \text { is uniformly bounded in } \mathrm{L}^{\infty}\left(0, T ; \mathrm{W}^{1, p}(\Omega)\right) .
$$

Therefore, we find a subsequence (still denoted by k) and

$$
u \in \mathrm{~L}^{\infty}\left(0, T ; u_{o}+\mathrm{W}_{0}^{1, p}(\Omega)\right)
$$

such that

$$
u^{(k)} \stackrel{*}{\rightarrow} u \text { weakly* in } \mathrm{L}^{\infty}\left(0, T ; \mathrm{W}^{1, p}(\Omega)\right) .
$$

Construction of the Limit Map III: Compactness

Compactness lemma

The energy estimate

$$
\begin{equation*}
\max _{i \in\{0,1, \ldots k\}} \int_{\Omega} \phi\left(u_{i}^{(k)}\right) \mathrm{d} x+\sup _{i \in\{0,1, \ldots k\}} \int_{\Omega}\left|D u_{i}^{(k)}\right|^{p} \mathrm{~d} x \leq C, \tag{7}
\end{equation*}
$$

and the continuity estimate

$$
\begin{equation*}
\frac{1}{h} \sum_{i=1}^{k} \int_{\Omega}\left|\sqrt{\phi\left(u_{i}^{(k)}\right)}-\sqrt{\phi\left(u_{i-1}^{(k)}\right)}\right|^{2} \mathrm{~d} x \leq C(\ell, m) M \tag{8}
\end{equation*}
$$

imply, after passing to a subsequence, that

$$
\left\{\begin{aligned}
\sqrt{\phi\left(u^{(k)}\right)} & \rightarrow \sqrt{\phi(u)} & & \text { strongly in } L^{1}\left(\Omega_{T}\right), \\
u^{(k)} & \rightarrow u & & \text { a.e. in } \Omega_{T} .
\end{aligned}\right.
$$

Compactness lemma

$$
\begin{align*}
& \max _{i \in\{0,1, \ldots k\}} \int_{\Omega} \phi\left(u_{i}^{(k)}\right) \mathrm{d} x+\sup _{i \in\{0,1, \ldots k\}} \int_{\Omega}\left|D u_{i}^{(k)}\right|^{p} \mathrm{~d} x \leq C, \tag{7}\\
& \text { and } \frac{1}{h} \sum_{i=1}^{k} \int_{\Omega}\left|\sqrt{\phi\left(u_{i}^{(k)}\right)}-\sqrt{\phi\left(u_{i-1}^{(k)}\right)}\right|^{2} \mathrm{~d} x \leq C(\ell, m) M, \tag{8}\\
& \Longrightarrow\left\{\begin{array}{cl}
\sqrt{\phi\left(u^{(k)}\right)} \rightarrow \sqrt{\phi(u)} & \text { strongly in } L^{1}\left(\Omega_{T}\right), \\
u^{(k)} \rightarrow u & \text { a.e. in } \Omega_{T} .
\end{array}\right.
\end{align*}
$$

- This lemma can be interpreted as a Jacques Simon type compactness result adapted to doubly nonlinear equations.
- For the proof, we relied on techniques by Alt \& Luckhaus.

Construction of the Limit Map IV: Time Derivative

From (6), we recall the uniform estimate

$$
\iint_{\Omega_{T}}\left|\partial_{t}^{\left(-h_{k}\right)} \sqrt{\phi\left(u^{(k)}\right)}\right|^{2} \mathrm{~d} x \mathrm{~d} t \leq C M
$$

Extract a further subsequence such that

$$
\partial_{t}^{\left(-h_{k}\right)} \sqrt{\phi\left(u^{(k)}\right)} \rightharpoondown w \text { weakly in } \mathrm{L}^{2}\left(\Omega_{T}\right)
$$

Since $\sqrt{\phi\left(u^{(k)}\right)} \rightarrow \sqrt{\phi(u)}$ strongly in $\mathrm{L}^{1}\left(\Omega_{T}\right)$, we have

$$
w=\partial_{t} \sqrt{\phi(u)}
$$

We deduce $\partial_{t} \sqrt{\phi(u)} \in L^{2}\left(\Omega_{T}\right)$, with the estimate

$$
\iint_{\Omega_{T}}\left|\partial_{t} \sqrt{\phi(u)}\right|^{2} \mathrm{~d} x \mathrm{~d} t \leq C \underbrace{\int_{\Omega} f\left(x, u_{o}, D u_{0}\right) \mathrm{d} x}_{\equiv M}
$$

Variational Inequality for the Limit Map I

Let

$$
\boldsymbol{F}^{k}[v]:=\iint_{\Omega_{T}}\left(f(x, v, D v)+\frac{1}{h_{k}} \mathfrak{b}\left[u^{(k)}\left(t-h_{k}\right), v(t)\right]\right) \mathrm{d} x \mathrm{~d} t
$$

Then, $u^{(k)}$ minimizes \boldsymbol{F}^{k}, i.e.

$$
\boldsymbol{F}^{k}\left[u^{(k)}\right] \leq \boldsymbol{F}^{k}[v]
$$

for any $0 \leq v \in \mathrm{~L}^{\phi}\left(\Omega_{T}\right) \cap \mathrm{L}^{p}\left(0, T ; u_{o}+\mathrm{W}_{0}^{1, p}(\Omega)\right)$. We test the minimality with the admissible comparison map

$$
w_{s}:=u^{(k)}+s\left(v-u^{(k)}\right), \quad s \in(0,1)
$$

and use the convexity of $\int_{\Omega} f(x, v, D v)$. Letting $s \downarrow 0$, we get

$$
\begin{aligned}
& \iint_{\Omega_{T}} f\left(x, u^{(k)}, D u^{(k)}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad \leq \iint_{\Omega_{T}}\left(f(x, v, D v)+\Delta_{-h_{k}} b\left(u^{(k)}\right)\left(v-u^{(k)}\right)\right) \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

Variational Inequality for the Limit Map II

By lower semicontinuity

$$
\iint_{\Omega_{T}} f(x, u, D u) \mathrm{d} x \mathrm{~d} t \leq \liminf _{k \rightarrow \infty} \iint_{\Omega_{T}} f\left(x, u^{(k)}, D u^{(k)}\right) \mathrm{d} x \mathrm{~d} t
$$

Formally, in the limit $k \rightarrow \infty$ we have

$$
\begin{aligned}
& \iint_{\Omega_{T}} \underbrace{\Delta_{-h_{k}} b\left(u^{(k)}\right)}_{\rightarrow \partial_{t} b(u)}(\underbrace{v-u^{(k)}}_{\rightarrow v-u}) \mathrm{d} x \mathrm{~d} t \rightarrow \iint_{\Omega_{T}} \partial_{t} b(u)(v-u) \mathrm{d} x \mathrm{~d} t \\
& \quad=\iint_{\Omega_{\tau}} \partial_{t} v(b(v)-b(u)) \mathrm{d} x \mathrm{~d} t+\mathfrak{B}\left[u_{o}, v(0)\right]-\mathfrak{B}[u(T), v(T)] .
\end{aligned}
$$

This formal argument can be made rigorous by a discrete integration by parts formula.

The Initial Datum I

Testing the variational equation with u_{o} on $\Omega_{\tau}=\Omega \times(0, \tau)$ for a (small) time $\tau>0$, we obtain

$$
\mathfrak{B}\left[u(\tau), u_{0}\right]+\iint_{\Omega_{\tau}} \underbrace{f(x, u, D u)}_{\geq 0} \mathrm{~d} x \mathrm{~d} t \leq \tau \underbrace{\int_{\Omega} f\left(x, u_{o}, D u_{o}\right) \mathrm{d} x}_{=: M<\infty}
$$

Letting $\tau \downarrow 0$, we deduce

$$
\lim _{\tau \downarrow 0} \mathfrak{B}\left[u(\tau), u_{o}\right]=0
$$

The Initial Datum II

Now with the Cauchy-Schwarz inequality and the monotonicity lemma

$$
\begin{aligned}
& \int_{\Omega}\left|\phi(u(\tau))-\phi\left(u_{0}\right)\right| \mathrm{d} x \\
& \leq C\left[\int_{\Omega}\left|\sqrt{\phi(u(\tau))}-\sqrt{\phi\left(u_{o}\right)}\right|^{2} \mathrm{~d} x\right]^{\frac{1}{2}}\left[\int_{\Omega}\left[\phi(u(\tau))+\phi\left(u_{o}\right)\right] \mathrm{d} x\right]^{\frac{1}{2}} \\
& \leq C \underbrace{\sqrt{\mathfrak{B}\left[u(\tau), u_{0}\right]}}_{\longrightarrow 0}\left[\int_{\Omega}\left[\phi(u(\tau))+\phi\left(u_{o}\right)\right] \mathrm{d} x\right]^{\frac{1}{2}} .
\end{aligned}
$$

This implies that u attains the initial data in the sense

$$
u(\tau) \rightarrow u_{0} \text { in } L^{\phi}(\Omega) \text { as } \tau \downarrow 0
$$

Merry Christmas!

