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Agnieszka Świerczewska-Gwiazda
University of Warsaw

joint work with Piotr Gwiazda (University of Warsaw), Miroslaw
Bulicek (Charles University in Prague), Martin Kalousek (Charles

University in Prague)

Warsaw, 14th December 2020
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What is the goal?

Let Ω ⊂ RN be a bounded Lipschitz domain. A parameter ε > 0 is
considered to be small in comparison to the size of the domain Ω.
Given F and a nonlinear operator A we study elliptic systems

divA
(x
ε
,∇uε

)
= divF in Ω,

uε = 0 on ∂Ω,
(1)

where uε : Ω→ RN is an unknown.

As the length scale of oscillating coefficients is visibly smaller
than the size of the domain, studying such an equation would
be to much complex, and thus in the homogenisation process
we let ε→ 0 in (1).

We expect to show that uε → u, where the limit u solves the
nonlinear elliptic problem with an operator independent of a
spatial variable.
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Inhomogeneous problems

The spatial inhomogeneity in the studies on homogenisation is
motivated by the phenomena of creating porous structure
under the influence of electric field.

Formation of such structures in oxides of metals, such as
aluminium and titanium, appearing in the process of
anodisation is an example of such a phenomena.

It was observed in experiments that in the growing oxide layer
spatially irregular pores are formed. This occurrence is caused
due to dependence of oxide conductivity on the electric field.

A benefit of an anodisation process is that an oxide film
increases resistance to corrosion and wear, as well as provides
better adhesion for paint primers and glues than bare metal
itself.
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Homogenization of inhomogeneous problems -
essential mathematical summary

In mathematical understanding, homogenization is understood
as nothing else than averaging PDEs with oscillating
coefficients.

The dependence of an N-function on spatial variable has a
significant impact on the problem as consequently the
homogenisation process will change the underlying function
spaces and the nonlinear elliptic operator at each step.
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Homogenization of elliptic operators with growth in
inhomogenous anisotropic Musielak-Orlicz spaces

Existence and homogenization of nonlinear elliptic systems in nonreflexive
spaces (joint work with Miroslav Buĺıcek, Piotr Gwiazda and Martin
Kalousek), Nonlinear Anal. (2020),

Homogenization of nonlinear elliptic systems in nonreflexive
Musielak-Orlicz spaces (joint work with Miroslav Buĺıcek, Piotr Gwiazda
and Martin Kalousek) Nonlinearity (2019).
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Świerczewska-Gwiazda, Aneta Wróblewska-Kamińska
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Definition of N-function

Suppose Ω ⊂ RN is a bounded connected set. A function
M : Ω× Rd → [0,∞) is called an N -function if it satisfies the
following conditions:

1 M is a Carathéodory function (i.e. measurable with respect to
x and continuous with respect to the second variable);

2 M(x , 0) = 0 and ξ 7→ M(x , ξ) is a convex function for a.a.
x ∈ Ω;

3 M(x , ξ) = M(x ,−ξ) for a.a. x ∈ Ω and all ξ ∈ Rd ;

4 there exist two convex functions m1,m2 : [0,∞)→ [0,∞)
positive on (0,∞), such that m1(0) = 0 = m2(0) and

lim
s→0+

m1(s)

s
= 0 = lim

s→0+

m2(s)

s
and lim

s→∞

m1(s)

s
= ∞ = lim

s→∞

m2(s)

s
,

and for a.a. x ∈ Ω

m1(|ξ|) ≤ M(x , ξ) ≤ m2(|ξ|).
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Some properties of Orlicz spaces

Let M(x , ξ) : Ω× Rd → [0,∞) be an N-function, then:
The Orlicz class LM(Ω) is the set of all measurable functions
ξ : Ω→ RN such that ∫

Ω
M(x , ξ)dx <∞.

By LM(Ω) we denote the vector valued Orlicz space which is the
set of all measurable functions ξ : Ω→ Rn which satisfy∫

Ω
M(x , λξ(x))dx → 0 asλ→ 0.

The generalized Orlicz space is a Banach space with respect to
the Luxemburg norm

‖ξ‖ = inf

{
λ > 0 :

∫
Ω
M

(
x ,
ξ

λ

)
dx ≤ 1

}
.
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Some properties of Orlicz spaces

The space EM

By EM(Ω) we denote the closure of L∞(Ω) in LM(Ω)

(EM)∗ = LM∗

If M does not satisfy ∆2–condition, then EM  LM  LM

If M satisfies ∆2–condition, LM is separable and
LM = EM = LM .

∆2–condition

We say that an N–function M satisfies ∆2–condition if for some
constant C > 0

M(x , 2ξ) ≤ CM(x , ξ) for all ξ ∈ RN .
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Modular convergence

Definition

A sequence z j converges modularly to z in LM(Ω) if there exists
λ > 0 such that

∫
Ω M

(
(z j − z)/λ

)
dx → 0.

Properties

z j
M−→ z in LM(Ω) modularly if and only if z j → z in measure

and ∃λ > 0 such that {M(λz j)} is uniformly integrable.

Orlicz spaces are separable w.r.t. the modular convergence
and smooth functions are dense
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History

The studies on homogenization of elliptic equations go back to the
fundamental lecture of Tartar

L. Tartar, Cours peccot au Collége de France, partially written by F.
Murat in Séminaire d’Analyse Fonctionelle et Numérique del Université
d’Alger, unpublished., 1979.

and later works

O. A. Oleinik and V. V. Zhikov, On the homogenization of elliptic
operators with almost-periodic coefficients, (1985).

Enrique Sánchez-Palencia, Nonhomogeneous media and vibration theory,
1980.

and are of the highest interest among the properties of elliptic
systems with periodic structure. The homogenization process was
also the starting point for developing the two-scale convergence
technique, which was introduced in

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math.
Anal. (1992)
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Homogenization not in a standard Lp-setting

V. V. Zhikov and S. E. Pastukhova. Homogenization of monotone
operators under conditionsof coercitivity and growth of variable order.
Mat. Zametki, 2011

Growth prescribed by means of variable exponent p(x), so the
corresponding function spaces were varying with respect to
ε→ 0 in the homogenization process.

In Lp(x) setting they required that

1 < pmin ≤ p(x) ≤ pmax <∞,

so the corresponding functions spaces were reflexive and
separable.
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What is the homogenization process?

The homogenization process is letting ε→ 0 in

divA
(x
ε
,∇uε

)
= divF in Ω,

uε = 0 on ∂Ω.

One expects that uε → u, where u is a solution to the following
nonlinear elliptic problem with the nonlinear operator independent
of a spatial variable, i.e.,

div Â(∇u) = divF in Ω,

u = 0 on ∂Ω.

where Â(ξ) :=
∫
Y A(y , ξ +∇wξ(y)) dy ,, Y := (0, 1)d . The

function wξ : Rd → RN is the solution of the cell problem, i.e., wξ

is Y -periodic and solves in the sense of distributions

divA(y , ξ +∇wξ(y)) = 0 in Y .
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Assumptions for A

We first formulate certain minimal assumptions on the operator A,
that will be used in what follows:

1 A is a Carathéodory mapping, i.e., A(·, ξ) is measurable for
any ξ ∈ Rd×N and A(y , ·) is continuous for a.a. y ∈ Rd ,

2 A is Y−periodic, i.e., periodic in each argument
yi , i = 1, . . . , d with the period 1,

3 There exists an N–function M : Rd × Rd×N → [0,∞) and a
constant c > 0 such that for a.a. y ∈ Y and all ξ ∈ Rd×N

there holds

A(y , ξ) · ξ ≥ c(M(y , ξ) + M∗(y ,A(y , ξ))),

4 For all ξ, ζ ∈ Rd×N such that ξ 6= ζ and a.a. y ∈ Y , we have

(A(y , ξ)− A(y , ζ)) · (ξ − ζ)≥0.
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Assumptions on the modular function

(M1) M or conjugate M∗ satisfy ∆2 condition.
or

(M2) M is log-Hölder continuous, that is there exist constants
a > 0 and b ≥ 1, such that for all x , y ∈ Ω with |x − y | ≤ 1

2
and all ξ ∈ RN we have

M(x , ξ)

M(y , ξ)
≤ max

{
|ξ|−

a
log |x−y| , b

− a
log |x−y|

}
.

Assume that there exist constants a2, c1, c2 > 0 and b2 ≥ 1,
such that for all x ∈ Qδ

j and all ξ ∈ RN we have

M(x , ξ)

(Mδ
j (ξ))∗∗

≤ c1 max

{
|ξ|−

a2
log(c2δ) , b

− a2
log(c2δ)

2

}
,

where δ < δ0 = 1
2c2

and Mδ
j (ξ) := inf

x∈Q̃δ
j ∩Ω

M(x , ξ).
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Homogenization - tools

The method of periodic unfolding is one of the tools used in
homogenisation problems, having its origins in Lp setting. It
basically relies on two ideas:

1 Firstly one doubles the dimension by introducing the unfolding
operator Sε.

2 The second equally important element of the periodic
unfolding method is separating the characteristic scales, which
means that every function is decomposed in two parts.
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Unfolding operator

1 This step allows one to use standard weak or strong
convergence result in Lp instead of the tools of two-scale
convergence:
Associate to a function in Lp(Ω) a function v(Sε), which is an
element of Lp(Ω× Y ) and it appears that two-scale
convergence of a sequence in Lp, is equivalent to the weak
convergence in Lp(Ω× Y ) of the unfolded sequence.

Two-scale convergence

A sequence of functions v ε in Lp(Ω), p ∈ (1,∞), is said to
two-scale converge to a limit v0(x , y) ∈ Lp(Ω× Y ) if for any
function ϕ(x , y) ∈ C∞c (Ω,C∞per (Y )) it holds

lim
ε→0

∫
Ω
v ε(x)ϕ(x ,

x

ε
)dx =

∫
Ω

∫
Y
v0(x , y)ϕ(x , y)dxdy .
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How it works in non-reflexive spaces?

The current setting of Musielak-Orlicz spaces, by the reason
of their non-reflexivity, only provides conclusions on the weak∗

compactness of bounded sets.

For our considerations it is more clearly to set a condition on
convergence of unfolded sequence v ε ◦ Sε as a definition of
two-scale convergence, underlining additionally what type of
convergence precisely we have in mind.
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How it works in non-reflexive spaces?

Definition

We say that a sequence of functions {v ε} ⊂ LM(Rd)

(i) converges to v0 weakly∗ two–scale in LM(Rd × Y ) if v ε ◦ Sε
converges to v0 weakly∗ in LM(RN × Y ),

(ii) converges to v0 strongly two–scale in EM(Rd × Y ) if v ε ◦ Sε
converges to v0 strongly in EM(RN × Y ).

The key result is an introduction of a technique, which is not
based on the Hemholtz-like decomposition, but rather deals with
the combination of two–scale limit and the modular convergence.
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Function Sε

we define functions n : R→ Z

n(t) := max{n ∈ Z : n ≤ t} ∀t ∈ R,

and
[x ] := (n(x1), . . . , n(xd)), ∀x ∈ RN .

Set r(x) := x − [x ]. Then obviously for any x ∈ RN , ε > 0, we
have a two–scale decomposition

x = ε
([x
ε

]
+ r

(x
ε

))
,

where r is the reminder function. Then we define for any ε > 0 a
two–scale composition function Sε : RN × Y → RN as

Sε(x , y) := ε
([x
ε

]
+ y
)
.

It follows immediately that

Sε(x , y)→ x uniformly in RN × Y as ε→ 0

since Sε(x , y) = x + ε
(
y − r

(
x
ε

))
.
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Main steps of the proof

1 Properties of cell problem

2 Existence of solutions for a fixed ε

3 Uniform (in ε) estimates

4 Limit passage to the homogenized problem
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What is the homogenization process?

The homogenization process is letting ε→ 0 in

divA
(x
ε
,∇uε

)
= divF in Ω,

uε = 0 on ∂Ω.

One expects that uε → u, where u is a solution to the following
nonlinear elliptic problem with the nonlinear operator independent
of a spatial variable, i.e.,

div Â(∇u) = divF in Ω,

u = 0 on ∂Ω.

where Â(ξ) :=
∫
Y A(y , ξ +∇wξ(y)) dy ,, Y := (0, 1)d . The

function wξ : Rd → RN is the solution of the cell problem, i.e., wξ

is Y -periodic and solves in the sense of distributions

divA(y , ξ +∇wξ(y)) = 0 in Y .
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Existence of weak solutions - important question

Already a well–understood problem in Musielak-Orlicz space

−divA(x ,∇u) = f ,

with assumptions: A has growth conditions prescribed by an
N−function.
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BUT:

For the problem

divA(y , ξ +∇wξ(y)) = 0 in Y .

we need to solve it in a periodic cell

For the problem

div Â(∇u) = divF in Ω,

u = 0 on ∂Ω.

the growth conditions of Â need to be prescribed

Agnieszka Świerczewska-Gwiazda Homogenization of nonlinear elliptic systems



Assumptions on the modular function - once more

(M1) M or conjugate M∗ satisfy ∆2 condition.
or

(M2) M is log-Hölder continuous, that is there exist constants
a > 0 and b ≥ 1, such that for all x , y ∈ Ω with |x − y | ≤ 1

2
and all ξ ∈ RN we have

M(x , ξ)

M(y , ξ)
≤ max

{
|ξ|−

a
log |x−y| , b

− a
log |x−y|

}
.

Assume that there exist constants a2, c1, c2 > 0 and b2 ≥ 1,
such that for all x ∈ Qδ

j and all ξ ∈ RN we have

M(x , ξ)

(Mδ
j (ξ))∗∗

≤ c1 max

{
|ξ|−

a2
log(c2δ) , b

− a2
log(c2δ)

2

}
,

where δ < δ0 = 1
2c2

and Mδ
j (ξ) := inf

x∈Q̃δ
j ∩Ω

M(x , ξ).
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For (M2) - Approximation properties

Density

Let Ω be a Lipschitz domain in RN and an N-function M satisfy
condition (M2). Then for any ϕ such that ∇ϕ ∈ LM(Ω) there
exists a sequence of compactly supported smooth functions

{ϕδ}δ>0 such that ∇ϕδ
M−→ ∇ϕ.
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(M1) = two different cases

(M1)-1 A case when M∗ satisfies ∆2 condition wouldn’t surprise you
much.

(M1)-2 M satisfies ∆2 condition: A naive approach to show existence
in this case would be to follow the lines of the proof of (M1)-1.
This however breaks down:

We only know that A(·,∇u) ∈ LM∗(Ω), and it is not the
predual space to LM(Ω) anymore.
Therefore we cannot use the arguments of weak-∗ convergence
in LM(Ω).
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Different approach for (M1)-2

For that reason the strategy is different here:

First a weak solution of the dual problem will be found.

Then we deduce the existence of a weak solution to the
original problem.

One needs to specify how the dual problem is understood. For
construction we use an inverse operator to A, which we shall
denote as B, i.e.

A(x ,B(ξ)) = ξ

Here we need that A is strictly monotone, therefore the
inverse operator exists and is also strictly monotone.

We could also work in the language of maximal monotone
graphs to avoid assumption on strict monotonicity.
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Very few details

Instead of the growth conditions on A

A(y , ξ) · ξ ≥ c(M(y , ξ) + M∗(y ,A(y , ξ))),

we work with growth conditions of B

B(x , ζ) · ζ ≥ c (M(x ,B(x , ζ)) + M∗(x , ζ)) .
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Thank you for your attention
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