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Preliminaries

Let Ω be a connected, open subset of Rn and u be a real valued function
defined on Ω.

Definition

We say that a function u vanishes to infinite order at some x0 ∈ Ω if for
given k > 0, there exists Ck > 0 such that

|u(x)| ≤ Ck |x − x0|k for all x near x0.

If u is smooth then above definition is equivalent to Dαu(x0) = 0 for
all α.
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Basics Contd.

Strong Unique Continuation Property

We say that a function u 6≡ 0 satisfies strong unique continuation property
(sucp) if it cannot vanish to infinite order at any point x0 ∈ Ω.

Example: Any real analytic function. Weak unique continuation property
(wucp) is defined to be one when a function cannot vanish in any open
subset of a domain.

Definition

An operator L is said to have the strong/weak unique continuation
property if any non-trivial solution satisfies the strong/weak unique
continuation property.

Example L = ∆ in which case, the sucp follows from real analyticity of
the solution.
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Background

For operators of the form L = div(A(x)∇.) + b(x).∇+ c(x), with A
Lipschitz and b, c ∈ L∞, sucp was established in the early 1960’s by
Aronszajn-Krzywicki-Szarki[AKS] using Carleman estimates.

In 1979, F. Almgren discovered a remarkable monotonicity formula in
his study of regularity of mass minimizing currents.

If ∆u = 0 in B1. Then the so called Almgren frequency

N(u, r) =
r
∫
Br
|∇u|2∫

∂Br
u2

(1.1)

is monotone increasing as a function of r .
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Bounded frequency =⇒ sucp

One consequence of the monotonicity of the frequency( infact, only
boundedness suffices!) is the following doubling property:∫

B2r

u2 ≤ C (n, ||u|L2(B1))

∫
Br

u2 (1.2)

It is well known that doubling =⇒ sucp.
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Contd.

In 1986, Garofalo and Lin proved that solutions to elliptic equations treated
by [AKS] (i.e. Lipschitz principal part and bounded lower order terms)
satisfy a delicate generalization of the Almgren’s monotonicity formula.

Such a monotonicity formula was then used to show that solutions as well
as their gradients are in some Ap class of Muckenhoupt and in particular
satisfy the doubling inequality which implies sucp.

Remark Sucp fails when the principal part A ∈ C 0,α for any α < 1 and
the counterexamples are due to Plis and Miller.
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Parabolic case

A parabolic version of Almgren’s monotonicity formula was discovered by
C. Poon in 1996. More precisely, Poon showed that if u is a bounded
solution to

∆u − ut = b.∇u + cu (1.3)

in say Rn × (t1, t0), then the following quantity

N(r) =
r2
∫
t=t0−r2 |∇u(x , t)|2Gx0,t0(x , t)dx∫
t=t0−r2 u(x , t)2Gx0,t0(x , t)dx

(1.4)

is bounded where Gx0,t0 is the backward heat kernel centered at (x0, t0).In
the case of heat equation, one obtains that N is monotonically increasing.
Using this, he was able to show that a bounded solution u to (1.3)
satisfies the backward in time sucp. More precisely if

supQr (x0,t0)|u| = O(rk) (1.5)

for all k > 0, where Qr (x0, t0) = Br (x0)× (t0 − r2, t0], then u ≡ 0.
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Remark 1: One requires u to be bounded or have some ”Tychonoff” type
growth assumption. If that is not the case, there is example by Frank
Jones where one has a solution to the heat equation which is supported in
a strip.

Subsequently, space like strong unique continuation properties for parabolic
equations with Lipschitz principal part was shown by Escauriaza-Fernandez
( and also Escauriaza-Fernandez-Vessella) in 2004. In fact they showed,

Theorem

Let u solve
div(A(x , t)∇u) = ut + Vu

in Qr (x0, t0), where A is Lipschitz in x and 1/2 hölder in time. Then if u
vanishes to infinite order at (x0, t0), then u(·, t0) ≡ 0.

Remark : The regularity assumption on A was lowered later on by Koch
and Tataru. Now for the backward unique continuation property of the
Poon type, one requires an additional decay assumption on the derivative
of the principal part. Such conditions are somewhat optimal ( Wu-Zhang).

Remark 4: Further refined backward uniqueness results were obtained by
Escauriaza-Seregein-Sverak in their celebrated work which allowed them to
show that if the Lerray-Hopf solution to the Navier Stokes problem
belongs to the ”end point” Prodi-Serrin class, then they are infact smooth.
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Sublinear Elliptic equations

Recently in 2017, unique continuation property for sublinear equations of
the type

div(A(x)∇u) + fp(x , u) + Vu, (1.6)

where the sublinearity fp is modelled on |v |p−2v( 1 ≤ p < 2) has been
studied by Soave and Weth.

A weak unique continuation property was
established in their work by an adaptation of the frequency function
approach of Garofalo and Lin.

Remark: It is to be mentioned that their work was motivated by an older
work of Parini and Weth in 2015 where Neumann problem for such
sublinear equations was studied and where among other results, the
authors studied the nodal set or the zero set of the so called ”least
energy” solutions.

Subsequently strong unique continuation for (1.6) was established by
Ruland in 2018 ( for 1 < p < 2) by means of new Carleman estimates
which are tailored for such sublinear operators.
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Some motivation

The study of (1.6) is partly motivated by its connection to the porous
medium equation

wt −∆|w |m−2w = 0. (1.7)

In fact a solution to (1.6) gives rise to a time independent solution of
(1.7) ( when fp = |v |p−2v) by a change of variable of the type

w = cp|u|p−2u.

Remark The class of sublinear equations that we consider also include

−∆v = vt + λ+(v+)p−1 − λ−(v−)p−1, where λ+, λ− > 0, p ∈ [1, 2),

which corresponds to the two phase membrane problem.

Finally, I would like to mention that the regularity of the nodal set of
solutions to such sublinear equations based on Weiss type monotonicity
and blow up arguments has been studied by Soave and Terracini (2018).
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Remarks

We can not linearize as

div(A(x)∇u) + Vu = 0

and apply the linear unique continuation results because even in the
model case, V = |u|p−2 need not be in Lp for any p near the zero set
of u as p ∈ (1, 2).

The sign assumption on the sublinearity is quite crucial because
otherwise unique continuation fails. In fact Soave and Weth in 2018
gave a counterexample to show unique continuation is not true for

∆v = |v |p−2v , p ∈ (1, 2).

More precisely if one takes u(t) = cpt
2

2−p for t > 0 and u ≡ 0 for
t < 0 with an appropriately chosen cp, then it solves

u′′(t) = |u|p−2u.
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Related developments

Strong unique continuation has been extended to fractional sublinear
equations recently by Tortone (2020).

Strong unique continuation for sublinear Baouendi-Grushin type
operators has been obtained by B-Garofalo-Manna and B-Manna.
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Space like strong unique continuation( Our results)

Theorem ( B-Manna (2019))

Let u be a solution to

div(A(x , t)∇u) + Vu + fp((x , t), u)− ut = 0

in Qr (x0, t0) where A is Lispchitz in space and time and the sublinear term
f satisfies similar structural conditions as in the elliptic case( 1 < p < 2).
Now if u vanishes to infinite order in space at (x0, t0), then u(·, t0) ≡ 0.
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Outline of the proof

By change of variable, t → −t, we instead consider the backward
parabolic sublinear equation,

div(A(x , t)∇u) + Vu + fp((x , t), u) + ut = 0.

Now following Escauriaza-Fernandez, we let

θ(t) = t1/2

(
log

1

t

)1+β/2

. (1.8)

Then one solves the following ODE in time,

d

dt
log(

σ

tσ̇
) =

θ(γt)

t
, σ(0) = 0, σ̇(0) = 1,

where γ > 0 and 0 ≤ γt ≤ 1. It turns out that the solution σ is such that
σ ∼ t.

Also let G = 1
tn/2 e

− |x|
2

4t and Fp((x , t), s) =
∫ s

0 fp((x , t), s).
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The main Carleman estimate

Theorem

Let u ∈ C∞0 (B2 × (0, 1
2γ )) be a solution to

div(A∇u) + ∂tu + f ((x , t), u) = g (1.9)

where A(0, 0) = I. Then there are universal constants δ0, c0,N0 > 0 and C̃
such that for α ≥ C̃ and δ ≤ δ0, the following inequality holds with γ = α

δ2 ,

α

∫
Rn+1

+

σ−α
θ(γt)

t
|u|2GdX +

∫
Rn+1

+

σ1−α θ(γt)

t
|∇u|2GdX (1.10)

+ c0α

∫
Rn+1

+

σ−αF (X , u)GdX

≤ N0

∫
Rn+1

+

σ1−α|g |2GdX + eN0αγα+N0

∫
Rn+1

+

(u2 + t|∇u|2 + F (X , u))dX .
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Contd.

Step1: Without loss of generality, one can assume that (x0, t0) = (0, 0).
We also assume first that u vanishes to infinite order in both space and
time. Then by applying the Carleman estimate to truncated u combined
with regularity estimates for the sublinear PDE, we conclude that
u(·, 0) ≡ 0.

Step 2: Vanishing to infinite order in space =⇒ vanishing to infinite
order in space and time is shown by means of ”shifted in time” version of
our main Carleman estimate. This idea goes back to a work of Fernandez
where using this, an equivalence between the two notions of vanishing was
established for linear parabolic equations. An alternate approach in the
linear case due to Alessandrini and Vessella is based on using the local
asymptotics of solutions. Such an approach however is not quite suitable
to our sublinear situation because of different scaling properties of the
PDE.
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Strong Backward uniqueness

We study backward uniqueness for

div(A(x , t)∇u) + ut + Vu + fp((x , t), u) = 0 in Rn × (−1, 0].

Again by change of variable t → −t, we instead consider solutions u to
the following backward parabolic sublinear equation

div(A(x , t)∇u) + ut + Vu + fp((x , t), u) = 0 in Rn × [0, 1]. (1.11)

Similar to the linear case as in the work of Wu-Zhang, we assume that A
satisfies,

|∇xA(x , t)| ≤ K

1 + |x |
, |∂tA(x , t)| ≤ K .
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In the case when 1 < p < 2, we prove the following.

Theorem (Arya-B(2020))

i) Assume p ∈ (1, 2) and u a solution to (1.11) satisfies the following
Tychonoff type growth assumption

|u(x , t)| ≤ NeN|x |
2

for some N > 0. Now if u vanishes to infinite order in space at (0, 0), then
u ≡ 0.

Agnid Banerjee TIFR CAM, Bangalore, India SUCP Sublinear Parabolic March 22, 2021 18 / 29



In the case when 1 < p < 2, we prove the following.

Theorem (Arya-B(2020))

i) Assume p ∈ (1, 2) and u a solution to (1.11) satisfies the following
Tychonoff type growth assumption

|u(x , t)| ≤ NeN|x |
2

for some N > 0. Now if u vanishes to infinite order in space at (0, 0), then
u ≡ 0.

Agnid Banerjee TIFR CAM, Bangalore, India SUCP Sublinear Parabolic March 22, 2021 18 / 29



Carleman Estimate

Theorem

Let u ∈ C∞0 (Rn × (0,T )) be a solution of

divA(x , t)∇u) + ut + fp((x , t), u) + Wu = g .

Then the following estimate holds with G = e2γ(t−K−1)− b〈x〉2+K
t for some

universal C > 0,

K

∫
(u2 + |∇u|2)Gdxdt + γK

∫
|u|pG
tK+1

dxdt

≤ C

(∫
|u|pe−2γ−

b
2 〈x〉

2+K

t dxdt +

∫
g2Gdxdt

)
where K , γ are large enough depending only on n, λ,Λ, p,M,T .

Note here G is different from Gaussian and b = 1
8Λ .
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Sketch Of the Proof

First we obtain the above Carleman estimate, which is a
generalization of a Carleman estimate by Wu and Zhang (2017) to
the sublinear case.

From my work with Manna, we have that u(x , 0) = 0 for all x ∈ Rn

and also that u vanishes to infinite order in time.

Now we proceed like Wu and Zhang (2017).
For t < 0, extend u by 0, the principal coefficients aij by aij(x , 0) and
W by 0 and note that u is solution in the extended region. Define

v(x , t) = u(rx , r2(t − 1/2))

for r sufficiently small, we can ensure that

|v(x , t)| ≤ Ce
b
8
|x |2 .

Note that v vanishes to infinite order at t = 1/2.
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Sketch of Proof Contd.

Define smooth function η as following{
η(t) ≡ 1 for t < 3/4

η(t) ≡ 0 for t > 7/8

Using cut-offs in space (thanks to Tychonoff type growth
assumption), we can put ηv in Carleman estimate.

Using the fact that v is solution and definition of η for l ∈ (1/2, 3/4)
we have

e2γ(l−K−1)

∫
1
2
≤t≤l

(v2 + |∇v |2)e−
b〈x〉2+K

t dxdt

≤ C

(
e−2γ

∫
1
2
≤t≤1

|ηv |p

t
e
− b

2 〈x〉
2+K

t dxdt

+ e2γ(( 3
4

)−K−1)

∫
3
4
≤t≤1

(|v |2 + |v |p−1)e−
b〈x〉2+K

t dxdt

)
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Using cut-offs in space (thanks to Tychonoff type growth
assumption), we can put ηv in Carleman estimate.

Using the fact that v is solution and definition of η for l ∈ (1/2, 3/4)
we have
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(v2 + |∇v |2)e−
b〈x〉2+K

t dxdt

≤ C

(
e−2γ

∫
1
2
≤t≤1

|ηv |p

t
e
− b
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Sketch of Proof Contd.

Dividing by e2γ(l−k−1) and letting γ −→∞ we get v(x , t) = 0 for
1
2 ≤ t ≤ l . Now by going back to the original u by scaling back, we
obtain that u(·, t) ≡ 0 for 0 ≤ t ≤ t0 for some t0 > 0 universal.

As t0 is universal, we can now keep spreading the zero set.
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Case when p = 1

Theorem

Let u be a solution to the backward parabolic sublinear equation

∆u + ut + Vu + fp((x , t), u) = 0 in Rn × [0, 1].

where 1 ≤ p < 2 and ||V ||∞ ≤ M.
Assume u is bounded. Now if u vanishes to infinite order in space-time at
(0, 0), then u ≡ 0.

Our result is also valid for

−∆u = ut + λ+(u+)p−1 − λ−(u−)p−1, where λ+, λ− > 0, p ∈ [1, 2).

Over here, we note that when p = 1, (u+)p−1 = χ{v>0} and
(u−)p−1 = χ{v<0}.
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Sketch of Proof

Such a result is proven by a two parameter Weiss type Monotonicity.

Following Soave and Terracini (2018) and Poon (1996), we let

H(R) =

∫
t=R2

u2Gdx

I (R) = R2

∫
t=R2

|∇u|2Gdx − 2R2

p

∫
t=R2

|u|pGdx

Wγ(R) =
I (R)

R2γ
− γ

2R2γ
H(R)

where G = 1

|t|
n
2
e−
|x|2
4t .

For γ sufficiently large, depending also on the L∞ norm of u, we have
that

W ′
γ(R) ≥ 0 for a.e. R ∈ (0, 1).
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Sketch of Proof Contd.

Assume on contrary that u is not zero. So, for some R > 0,
H(R) 6= 0. We, then, choose γ > 0 large enough such that

Wγ(R) < 0

hold. Then from the monotonicity of Wγ , we must have that
Wγ(0+) < 0. However since u vanishes to infinite order at (0, 0) in
space-time we get Wγ(0+) ≥ 0. This leads to a contradiction and
thus finishes the proof of the Theorem.
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Further directions

Can one lower the regularity assumption on the principal part in time
for the validity of space like strong unique continuation?

Extend the backward uniqueness result in the case when p = 1 to
variable coefficients.

Is the vanishing to infinite order in space-time equivalent to vanishing
to infinite order in space when p = 1?

Regularity of the nodal set.
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Thank you all for your kind attention
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