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Pelican eel
Połykacz z rodziny gardzielcokształtnych

http://www.youtube.com/watch?v=tInHUbz3B_Y
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http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm
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http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm
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http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm
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Segment registers

REGISTER CACHE

15 0

mov [si], ax DS CACHE

15 0

Using the cache:

offset base address

automatically

linear
address



Why was segmentation introduced?

It allows addressing physical memory with 20 bits when using 16-bit addresses.

It separates memory used by distinct processes.



Is segmentation still in use?

All Linux processes running in User Mode use the same pair of segments to address instructions and data. 
These segments are called user code segment and user data segment , respectively. Similarly, all Linux 
processes running in Kernel Mode use the same pair of segments to address instructions and data: they are 
called kernel code segment and kernel data segment, respectively.

Daniel P. Bovet, Marco Cesati, Understanding Linux Kernel, 3rd Edition (p. 42):
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Is segmentation still in use?

https://softwareengineering.stackexchange.com/questions/100047/why-not-segmentation

https://en.wikipedia.org/wiki/Flat_memory_model

All Linux processes running in User Mode use the same pair of segments to address instructions and data. 
These segments are called user code segment and user data segment , respectively. Similarly, all Linux 
processes running in Kernel Mode use the same pair of segments to address instructions and data: they are 
called kernel code segment and kernel data segment, respectively.

Daniel P. Bovet, Marco Cesati, Understanding Linux Kernel, 3rd Edition (p. 42):

https://softwareengineering.stackexchange.com/questions/100047/why-not-segmentation
https://en.wikipedia.org/wiki/Flat_memory_model
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Paging
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011122131 22
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SWAP FILE

Memory

What processes think memory is like:

0xc0000000

0x08048000

RAM

While...:



Is paging sufficient?



Segmentation

It allows addressing physical memory with 20 bits when using 16-bit addresses.

It separates memory used by distinct processes.



Is paging sufficient?

It separates memory used by distinct processes.



Is paging sufficient?

It separates memory used by distinct processes.

It allows allocating more memory than physically available RAM.



Is paging efficient?

The process gets to be executed.

Yes: it is performed by hardware (Management Memory Unit).

The OS kernel informs MMU on the process’ page table.

MMU takes care of the subsequent translations.



Is paging efficient?

On the other hand: MMU refers to page tables.

No, we’re safe: there is a Translation Lookaside Buffer (TLB).



Paging: the scheme
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Paging: the scheme

virtual address physical addressTLB

page table

disk

miss!
update

miss!update



Page replacement algorithms

Extra frames do not solve the problem:

https://en.wikipedia.org/wiki/Bélády's_anomaly

https://en.wikipedia.org/wiki/B


Page replacement algorithms

Extra frames do not solve the problem:

https://en.wikipedia.org/wiki/Bélády's_anomaly

You will have to solve exam problems...

http://students.mimuw.edu.pl/SO/Wyklady-html/06_pamiec/6_cw-pam2.html

http://students.mimuw.edu.pl/SO/Wyklady-html/05_pamiec/5_pamiec.html

https://en.wikipedia.org/wiki/B%C3%A9l%C3%A1dy's_anomaly
http://students.mimuw.edu.pl/SO/Wyklady-html/06_pamiec/6_cw-pam2.html
http://students.mimuw.edu.pl/SO/Wyklady-html/05_pamiec/5_pamiec.html


Assignment #6

Implement a stack-driver.

DEVICE_SIZE

1. Allocate memory for the buffer. Dynamically.

# service up /service/hello_stack
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# ab



Assignment #6
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3. Define writing.

# echo def > /dev/hello_stack
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Implement a stack-driver.

a b d e

DEVICE_SIZE

3. Define writing.

# echo def > /dev/hello_stack

f



Assignment #6

Implement a stack-driver.

a b d e

DEVICE_SIZE

# service update /service/hello_stack

f

4. Keep the device’s state intact during updates.


