
Pelican eel
Połykacz z rodziny gardzielcokształtnych

3000 m

Pelican eel
Połykacz z rodziny gardzielcokształtnych

3000 m 9 cm3100 cm3

Pelican eel
Połykacz z rodziny gardzielcokształtnych

Pelican eel
Połykacz z rodziny gardzielcokształtnych

http://www.youtube.com/watch?v=tInHUbz3B_Y

Virtual memory

Addresses

mov di, 0x500

Addresses

mov di, 0x500

Memory address (i386)

logical
address

physical
address

Memory address (i386)

logical
address

linear
address

physical
address

Logical address

logical
address

SELECTOR OFFSET

15 0 15 0

Memory

What processes think memory is like:

0xc0000000

0x08048000

Memory

What processes think memory is like:

SS
stack segment

DS
data segment

CS
code segment

0xc0000000

0x08048000

ES, FS, GS
extra and general-purpose segments

Memory

What processes think memory is like:

SS
stack segment

DS
data segment

CS
code segment

0xc0000000

0x08048000

ES, FS, GS
extra and general-purpose segments

this byte

Memory

What processes think memory is like:

SS
stack segment

DS
data segment

CS
code segment

0xc0000000

0x08048000

ES, FS, GS
extra and general-purpose segments

base address

this byte
offset

Segments

logical
address

SELECTOR OFFSET

15 0 15 0

DESCRIPTOR
TABLE

SEGMENT DESCRIPTOR

Segments

logical
address

SELECTOR OFFSET

15 0 15 0

DESCRIPTOR
TABLE

SEGMENT DESCRIPTOR

linear
address OFFSETDIR PAGE

base
address

Segments
logical

address SELECTOR OFFSET

15 0 15 0

DESCRIPTOR
TABLE

SEGMENT DESCRIPTOR

linear
address OFFSETDIR PAGE

base
address

Selector
logical

address SELECTOR OFFSET

15 0 15 0

DESCRIPTOR
TABLE

SEGMENT DESCRIPTOR

linear
address OFFSETDIR PAGE

base
address

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm

Descriptor table
logical

address SELECTOR OFFSET

15 0 15 0

DESCRIPTOR
TABLE

SEGMENT DESCRIPTOR

linear
address OFFSETDIR PAGE

base
address

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm

Descriptor tables

GLOBAL
DESCRIPTOR

TABLE

SEGMENT DESCRIPTOR

LOCAL
DESCRIPTOR

TABLE

SEGMENT DESCRIPTOR

system-wide process-specific

GDTR LDTR

register register

Descriptor tables

GLOBAL
DESCRIPTOR

TABLE

LDT REFERENCE

LOCAL
DESCRIPTOR

TABLE

SEGMENT DESCRIPTOR

system-wide process-specific

GDTR LDTR

register register

Segment descriptor
logical

address SELECTOR OFFSET

15 0 15 0

DESCRIPTOR
TABLE

SEGMENT DESCRIPTOR

linear
address OFFSETDIR PAGE

base
address

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm

Segment registers
logical

address SELECTOR OFFSET

15 0 15 0

DESCRIPTOR
TABLE

SEGMENT DESCRIPTOR

linear
address OFFSETDIR PAGE

base
address

CS

SS

DS

ES

FS

GS

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm

http://www.scs.stanford.edu/05au-cs240c/lab/i386/s05_01.htm

Segment registers

REGISTER CACHE

15 0

Segment registers

REGISTER CACHE

15 0

mov [si], ax

Using the cache:

linear
address

Segment registers

REGISTER CACHE

15 0

mov [si], ax

Using the cache:

offset

linear
address

Segment registers

REGISTER CACHE

15 0

mov [si], ax DS CACHE

15 0

Using the cache:

offset base address

automatically

linear
address

Why was segmentation introduced?

It allows addressing physical memory with 20 bits when using 16-bit addresses.

It separates memory used by distinct processes.

Is segmentation still in use?

All Linux processes running in User Mode use the same pair of segments to address instructions and data.
These segments are called user code segment and user data segment , respectively. Similarly, all Linux
processes running in Kernel Mode use the same pair of segments to address instructions and data: they are
called kernel code segment and kernel data segment, respectively.

Daniel P. Bovet, Marco Cesati, Understanding Linux Kernel, 3rd Edition (p. 42):

Is segmentation still in use?

All Linux processes running in User Mode use the same pair of segments to address instructions and data.
These segments are called user code segment and user data segment , respectively. Similarly, all Linux
processes running in Kernel Mode use the same pair of segments to address instructions and data: they are
called kernel code segment and kernel data segment, respectively.

Daniel P. Bovet, Marco Cesati, Understanding Linux Kernel, 3rd Edition (p. 42):

Is segmentation still in use?

https://softwareengineering.stackexchange.com/questions/100047/why-not-segmentation

https://en.wikipedia.org/wiki/Flat_memory_model

All Linux processes running in User Mode use the same pair of segments to address instructions and data.
These segments are called user code segment and user data segment , respectively. Similarly, all Linux
processes running in Kernel Mode use the same pair of segments to address instructions and data: they are
called kernel code segment and kernel data segment, respectively.

Daniel P. Bovet, Marco Cesati, Understanding Linux Kernel, 3rd Edition (p. 42):

https://softwareengineering.stackexchange.com/questions/100047/why-not-segmentation
https://en.wikipedia.org/wiki/Flat_memory_model

Memory address (i386)

logical
address

segmentation
unit

linear
address

physical
address

Memory address (i386)

logical
address

segmentation
unit

linear
address

paging
unit

physical
address

Memory

What processes think memory is like:

0xc0000000

0x08048000

Memory

What processes think memory is like:

0xc0000000

0x08048000

RAM

frame

page

While...:

Paging

page frame
4 KiB physical

memory

Paging

page table

page frame

4 KiB

4 KiB

4 B entry

physical
memory

Paging

page directory

page table

4 KiB

page frame

4 KiB

4 KiB

4 B entry

4 B entry

physical
memory

Linear address

logical
address

SELECTOR OFFSET

15 0 15 0

DESCRIPTOR
TABLE

SEGMENT DESCRIPTOR

linear
address OFFSETDIR PAGE

base
address

Linear address

logical
address

SELECTOR OFFSET

15 0 15 0

DESCRIPTOR
TABLE

SEGMENT DESCRIPTOR

linear
address PAGE:OFFSETDIR:TABLE TABLE:PAGE

base
address

011122131 22

Paging

Memory

What processes think memory is like:

0xc0000000

0x08048000

RAM

While...:

Memory

What processes think memory is like:

0xc0000000

0x08048000

RAM

While...:

SWAP FILE

Memory

What processes think memory is like:

0xc0000000

0x08048000

RAM

While...:

Is paging sufficient?

Segmentation

It allows addressing physical memory with 20 bits when using 16-bit addresses.

It separates memory used by distinct processes.

Is paging sufficient?

It separates memory used by distinct processes.

Is paging sufficient?

It separates memory used by distinct processes.

It allows allocating more memory than physically available RAM.

Is paging efficient?

The process gets to be executed.

Yes: it is performed by hardware (Management Memory Unit).

The OS kernel informs MMU on the process’ page table.

MMU takes care of the subsequent translations.

Is paging efficient?

On the other hand: MMU refers to page tables.

No, we’re safe: there is a Translation Lookaside Buffer (TLB).

Paging: the scheme

virtual address physical address

Paging: the scheme

virtual address physical addressTLB
hit!

Paging: the scheme

virtual address physical addressTLB

page table

miss!

Paging: the scheme

virtual address physical addressTLB

page table

miss!
update

hit!

Paging: the scheme

virtual address physical addressTLB

page table

miss!
update

hit!

Paging: the scheme

virtual address physical addressTLB

page table

disk

miss!

miss!

Paging: the scheme

virtual address physical addressTLB

page table

disk

miss!
update

miss!update

Paging: the scheme

virtual address physical addressTLB

page table

disk

miss!
update

miss!update

Page replacement algorithms

Extra frames do not solve the problem:

https://en.wikipedia.org/wiki/Bélády's_anomaly

https://en.wikipedia.org/wiki/B

Page replacement algorithms

Extra frames do not solve the problem:

https://en.wikipedia.org/wiki/Bélády's_anomaly

You will have to solve exam problems...

http://students.mimuw.edu.pl/SO/Wyklady-html/06_pamiec/6_cw-pam2.html

http://students.mimuw.edu.pl/SO/Wyklady-html/05_pamiec/5_pamiec.html

https://en.wikipedia.org/wiki/B%C3%A9l%C3%A1dy's_anomaly
http://students.mimuw.edu.pl/SO/Wyklady-html/06_pamiec/6_cw-pam2.html
http://students.mimuw.edu.pl/SO/Wyklady-html/05_pamiec/5_pamiec.html

Assignment #6

Implement a stack-driver.

DEVICE_SIZE

1. Allocate memory for the buffer. Dynamically.

service up /service/hello_stack

Assignment #6

Implement a stack-driver.

a b c a b c a b

DEVICE_SIZE

2. Initialize the device.

Assignment #6

Implement a stack-driver.

a b c a b c a b

DEVICE_SIZE

2. Define reading.

head -c 3 /dev/hello_stack

Assignment #6

Implement a stack-driver.

a b c a b c a b

DEVICE_SIZE

2. Define reading.

head -c 3 /dev/hello_stack

cab

Assignment #6

Implement a stack-driver.

a b c a b c a b

DEVICE_SIZE

2. Define reading.

head -c 3 /dev/hello_stack

cab

Assignment #6

Implement a stack-driver.

a b c a

DEVICE_SIZE

2. Define reading.

head -c 3 /dev/hello_stack

cab

Assignment #6

Implement a stack-driver.

DEVICE_SIZE

2. Define reading.

head -c 3 /dev/hello_stack

ab

Assignment #6

Implement a stack-driver.

a b c a

DEVICE_SIZE

3. Define writing.

echo def > /dev/hello_stack

Assignment #6

Implement a stack-driver.

a b d e

DEVICE_SIZE

3. Define writing.

echo def > /dev/hello_stack

Assignment #6

Implement a stack-driver.

a b d e

DEVICE_SIZE

3. Define writing.

echo def > /dev/hello_stack

f

Assignment #6

Implement a stack-driver.

a b d e

DEVICE_SIZE

service update /service/hello_stack

f

4. Keep the device’s state intact during updates.

