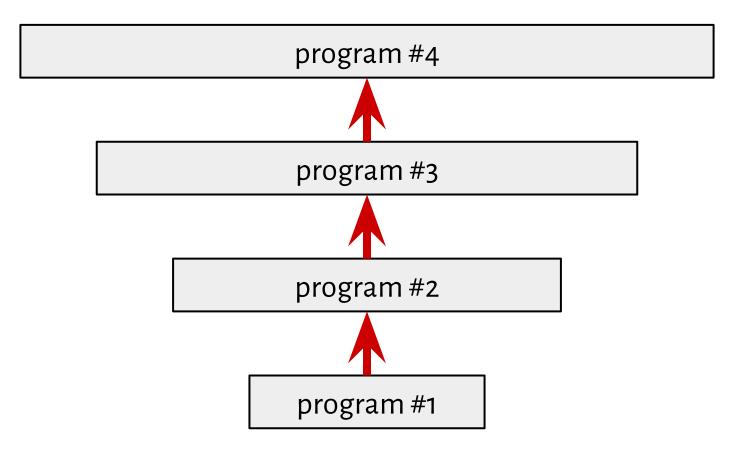
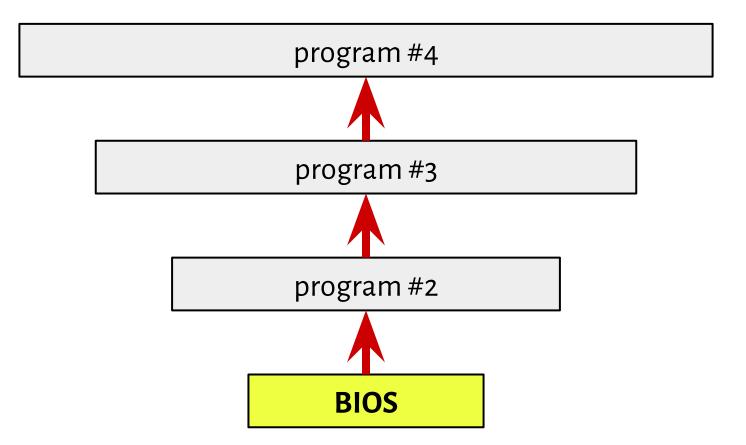
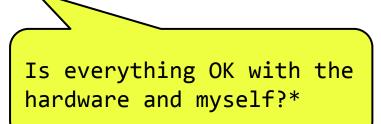
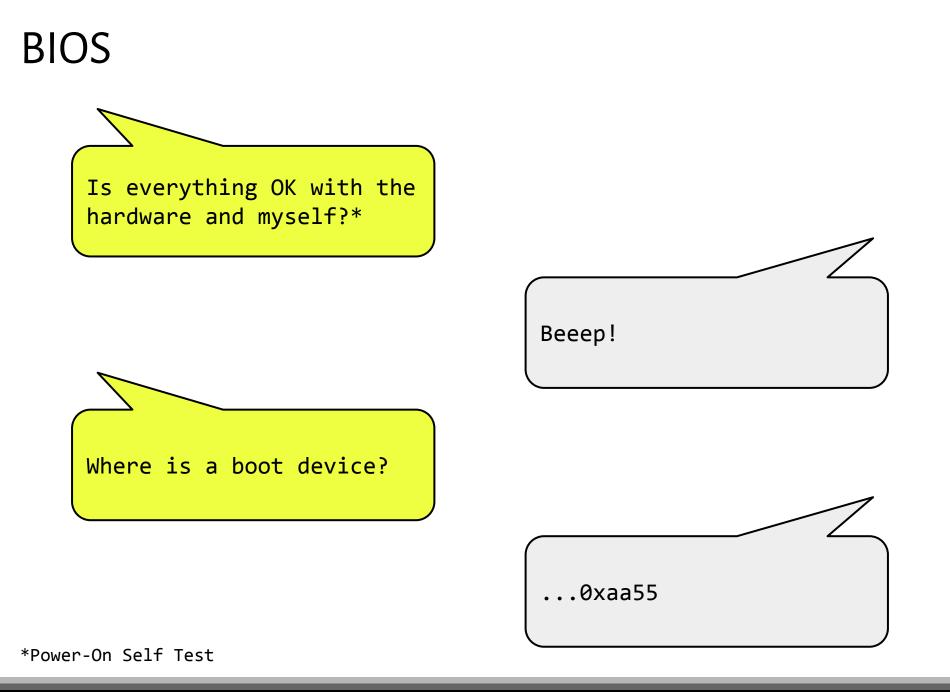
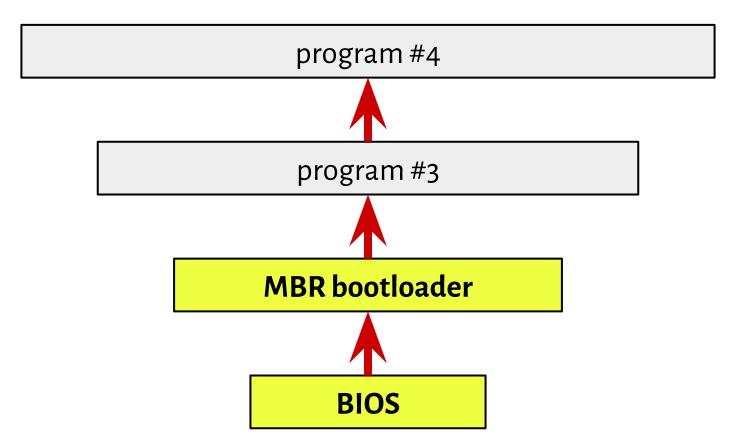
To The Welcome Screen

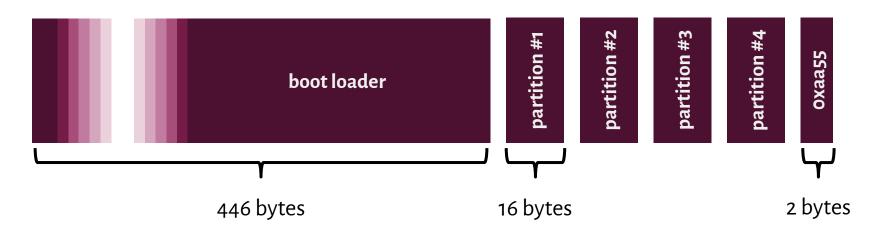



to pull oneself up by one's bootstraps

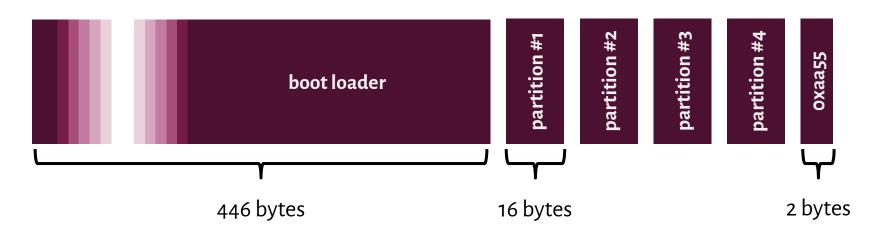

to pull oneself up by one's bootstraps



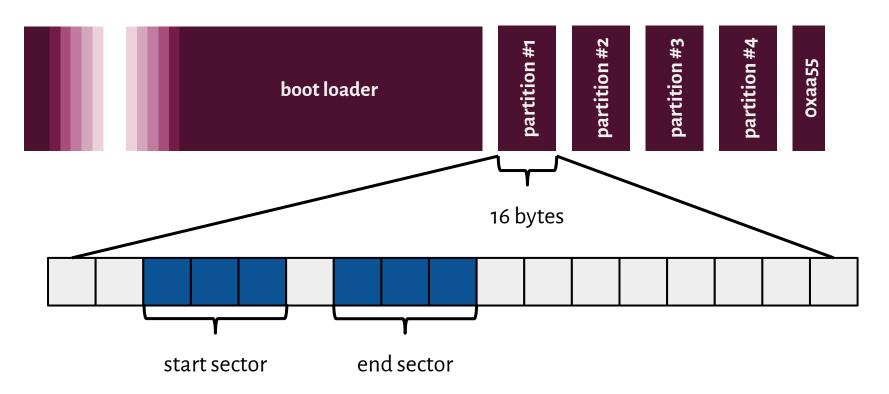



Beeep!	

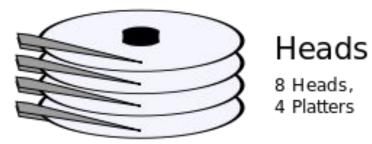
*Power-On Self Test



a special type of boot sector at the very beginning of partitioned computer mass storage devices

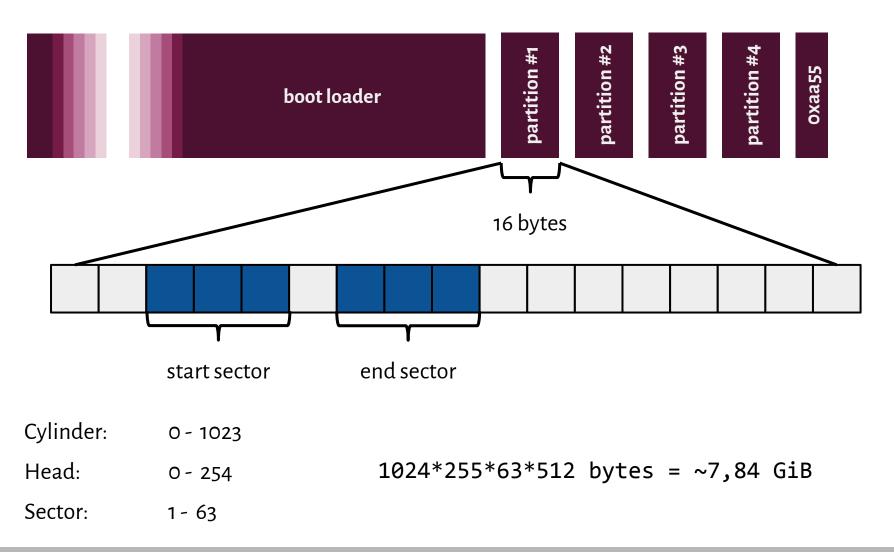


a special type of boot sector at the very beginning of partitioned computer mass storage devices



An **extended partition** is a **primary partition** that has been divided up into **logical partitions** as a means of creating more *partitions* than the four that would otherwise be possible.

a special type of boot sector at the very beginning of partitioned computer mass storage devices



Cylinder-Head-Sectornment

Track/ Cylinder

a special type of boot sector at the very beginning of partitioned computer mass storage devices

Contraction Master	TER BOOT		LINVOKE-IR BY: JARED ATKINSON EMPLATE BY: ANGE ALBERTINI
000: 33 C0 8E D0 BC 00 7C 8E C0 8E D8 BE 00 7C BF 00 010: 06 B9 00 02 FC F3 A4 50 68 1C 06 CB FB B9 04 00 020: BD BE 07 80 7E 00 00 7C 0B 0F 85 0E 01 83 C5 10 030: E2 F1 CD 18 88 56 00 55 C6 46 11 05 C6 46 10 00 040: B4 41 BB AA 55 CD 13 5D 72 0F 81 FB 55 AA 75 09	BOOT CODE	FIELDS jump to boot program disk parameters boot program code disk signature	VALUES- 82D4BA7D
050: F7 C1 01 00 74 03 FE 46 10 66 60 80 7E 10 00 74 060: 26 66 68 00 00 00 66 FF 76 08 68 00 00 00 66 FF 76 08 68 00 00 00 80 7F 70 08 68 00 00 00 84 42 84 56 00 00 88 F4 CD 13 080: 9F 83 C4 10 9E 81 88 10 2 88 00 72 84 56 00 090: 8A 76 01 8A 4E 02 8A 6E 03 CD 13 66 61 73 1C FE 0A0: 4E 11 75 0C 80 75 07 FA 80 01 82 80 075 17 FA 80<	CHS ADDRESSING 00100000 00100001 00000000 Head - 1st byte Sector - 2nd byte (0-5 bits) Cylinder - 2nd byte (6-7 bits) 3rd byte	status starting head starting sector starting cylinder partition type ending head ending sector ending cylinder	0x00 - Non-Bootable 0x20 0x21 0x00 0x07 - NTFS 0xFE 0x3F 0x3FF
110: 53 66 55 66 68 00 00 00 66 68 00 7C 00 06 61 120: 61 68 00 07 CD 1A 5A 32 F6 EA 00 7C 00 00 66 18 00 7C 00 00 00 00 14 5A 32 F6 EA 00 7C 00 00 00 14 14 10 15 13 18 A0 B7 07 BB B7 00 B4 0E CD 14 10 10 00 73 2 E4 140: 05 00 07 8B F0 AC 3C 00 74 09 BB 07 00 B4 0E CD 150: 10 EB F2 F4 EB FD 2E 64 EB 00 24 02 E0 F8 F8 160 12 74 69 172 74 <td>PARTITION</td> <td>relative start sector total sectors status starting head starting sector starting cylinder partition type ending head</td> <td>0x800 0x6369000 0x80 - Bootable 0xFE 0x3F 0x3FF 0x07 - NTFS 0xFE</td>	PARTITION	relative start sector total sectors status starting head starting sector starting cylinder partition type ending head	0x800 0x6369000 0x80 - Bootable 0xFE 0x3F 0x3FF 0x07 - NTFS 0xFE
ID0: PF PF 07 PE PF PF 00 A0 30 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 0		ending sector ending cylinder relative start sector total sectors	0x3F 0x3FF 0x636A000 0x96000
0x07 - NTFS 0xa0 - HIBERNATION_1 0x0b - FAT32 0xa1 - HIBERNATION_2 0x0c - FAT32 0xa5 - FREEBSD 0x0e - FAT16 0xa6 - OPENBSD	//	partition type	0x00 - EMPTY
0x0f - MS_EXTENDED 0xa8 - MACOSX 0x11 - HIDDEN_FAT12 0xa9 - NETBSD 0x14 - HIDDEN_FAT16 0xab - MAC_OSX_BOOT 0x16 - HIDDEN_FAT16 0xb7 - BSDI	END OF MBR	marker	0x55AA
0x1b - HIDDEN_FAT32 0xb8 - BSDI_SWAP 0x1c - HIDDEN_FAT32 0xee - EFI_GT_DISK 0x1e - HIDDEN_FAT16 0xef - EFI_SYSTEM_PARTITION 0x42 - MS_MBR_DYNAMIC 0xfb - VMWARE_FILE_SYSTEM 0x82 - SOLARIS_X86 0xfc - VMWARE_SWAP 0x82 - LINUX_SWAP 0xfc - VMWARE_SWAP		$(2^{32} + 2^{32})*$	512 B = 2 TB

http://www.invoke-ir.com/2015/05/ontheforensictrail-part2.html

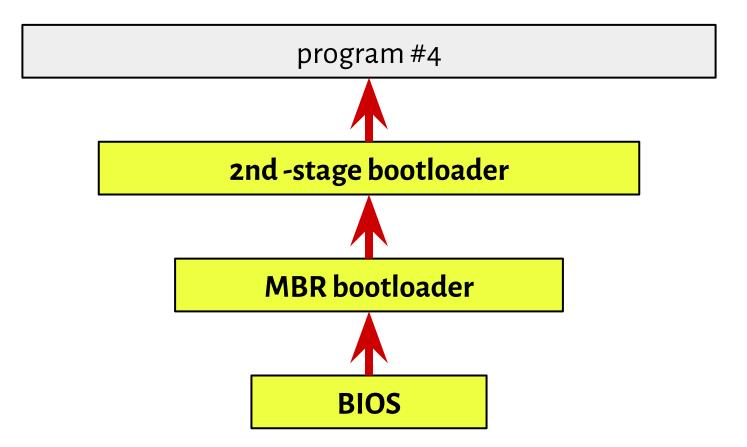
GUID Partition Table

- ★ 64-bit values for addressing purposes (Logical Block Addresses instead of CHS system), which can address up to **9.4 zettabytes (ZB)**
- ★ Support for multiple partitions, **128 partitions** in most configurations.
- ★ Backup GPT header tables (the secondary header table can still be accessed, if

the GPT header at the beginning of the device has been deleted by accident).

★ Use of a protective MBR at LBA Sector o for assuring **backwards compatibility**.

a special type of boot sector at the very beginning of partitioned computer mass storage devices


 \star Moves the context flow to the kernel.

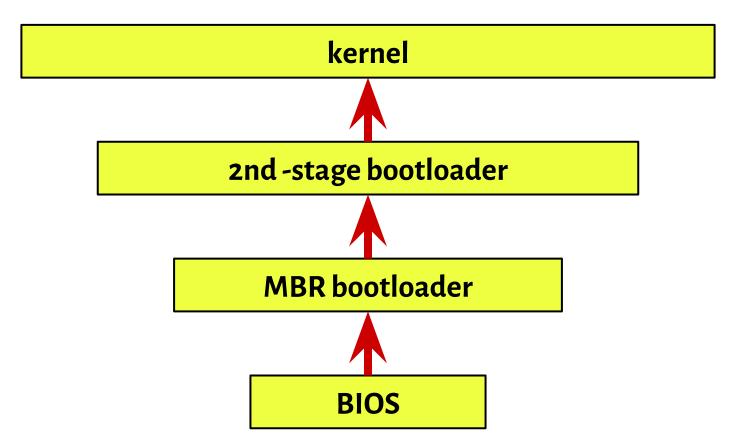
Bootloader

- \star Sends the kernel code to the physical memory.
- ★ Moves the context flow to the kernel.

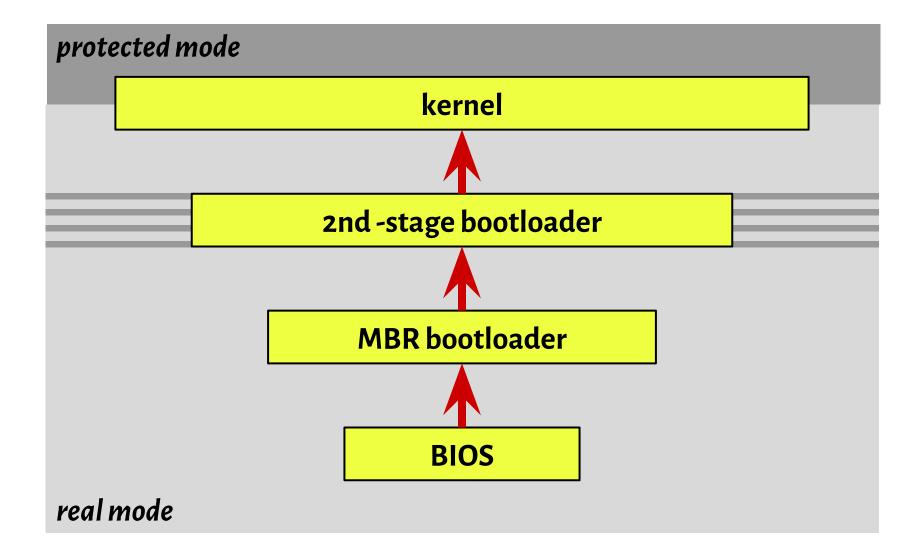
Bootloader

- \star Collects information needed by the operating system.
- \star Sends the kernel code to the physical memory.
- ★ Moves the context flow to the kernel.

Bootloader


- \star Collects information needed by the operating system.
- \star Sends the kernel code to the physical memory.
- ★ Moves the context flow to the kernel.

LILO: LInux LOader


https://www.centos.org/docs/rhel-rg-en-3/s1-grub-lilo.html

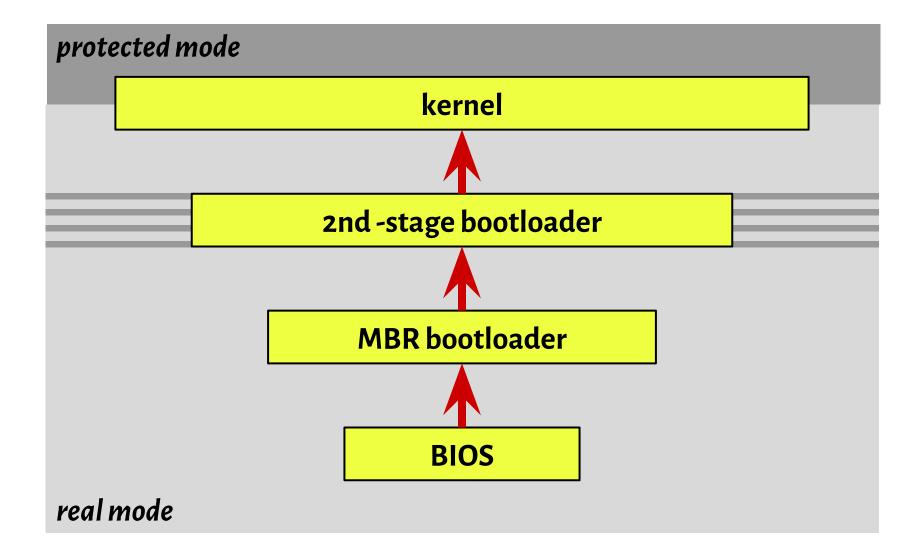
GRUB: GRand Unified Boot loader

https://www.centos.org/docs/rhel-rg-en-3/s1-grub-whatis.html

Real-mode

Real-mode

The mode of 8086 architectures:


- ★ 1 MiB of memory
- \star 16-bit registers

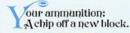
address = segment * 16 + offset

12ab:34cd

mov es:[si], ax

Real-mode

Why x86?


Think of your next microcomputer as a weapon against horrendous inefficiencies, outrageous costs and antiquated speeds. We invite you to peruse this chart.

Features:	8080A	Z80-CPU	Features:	8080A	Z80-CPU
Power Supplies	+5,-5,+12	+5	Instructions	78	158*
Clock	24; + 12 Volt	14,5 Volt	OP Codes	244	696
Standard Clock Speed	500 ns	400 ns	Addressing Modes	7	11
8222.8	Requires	22.8228 and includes	Working Registers	8	17
	8.8224		Throughput	Up to 5 times greater than the 8080A	
Interrupt	1 mode	3 modes; up to 6X faster	Program Memory Generally 50% less than the 8080A		0% less BOA
Non-maskable Interrupt	No	Yes	*Including all of the 8080A's instructions.		

mouncing Zilog Z-80 microcomputer products. With the next generation, the battle is joined.

The 2-80: A new generation LSI component set including CPU and I/O Controllers. The 2-80: Full software support with emphasis on high-level languages. The 2-80: A floppy disc-based development system with advanced real-time debug and in-cruit emulation capabilities. The 2-80: Multiple sourcing available now.

A single chip. N-channel processor arms you with a super-set of 158 instructions that include all of the 8080A's 78 instructions with total software compatibility. The new instructions include 1,4,8 and 16-bit operations. And that means less programming time, less paper and less end costs.

And you'll be in command of powerful instructions: Memory-to-memory or memory-to-I/O block transfers and searches, 16-bit arithmetic, 9 types of rotates and shifts, bit manipulation and a legion of addressing modes. Along with this army you'll also get a standard instruction speed of 1.6 µs and all Z-80 circuits require only a single 5V power supply and a single phase 5V clock. And you should know that a family of Z-80 programmable circuits allow for direct interface to a wide range of both parallel and serial interface peripherals and even dynamic memories without other external logic

With these features, the Z80-CPU generally requires approximately 50% less memory space for program storage yet provides up to 500% more throughput than the 8080A. Powerful ammunition at a surprisingly low cost and ready for immediate shipment.

ighty weapons against an enemy entrenched: The Z-80 development system.

You'll be equipped with performance and versatility unmatched by any other microcomputer development system in the field. Thanks to a floppy disc operating system in alliance with a sophisticated Real-Time Debug Module.

- The Zilog battalion includes: • Z80-CPU Card.
- 16K Bytes of RAM Memory, expandable to 60K Bytes.
- 4K Bytes of ROM/RAM Monitor software.
- Real-Time Debug Module and In-Circuit Emulation Module.
- Dual Floppy Disc System.
 Optional I/O Ports for other High
- Speed Peripherals are also available. • Complete Software Package including
- Z-80 Assembler, Editor, Disc Operating System, File Maintenance and Debug.

n standby: Software support.

All this is supported by a contingent of software including: resident microcomputer software, time sharing programs, libraries and high-level languages such as PL/Z.

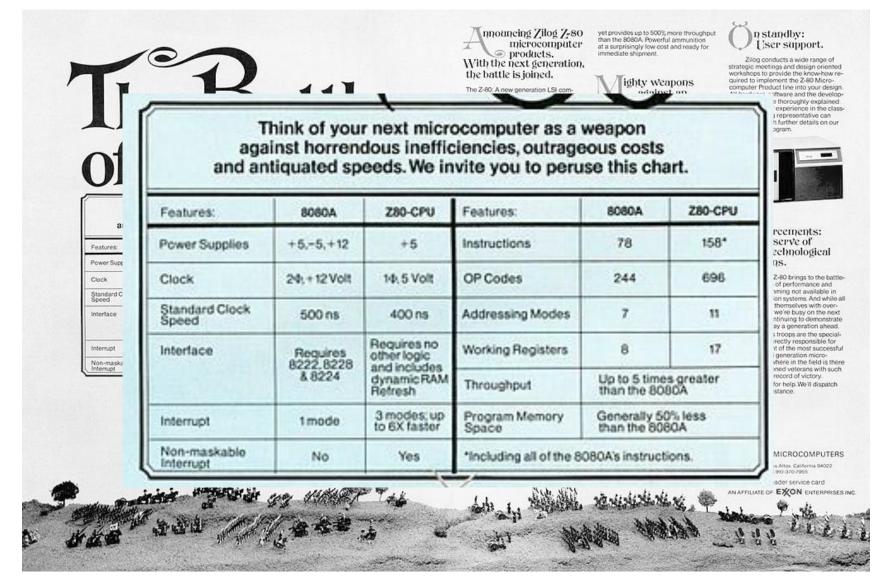
n standby: User support.

Zilog conducts a wide range of strategic meetings and design oriented workshops to provide the know-how required to implement the Z-80 Microcomputer Product line into your design. All hardware, software and the development system are thoroughly explained with "hands-on" experience in the classroom Your Zilog representative can provide you with further details on our user support program.

Reinforcements: A reserve of technological innovations.

The Zilog Z-80 brings to the battlefront new levels of performance and ease of programming not available in second generation systems. And while all the others busy themselves with overtaking the Z-80, we're busy on the next generation—continuing to demonstrate our pledge to stay a generation ahead.

The Z-80's troops are the specialists who were directly responsible for the development of the most successful first and second generation microprocessors. Nowhere in the field is there a corps of balascond vetorans with such a distinguished record of victory.


Signal us for help. We'll dispatch appropriate assistance.

170 State Street. Los Altos. California 94022 (415) 941-5055/TWX 910-370-7955

Circle 33 on reader service card AN AFFILIATE OF EXON ENTERPRISES INC.

Why x86?

Unified Extensible Firmware Interface

https://www.howtogeek.com/56958/htg-explains-how-uefi-will-replace-the-bios/

https://www.happyassassin.net/2014/01/25/uefi-boot-how-does-that-actually-work-then/

http://www.uefi.org/specifications

\$ efibootmgr -v