Fractional differentiability results for elliptic partial differential equations with coefficients

Yeonghun Youn
Yeungnam University, Korea
Uniwersytet Warszawski, February 2, 2023

Motivation

Let us consider the following equation

$$
-\operatorname{div}(a(x) D u)=2 \pi \delta_{0} \quad \text { in } B_{1} \subset \mathbb{R}^{2},
$$

where δ_{0} is the Dirac measure at the origin.
For $a(x)=1+|x|^{1 / 2} \in C^{1 / 2}\left(B_{1}\right)$, we have a distributional solution

$$
u(x)=2 \log \left(1+|x|^{1 / 2}\right)-\log (|x|) \in W^{1,1}\left(B_{1}\right) .
$$

Motivation

Let us consider the following equation

$$
-\operatorname{div}(a(x) D u)=2 \pi \delta_{0} \quad \text { in } B_{1} \subset \mathbb{R}^{2},
$$

where δ_{0} is the Dirac measure at the origin.
For $a(x)=1+|x|^{1 / 2} \in C^{1 / 2}\left(B_{1}\right)$, we have a distributional solution

$$
u(x)=2 \log \left(1+|x|^{1 / 2}\right)-\log (|x|) \in W^{1,1}\left(B_{1}\right) .
$$

Known: $a \in C^{1 / 2}\left(B_{1}\right)$

$$
\Rightarrow D u \in W^{1 / 2-\varepsilon, 1}\left(B_{1}\right)
$$

Fact:
but!

$$
D u \in W^{1-\varepsilon, 1}\left(B_{1}\right) .
$$

Function spaces

For any $\alpha \in(0,1)$ and $\gamma \in[1, \infty)$, we consider the following function spaces of fractional order.

- Fractional Sobolev space

$$
W^{\alpha, \gamma}(\Omega)=\left\{f \in L^{\gamma}(\Omega) \left\lvert\, \int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{\gamma}}{|x-y|^{n+\alpha \gamma}} d x d y<\infty\right.\right\} .
$$

- Nikolskii space

$$
\mathcal{N}^{\alpha, \gamma}(\Omega)=\left\{f \in L^{\gamma}(\Omega) \left\lvert\, \sup _{h \in \mathbb{R}^{n} \backslash\{0\}} \int_{\Omega_{|h|}} \frac{\left|\tau_{h} f\right|^{\gamma}}{|h|^{\alpha \gamma}} d x<\infty\right.\right\},
$$

where $\tau_{h} f(x)=f(x+h)-f(x)$ and $\Omega_{|h|}=\{x \in \Omega|\operatorname{dist}(\partial \Omega, x)>|h|\}$.

Function spaces

For any $\alpha \in(0,1)$ and $\gamma \in[1, \infty)$, we consider the following function spaces of fractional order.

- Fractional Sobolev space

$$
W^{\alpha, \gamma}(\Omega)=\left\{f \in L^{\gamma}(\Omega) \left\lvert\, \int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{\gamma}}{|x-y|^{n+\alpha \gamma}} d x d y<\infty\right.\right\} .
$$

- Nikolskii space

$$
\mathcal{N}^{\alpha, \gamma}(\Omega)=\left\{f \in L^{\gamma}(\Omega) \left\lvert\, \sup _{h \in \mathbb{R}^{n} \backslash\{0\}} \int_{\Omega_{|h|}} \frac{\left|\tau_{h} f\right|^{\gamma}}{|h|^{\alpha \gamma}} d x<\infty\right.\right\},
$$

where $\tau_{h} f(x)=f(x+h)-f(x)$ and $\Omega_{|h|}=\{x \in \Omega|\operatorname{dist}(\partial \Omega, x)>|h|\}$.

- We define by $C_{\gamma}^{\alpha}(\Omega)$ the set of function $a \in L^{1}(\Omega)$ such that there exists $g \in L^{\gamma}(\Omega)$ satisfying

$$
|a(x)-a(y)| \leq|g(x)+g(y)||x-y|^{\alpha} \quad{ }^{\forall} x, y \in \Omega .
$$

Inclusions \& Examples

- For any $\alpha \in(0,1), \gamma \in(1, \infty)$ and $\varepsilon \in(0, \alpha)$,

$$
C_{\gamma}^{\alpha}(\Omega) \subsetneq W^{\alpha, \gamma}(\Omega) \subsetneq \mathcal{N}^{\alpha, \gamma}(\Omega) \subsetneq W^{\alpha-\varepsilon, \gamma}(\Omega) \subsetneq L^{\frac{n \gamma}{(\alpha-\varepsilon) \gamma-n}}(\Omega) .
$$

- $C_{\infty}^{\alpha}(\Omega)=C^{\alpha}(\Omega)$.
- For any $\alpha \in(0,1]$ and $\varepsilon \in(0,1), \chi_{B_{1}} \in C_{1 / \alpha-\varepsilon}^{\alpha}\left(B_{2}\right)$.
- For any $\varepsilon \in(0,1), a(x)=1+|x|^{1 / 2} \in C_{4-\varepsilon}^{1}\left(B_{1}\right)$.

Heuristics for the above problem

Consider the following equation:

$$
-\operatorname{div}\left(a(x)|D u|^{p-2} D u\right)=\mu, \quad \text { in } \Omega \subset \mathbb{R}^{n}, n \geq 2, p>2-\frac{1}{n}
$$

where $\mu \in L^{1}(\Omega)$ and $a \in C_{\gamma}^{\alpha}$ for some $\alpha \in(0,1]$ and $\gamma \in[n, \infty)$.

Then in view of scaling, we expect that if $\alpha \gamma \geq n$, then

Heuristics for the above problem

Consider the following equation:

$$
-\operatorname{div}\left(a(x)|D u|^{p-2} D u\right)=\mu, \quad \text { in } \Omega \subset \mathbb{R}^{n}, n \geq 2, p>2-\frac{1}{n}
$$

where $\mu \in L^{1}(\Omega)$ and $a \in C_{\gamma}^{\alpha}$ for some $\alpha \in(0,1]$ and $\gamma \in[n, \infty)$.
For small $h \in \mathbb{R}^{n}$, we roughly have

$$
\begin{aligned}
\left|\tau_{h}\left(|D u|^{p-2} D u\right)\right| & \lesssim\left|\tau_{h} a\right||D u|^{p-1}+|h||\mu| \\
& \lesssim|h|^{\alpha}\left(|g||D u|^{p-1}+|h|^{1-\alpha}|\mu|\right) .
\end{aligned}
$$

Then in view of scaling, we expect that if $\alpha \gamma \geq n$, then

Heuristics for the above problem

Consider the following equation:

$$
-\operatorname{div}\left(a(x)|D u|^{p-2} D u\right)=\mu, \quad \text { in } \Omega \subset \mathbb{R}^{n}, n \geq 2, p>2-\frac{1}{n}
$$

where $\mu \in L^{1}(\Omega)$ and $a \in C_{\gamma}^{\alpha}$ for some $\alpha \in(0,1]$ and $\gamma \in[n, \infty)$.
For small $h \in \mathbb{R}^{n}$, we roughly have

$$
\begin{aligned}
\left|\tau_{h}\left(|D u|^{p-2} D u\right)\right| & \lesssim\left|\tau_{h} a\right||D u|^{p-1}+|h||\mu| \\
& \lesssim|h|^{\alpha}\left(|g||D u|^{p-1}+|h|^{1-\alpha}|\mu|\right)
\end{aligned}
$$

Then in view of scaling, we expect that if $\alpha \gamma \geq n$, then

$$
|h|^{1-\alpha}|\mu| \in W^{1-\alpha, 1}(\Omega) \hookrightarrow L^{n /(n-1+\alpha)}(\Omega) \Rightarrow|D u|^{p-2} D u \in W_{\operatorname{loc}}^{\alpha, n /(n-1+\alpha)}(\Omega)
$$

\% In the last inclusion, the exponents are irrelevant to γ.
\% We will investigate the assumption $\alpha \gamma \geq n$ later.

Selected references

- J. Kristensen, G. Mingione.

Boundary Regularity in Variational Problems
Arch. Rational Mech. Anal. (2010)

- A. Castro, G. Palatucci. Fractional Regularity For Nonlinear Elliptic Problems With Measure Data J. Convex Anal. (2013)
- A. L. Baisón, A. Clop, R. Giova, J. Orobitg, A. Passarelli di Napoli. Fractional Differentiability for Solutions of Nonlinear Elliptic Equations Potential Anal. (2017)

Fractional differentiability result for measure data problems

Theorem 1 (S.-S. Byun, P. Shin, Y. 2021 Calc. Var. PDE)
Let u be some distributional solution(so-called SOLA) to

$$
-\operatorname{div}\left(a(x)|D u|^{p-2} D u\right)=\mu, \quad \text { in } \Omega \subset \mathbb{R}^{n}, \quad n \geq 2, \quad p \in[2, n]
$$

where μ is a Radon measure with finite mass. Assume that $a \in C_{\gamma}^{\alpha}(\Omega)$ for some $\alpha \in(0,1]$ and $\gamma \in[n, \infty]$ satisfying $\alpha \gamma \geq n$, and

$$
0<\nu \leq a(x) \leq L<\infty, \quad{ }^{\forall} x \in \Omega .
$$

Then for any $\sigma \in(0, \alpha)$ and $q_{0}=n /(n-1+\alpha)$, we have

$$
|D u|^{p-2} D u \in W_{\operatorname{loc}}^{\sigma, q_{0}}(\Omega) .
$$

What's new?

	Passarelli di Napoli et al.	Y. et al.
Equation	$-\operatorname{div}\left(a(x)\|D u\|^{p-2} D u\right)=-\operatorname{div}\left(\|F\|^{p-2} F\right)$	$-\operatorname{div}\left(a(x)\|D u\|^{p-2} D u\right)=\mu$
Concept of Solution	Weak solution	SOLA(Very weak solution)
Common Assumption	$\alpha \gamma \geq n$	
Result	$F \in \mathcal{N}^{\beta, p}$ $\|D u\|^{(p-2) / 2} D u \in \mathcal{N}^{\alpha, 2}$$\quad(\alpha<\beta)$	$\|D u\|^{p-2} D u \in W^{\alpha-\varepsilon, \frac{n}{n-1+\alpha}}$
How?	Directly applying the difference quotient	Perturbation argument
Differences In Methods	Direct method is easier to apply but doesn't work for the very weak solutions.	

\% See Theorem 1.4 in the paper "Higher differentiability for solutions to a class of obstacle problems" by M. Eleuteri and A. Passarelli di Napoli (2018) Calc. Var, PDEs,

Why $\alpha \gamma \geq n$?

Assume that the following rough inequality holds for some $f \in W^{\alpha, q}$ for any fixed $q \geq 1$ and $\alpha \in(0,1)$:

$$
\left|\tau_{h} f\right| \lesssim|h|^{\alpha}|g||f|
$$

where $g \in L^{\gamma}$.

To make the inequality have some meaning, the integrability of $|g||f|$ have to be higher than that of $\left|\tau_{h} f\right| /|h|^{\circ}$ Here, $q^{*}(n, \alpha)=\frac{n q}{n-\alpha q}$ is the fractional critical exponent. much in local like continuous functions.

Why $\alpha \gamma \geq n$?

Assume that the following rough inequality holds for some $f \in W^{\alpha, q}$ for any fixed $q \geq 1$ and $\alpha \in(0,1)$:

$$
\left|\tau_{h} f\right| \lesssim|h|^{\alpha}|g||f|
$$

where $g \in L^{\gamma}$.
To make the inequality have some meaning, the integrability of $|g||f|$ have to be higher than that of $\left|\tau_{h} f\right| /|h|^{\alpha}$.

Why $\alpha \gamma \geq n$?

Assume that the following rough inequality holds for some $f \in W^{\alpha, q}$ for any fixed $q \geq 1$ and $\alpha \in(0,1)$:

$$
\left|\tau_{h} f\right| \lesssim|h|^{\alpha}|g||f|
$$

where $g \in L^{\gamma}$.
To make the inequality have some meaning, the integrability of $|g||f|$ have to be higher than that of $\left|\tau_{h} f\right| /|h|^{\alpha}$.

$$
\frac{1}{\gamma}+\frac{1}{q^{*}(n, \alpha)} \leq \frac{1}{q} \quad \Rightarrow \quad n \leq \alpha \gamma .
$$

Here, $q^{*}(n, \alpha)=\frac{n q}{n-\alpha q}$ is the fractional critical exponent.

Why $\alpha \gamma \geq n$?

Assume that the following rough inequality holds for some $f \in W^{\alpha, q}$ for any fixed $q \geq 1$ and $\alpha \in(0,1)$:

$$
\left|\tau_{h} f\right| \lesssim|h|^{\alpha}|g||f|
$$

where $g \in L^{\gamma}$.
To make the inequality have some meaning, the integrability of $|g||f|$ have to be higher than that of $\left|\tau_{h} f\right| /|h|^{\alpha}$.

$$
\frac{1}{\gamma}+\frac{1}{q^{*}(n, \alpha)} \leq \frac{1}{q} \quad \Rightarrow \quad n \leq \alpha \gamma .
$$

Here, $q^{*}(n, \alpha)=\frac{n q}{n-\alpha q}$ is the fractional critical exponent.
\% From this one can expect further that the coefficient a does not oscillate too much in local like continuous functions.

Key ingredient to prove main theorem

Let $a \in C_{\gamma}^{\alpha}(\Omega)$ for some $\alpha \in(0,1]$ and $\gamma \in[n, \infty)$ satisfying $\alpha \gamma \geq n$. Then

$$
\begin{aligned}
f_{B_{R}}\left|a(x)-(a)_{B_{R}}\right| d x & =f_{B_{R}}\left|f_{B_{R}}(a(x)-a(y)) d y\right| d x \\
& \leq R^{\alpha} f_{B_{R}} f_{B_{R}}(|g(x)|+|g(y)|) d y d x \\
& \leq c R^{\alpha}\left(f_{B_{R}}|g(x)|^{\gamma} d x\right)^{1 / \gamma} \\
& \leq c R^{\alpha-n / \gamma}\|g\|_{L^{\gamma}\left(B_{R}\right)} .
\end{aligned}
$$

Key ingredient to prove main theorem

Let $a \in C_{\gamma}^{\alpha}(\Omega)$ for some $\alpha \in(0,1]$ and $\gamma \in[n, \infty)$ satisfying $\alpha \gamma \geq n$. Then

$$
f_{B_{R}}\left|a(x)-(a)_{B_{R}}\right| d x \leq c R^{\alpha-n / \gamma}\|g\|_{L^{\gamma}\left(B_{R}\right)} .
$$

Hence, we have

- If $\alpha \gamma=n$, then $a \in \operatorname{VMO}(\Omega)$.
- If $\alpha \gamma>n$, then $a \in C^{\alpha-n / \gamma}(\Omega)$.

Key ingredient to prove main theorem

Let $a \in C_{\gamma}^{\alpha}(\Omega)$ for some $\alpha \in(0,1]$ and $\gamma \in[n, \infty)$ satisfying $\alpha \gamma \geq n$. Then

$$
f_{B_{R}}\left|a(x)-(a)_{B_{R}}\right| d x \leq c R^{\alpha-n / \gamma}\|g\|_{L^{\gamma}\left(B_{R}\right)} .
$$

Hence, we have

- If $\alpha \gamma=n$, then $a \in \operatorname{VMO}(\Omega)$.
- If $\alpha \gamma>n$, then $a \in C^{\alpha-n / \gamma}(\Omega)$.

Assuming $0<\nu \leq a \leq L<\infty$, the regularity results below are well known for any weak solution $w \in W^{1,2}(\Omega)$ to

$$
-\operatorname{div}\left(a(x)|D w|^{p-2} D w\right)=0, \quad \text { in } \Omega .
$$

- If $\alpha \gamma=n$, then $|D w|^{p} \in L_{\text {loc }}^{q}(\Omega)$ for every $q \in[1, \infty)$.
- If $\alpha \gamma>n$, then $|D w|^{p-2} D w \in C_{\text {loc }}^{\beta}(\Omega)$ for some $\beta \in(0, \alpha-n / \gamma)$.

Outline of the proof of Theorem 1

- Compare SOLA to the weak solution $w \in u+W_{0}^{1, p}\left(B_{2 R}\right)$ to

$$
-\operatorname{div}\left(a(x)|D w|^{p-2} D w\right)=0 \quad \text { in } B_{2 R} .
$$

- Recall that $w \in W_{\mathrm{loc}}^{1, q}\left(B_{2 R}\right)$ for every $q \in[p, \infty)$.
- Then we can compare w to the weak solution $v \in w+W_{0}^{1, p}\left(B_{R}\right)$ to

$$
-\operatorname{div}\left(a(0)|D v|^{p-2} D v\right)=0 \quad \text { in } B_{2 R} .
$$

- Using $v \in W_{\text {loc }}^{2,2}\left(B_{R}\right)$ and taking R relevant to h, we can employ bootstrap argument to deduce

$$
|D u|^{p-2} D u \in W_{\mathrm{loc}}^{\sigma, q_{0}}(\Omega)
$$

for any $\sigma \in(0, \alpha)$ and $q_{0}=n /(n-1+\alpha)$.

What happens if we consider homogeneous equations?

We now consider

$$
-\operatorname{div}\left(a(x)|D u|^{p-2} D u\right)=0, \quad \text { in } \quad \Omega \subset \mathbb{R}^{n}, n \geq 2
$$

where $a \in C_{n / \alpha}^{\alpha}$ for some $\alpha \in(0,1]$.

What happens if we consider homogeneous equations?

We now consider

$$
-\operatorname{div}\left(a(x)|D u|^{p-2} D u\right)=0, \quad \text { in } \quad \Omega \subset \mathbb{R}^{n}, n \geq 2
$$

where $a \in C_{n / \alpha}^{\alpha}$ for some $\alpha \in(0,1]$.

From the same heuristics in a previous slide, for small $h \in \mathbb{R}^{n}$,

$$
\left|\tau_{h}\left(|D u|^{p-2} D u\right)\right| \lesssim\left|\tau_{h} a\right||D u|^{p-1}
$$

What happens if we consider homogeneous equations?

We now consider

$$
-\operatorname{div}\left(a(x)|D u|^{p-2} D u\right)=0, \quad \text { in } \quad \Omega \subset \mathbb{R}^{n}, n \geq 2
$$

where $a \in C_{n / \alpha}^{\alpha}$ for some $\alpha \in(0,1]$.

From the same heuristics in a previous slide, for small $h \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\left|\tau_{h}\left(|D u|^{p-2} D u\right)\right| & \lesssim\left|\tau_{h} a\right||D u|^{p-1} \\
& \lesssim|h|^{\alpha}|g||D u|^{p-1}
\end{aligned}
$$

What happens if we consider homogeneous equations?

We now consider

$$
-\operatorname{div}\left(a(x)|D u|^{p-2} D u\right)=0, \quad \text { in } \quad \Omega \subset \mathbb{R}^{n}, n \geq 2
$$

where $a \in C_{n / \alpha}^{\alpha}$ for some $\alpha \in(0,1]$.

From the same heuristics in a previous slide, for small $h \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\left|\tau_{h}\left(|D u|^{p-2} D u\right)\right| & \lesssim\left|\tau_{h} a\right||D u|^{p-1} \\
& \lesssim|h|^{\alpha}|g||D u|^{p-1}
\end{aligned}
$$

If $D u \in L_{\text {loc }}^{\infty}(\Omega)$, then we expect

$$
|D u|^{p-2} D u \in W_{l o c}^{\alpha, n / \alpha}(\Omega)
$$

What is known so far?

- Applying the known results obtained so far to

$$
-\operatorname{div}\left(a(x)|D u|^{p-2} D u\right)=0
$$

with $a \in C^{\alpha, n / \alpha}$, one has only

$$
|D u|^{(p-2) / 2} D u \in \mathcal{N}^{\alpha-\varepsilon, 2} .
$$

Possible future works

(1) For

$$
-\operatorname{div}\left(a(x)|D u|^{p-2} D u\right)=0
$$

with $a \in C_{\gamma}^{\alpha}$ where $\alpha \in(0,1]$ and $\gamma \in(1, n / \alpha)$, the following may hold

$$
|D u|^{\delta-1} D u \in W^{\alpha-\varepsilon, 1}
$$

for some $\delta=p / \gamma^{\prime}$ and any $\varepsilon \in(0, \alpha)$.
(2) Find an optimal assumptions on the variable exponent $p(x)$ to obtain fractional differentiablity results for the variable exponent problem:

$$
-\operatorname{div}\left(|D u|^{p(x)-2} D u\right)=\mu
$$

Dziękuję Ci.

Thank you for your attention.

