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Fractional differentiability results for measure data problems

Motivation

Let us consider the following equation

−div(a(x)Du) = 2πδ0 in B1 ⊂ R2,

where δ0 is the Dirac measure at the origin.

For a(x) = 1 + |x|1/2 ∈ C1/2(B1), we have a distributional solution

u(x) = 2 log(1 + |x|1/2)− log(|x|) ∈W 1,1(B1).

Known: a ∈ C1/2(B1)

⇒ Du ∈W 1/2−ε,1(B1)
but!

Fact:

Du ∈W 1−ε,1(B1).

Fractional differentiability results for elliptic partial differential equations with coefficients Yeonghun Youn



Fractional differentiability results for measure data problems

Motivation

Let us consider the following equation

−div(a(x)Du) = 2πδ0 in B1 ⊂ R2,

where δ0 is the Dirac measure at the origin.

For a(x) = 1 + |x|1/2 ∈ C1/2(B1), we have a distributional solution

u(x) = 2 log(1 + |x|1/2)− log(|x|) ∈W 1,1(B1).

Known: a ∈ C1/2(B1)

⇒ Du ∈W 1/2−ε,1(B1)
but!

Fact:

Du ∈W 1−ε,1(B1).

Fractional differentiability results for elliptic partial differential equations with coefficients Yeonghun Youn



Fractional differentiability results for measure data problems

Function spaces

For any α ∈ (0, 1) and γ ∈ [1,∞), we consider the following function spaces of
fractional order.

Fractional Sobolev space

Wα,γ(Ω) =

{
f ∈ Lγ(Ω)

∣∣∣∣ ∫
Ω

∫
Ω

|f(x)− f(y)|γ

|x− y|n+αγ
dx dy <∞

}
.

Nikolskii space

Nα,γ(Ω) =

{
f ∈ Lγ(Ω)

∣∣∣∣ sup
h∈Rn\{0}

∫
Ω|h|

|τhf |γ

|h|αγ
dx <∞

}
,

where τhf(x) = f(x+ h)− f(x) and Ω|h| = {x ∈ Ω|dist(∂Ω, x) > |h|}.

We define by Cαγ (Ω) the set of function a ∈ L1(Ω) such that there exists
g ∈ Lγ(Ω) satisfying

|a(x)− a(y)| ≤ |g(x) + g(y)||x− y|α ∀x, y ∈ Ω.
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Inclusions & Examples

For any α ∈ (0, 1), γ ∈ (1,∞) and ε ∈ (0, α),

Cαγ (Ω) (Wα,γ(Ω) ( Nα,γ(Ω) (Wα−ε,γ(Ω) ( L
nγ

(α−ε)γ−n (Ω).

Cα∞(Ω) = Cα(Ω).

For any α ∈ (0, 1] and ε ∈ (0, 1), χB1
∈ Cα1/α−ε(B2).

For any ε ∈ (0, 1), a(x) = 1 + |x|1/2 ∈ C1
4−ε(B1).
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Heuristics for the above problem

Consider the following equation:

−div(a(x)|Du|p−2Du) = µ, in Ω ⊂ Rn, n ≥ 2, p > 2− 1

n

where µ ∈ L1(Ω) and a ∈ Cαγ for some α ∈ (0, 1] and γ ∈ [n,∞).

For small h ∈ Rn, we roughly have

|τh(|Du|p−2Du)|. |τha||Du|p−1 + |h||µ|
. |h|α(|g||Du|p−1 + |h|1−α|µ|).

Then in view of scaling, we expect that if αγ ≥ n, then

|h|1−α|µ| ∈W 1−α,1(Ω) ↪→ Ln/(n−1+α)(Ω) ⇒ |Du|p−2Du ∈Wα,n/(n−1+α)
loc (Ω).

% In the last inclusion, the exponents are irrelevant to γ.
% We will investigate the assumption αγ ≥ n later.
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Fractional differentiability result for measure data problems

Theorem 1 (S.-S. Byun, P. Shin, Y. 2021 Calc. Var. PDE)

Let u be some distributional solution(so-called SOLA) to

−div(a(x)|Du|p−2Du) = µ, in Ω ⊂ Rn, n ≥ 2, p ∈ [2, n]

where µ is a Radon measure with finite mass. Assume that a ∈ Cαγ (Ω) for some
α ∈ (0, 1] and γ ∈ [n,∞] satisfying αγ ≥ n, and

0 < ν ≤ a(x) ≤ L <∞, ∀x ∈ Ω.

Then for any σ ∈ (0, α) and q0 = n/(n− 1 + α), we have

|Du|p−2Du ∈Wσ,q0
loc (Ω).
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What’s new?

Passarelli di Napoli et al. Y. et al.

Equation
1

1
−div(a(x)|Du|p−2Du) = −div(|F |p−2F )

1

1
−div(a(x)|Du|p−2Du) = µ

Concept of
Solution

Weak solution SOLA(Very weak solution)

Common
Assumption

αγ ≥ n

Result
1

1
F ∈ N β,p ⇒
|Du|(p−2)/2Du ∈ Nα,2

(α < β)
1

1
|Du|p−2Du ∈Wα−ε, n

n−1+α

How?
1

Directly applying

1
the difference quotient

Perturbation argument

Differences
In Methods

1
Direct method is easier to apply but doesn’t

1
work for the very weak solutions.

% See Theorem 1.4 in the paper “Higher differentiability for solutions to a class of
obstacle problems” by M. Eleuteri and A. Passarelli di Napoli (2018) Calc. Var. PDEs.
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Why αγ ≥ n?

Assume that the following rough inequality holds for some f ∈Wα,q for any fixed
q ≥ 1 and α ∈ (0, 1):

|τhf | . |h|α|g||f |

where g ∈ Lγ .

To make the inequality have some meaning, the integrability of |g||f | have to be
higher than that of |τhf |/|h|α.

1

γ
+

1

q∗(n, α)
≤ 1

q
⇒ n ≤ αγ.

Here, q∗(n, α) = nq
n−αq is the fractional critical exponent.

% From this one can expect further that the coefficient a does not oscillate too
much in local like continuous functions.
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Key ingredient to prove main theorem

Let a ∈ Cαγ (Ω) for some α ∈ (0, 1] and γ ∈ [n,∞) satisfying αγ ≥ n. Then∫
−
BR

|a(x)− (a)BR | dx =

∫
−
BR

∣∣∣∣∫−
BR

(a(x)− a(y)) dy

∣∣∣∣ dx

≤ cRα−n/γ‖g‖Lγ(BR).

≤ Rα
∫
−
BR

∫
−
BR

(|g(x)|+ |g(y)|) dy dx

≤ cRα
(∫
−
BR

|g(x)|γ dx
)1/γ

≤ cRα−n/γ‖g‖Lγ(BR).

Hence, we have

If αγ = n, then a ∈ VMO(Ω).

If αγ > n, then a ∈ Cα−n/γ(Ω).

Assuming 0 < ν ≤ a ≤ L <∞, the regularity results below are well known for any
weak solution w ∈W 1,2(Ω) to

−div(a(x)|Dw|p−2Dw) = 0, in Ω.

If αγ = n, then |Dw|p ∈ Lqloc(Ω) for every q ∈ [1,∞).

If αγ > n, then |Dw|p−2Dw ∈ Cβloc(Ω) for some β ∈ (0, α− n/γ).
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Outline of the proof of Theorem 1

Compare SOLA to the weak solution w ∈ u+W 1,p
0 (B2R) to

−div(a(x)|Dw|p−2Dw) = 0 in B2R.

Recall that w ∈W 1,q
loc (B2R) for every q ∈ [p,∞).

Then we can compare w to the weak solution v ∈ w +W 1,p
0 (BR) to

−div(a(0)|Dv|p−2Dv) = 0 in B2R.

Using v ∈W 2,2
loc (BR) and taking R relevant to h, we can employ bootstrap

argument to deduce
|Du|p−2Du ∈Wσ,q0

loc (Ω)

for any σ ∈ (0, α) and q0 = n/(n− 1 + α).
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Fractional differentiability results with higher integrability

What happens if we consider homogeneous equations?

We now consider

−div(a(x)|Du|p−2Du) = 0, in Ω ⊂ Rn, n ≥ 2,

where a ∈ Cαn/α for some α ∈ (0, 1].

From the same heuristics in a previous slide, for small h ∈ Rn,

|τh(|Du|p−2Du)| . |τha||Du|p−1

. |h|α|g||Du|p−1

If Du ∈ L∞loc(Ω), then we expect

|Du|p−2Du ∈Wα,n/α
loc (Ω)
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What is known so far?

Applying the known results obtained so far to

−div(a(x)|Du|p−2Du) = 0

with a ∈ Cα,n/α, one has only

|Du|(p−2)/2Du ∈ Nα−ε,2.
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Possible future works

1 For
−div(a(x)|Du|p−2Du) = 0

with a ∈ Cαγ where α ∈ (0, 1] and γ ∈ (1, n/α), the following may hold

|Du|δ−1Du ∈Wα−ε,1

for some δ = p/γ′ and any ε ∈ (0, α).

2 Find an optimal assumptions on the variable exponent p(x) to obtain
fractional differentiablity results for the variable exponent problem:

−div(|Du|p(x)−2Du) = µ.
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Dziękuję Ci.
Thank you for your attention.
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