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The talk is based on the following papers:

@ Iwona Chlebicka, Arttu Kappinen, Ying Li, A direct proof of existence
of weak solutions to fully anisotropic and inhomogenous elliptic
problems. (Submitted)
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Preliminaries

Definition of N-function

A function M (z,€) : Q@ x R® — R is called an N-function if
@ it is a Carathéodory function satisfying M (z,0) = 0;
@ it is a convex function with respect to &;
@ M(x,&) = M(x,—€) for a.e. x €

@ there exist two convex functions mi, ms : [0,00) — [0, 00) such that

fim 72 o= 72 g im0 g = g ™20
s—0t S s—0t S s—00 S s—»00 S

and for a.e. x € Q

ma([§]) < M(z,€) < ma(f¢]).
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Preliminaries

Musielak-Orlicz space

Suppose 2 € R"™.

@ For an N-function we define the general Musielak—Orlicz class £ (2)
as the set of all measurable functions £ : Q@ — R" satisfying

/ M(z,&(x))dx < 0.
Q
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Preliminaries

Musielak-Orlicz space

Suppose 2 € R"™.

@ For an N-function we define the general Musielak—Orlicz class £ (2)
as the set of all measurable functions £ : Q@ — R" satisfying

/ M(z,&(x))dx < 0.
Q

@ L (Q2) are defined as sets of functions £ : @ — R" satisfying

/QM(m,)\ﬁ(a:))dx < 00

for some \ € R.
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Preliminaries

Musielak-Orlicz space

Suppose 2 € R"™.

@ For an N-function we define the general Musielak—Orlicz class £ (2)
as the set of all measurable functions £ : Q@ — R" satisfying

/ M(z,&(x))dx < 0.
Q

@ L (Q2) are defined as sets of functions £ : @ — R" satisfying

/QM(m,)\ﬁ(a:))dx < 00

for some A\ € R.
@ En(Q) are defined as sets of functions £ : Q@ — R™ satisfying

/ M(z,\(x)) dz < o0
Q

for every A € R.
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Preliminaries

Complementary function

Complementary (conjugate, Legendre’s transform) function M™ to
an N-function M if defined by

M*(z,n) := sup [£-n— M(x,£)] forany n € R" and a.e. z € Q.
geRrn
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Preliminaries

Complementary function

Complementary (conjugate, Legendre’s transform) function M™ to
an N-function M if defined by

M*(z,n) := sup [£-n— M(x,£)] forany n € R" and a.e. z € Q.
geRrn

@ M7 is an N-function.
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Preliminaries

Complementary function

Complementary (conjugate, Legendre’s transform) function M™ to
an N-function M if defined by

M*(z,n) := sup [£-n— M(x,£)] forany n € R" and a.e. z € Q.
geRrn

@ M7 is an N-function.

The Fenchel-Young inequality reads

E-n< M(z,&)+ M (z,n) forall £,neR" and ae. z€ Q.
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Preliminaries

Complementary function

Complementary (conjugate, Legendre’s transform) function M™ to
an N-function M if defined by

M*(z,n) := sup [£-n— M(x,£)] forany n € R" and a.e. z € Q.
geRrn

@ M7 is an N-function.

The Fenchel-Young inequality reads
E-n< Mz, &)+ M*(z,n) forall £,neR" and ae. z€ Q.

Notation
Vo Lae(9) = {u € W' (Q) : Vu € L (Q)}.
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Preliminaries

Some properties of Musielak-Orlicz Space

[*] EA[(Q;RTL) C E]\/[(Q;Rn) C LA{(Q;Rn)
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Preliminaries

Some properties of Musielak-Orlicz Space

o EA[(Q;RTL) C E]\/[(Q;Rn) C LA{(Q;Rn)
Without growth conditions on M the inclusions are proper!
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Preliminaries

Some properties of Musielak-Orlicz Space

o EA[(Q;RTL) C E]\/[(Q;Rn) C LA{(Q;Rn)
Without growth conditions on M the inclusions are proper!
@ The space Ep(2;R™) is the closure in Ly-norm of the set of bounded
functions.
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Preliminaries

Some properties of Musielak-Orlicz Space

[*] EA[(Q;RTL) C E]\/[(Q;Rn) C LA{(Q;Rn)
Without growth conditions on M the inclusions are proper!

@ The space Ep(2;R™) is the closure in Ly-norm of the set of bounded
functions.

] (E]\{(Q;Rn))* = Ly~ (Q,Rn) and (E]V[* (Q;R"))* = LA{(Q;R”) but no
other duality relations are expected.
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Preliminaries

Some properties of Musielak-Orlicz Space

EA[(Q;RTL) C E]\/[(Q;Rn) C LA{(Q;Rn)
Without growth conditions on M the inclusions are proper!

The space En(€©2;R™) is the closure in Lys-norm of the set of bounded
functions.

(E]\{(Q;Rn))* = Ly~ (Q,Rn) and (E]V[* (Q;R"))* = LA{(Q;R”) but no
other duality relations are expected.

@ Both are equipped with Luxemburg norm

€L ar ) = inf{/\ >0: /QM (oc, i;\”) dr < 1} .
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Some

Preliminaries

properties of Musielak-Orlicz Space

EA[(Q;RTL) C E]\/[(Q;Rn) C LA{(Q;Rn)
Without growth conditions on M the inclusions are proper!

The space En(€©2;R™) is the closure in Lys-norm of the set of bounded
functions.

(E]\{(Q;Rn))* = Ly~ (Q,Rn) and (E]V[* (Q;R"))* = LA{(Q;R”) but no
other duality relations are expected.

Both are equipped with Luxemburg norm

€L ar ) = inf{/\ >0: /QM (oc, i;\”) dr < 1} .

If M € As, then Ly (2;R™) = Ea(Q;R™).
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Ay condition

Definition of As-condition

We say that an N-function M : Q x [0,00) — R satisfies Az-condition if
there exists a constant ¢ > 0 and h € L*(Q),h > 0,such that

M(z,2s) < cM(z, s) + h(zx).
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Ay condition

Definition of As-condition

We say that an N-function M : Q x [0,00) — R satisfies Az-condition if
there exists a constant ¢ > 0 and h € L*(Q),h > 0,such that

M(z,2s) < cM(z, s) + h(zx).

Important! M, M* € Ay <= Ly is reflexive and separable. J
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Ay condition

Definition of As-condition

We say that an N-function M : Q x [0,00) — R satisfies Az-condition if
there exists a constant ¢ > 0 and h € L*(Q),h > 0,such that

M(z,2s) < cM(z, s) + h(zx).

Important! M, M* € Ay <= Ly is reflexive and separable. J

But, in our paper, we do not control the growth of M with
respect to the second variable by any kind of doubling condition
or a power function.
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Preliminaries

Framework

The leading part of the operator satisfies general conditions settling the
problem in the framework of fully anisotropic and inhomogeneous
Musielak-Orlicz space.
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Preliminaries

Framework

The leading part of the operator satisfies general conditions settling the
problem in the framework of fully anisotropic and inhomogeneous
Musielak-Orlicz space.

@ general growth — when the power function governing the growth of the
operator is substituted by an N-function M (z,&) = M (|€|), which do
not necessarily satisfy the so-called As-condition (being a necessary
condition for an Orlicz space Ly to be reflexive);
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Framework

The leading part of the operator satisfies general conditions settling the
problem in the framework of fully anisotropic and inhomogeneous
Musielak-Orlicz space.

@ general growth — when the power function governing the growth of the
operator is substituted by an N-function M (z,&) = M (|€|), which do
not necessarily satisfy the so-called As-condition (being a necessary
condition for an Orlicz space Ly to be reflexive);

@ inhomogeneity — when the growth of the operator could be controlled
by an z-dependent function e.g. M(z,€) = |£|P® (which results in the
lack of the density of smooth functions in LP(), if p(+) is not regular
enough);
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Framework

The leading part of the operator satisfies general conditions settling the
problem in the framework of fully anisotropic and inhomogeneous
Musielak-Orlicz space.

@ general growth — when the power function governing the growth of the
operator is substituted by an N-function M (z,&) = M (|€|), which do
not necessarily satisfy the so-called As-condition (being a necessary
condition for an Orlicz space Ly to be reflexive);

@ inhomogeneity — when the growth of the operator could be controlled
by an z-dependent function e.g. M(z,€) = |£|P® (which results in the
lack of the density of smooth functions in LP(), if p(+) is not regular
enough);

@ anisotropy — when the growth of the operator is governed by a
function depending on the full vector of &, not just its length |£].
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Preliminaries

Anisotropy

A function M which admits a decomposition
ZM &), €= (&1, &) ER™, M; : Q x R — [0, 00),

is called orthotroplc function.
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Anisotropy

A function M which admits a decomposition
ZM &), €= (&1, &) ER™, M; : Q x R — [0, 00),

is called orthotroplc function.
® M(z,§) = ?:1 [

Ying Li Existence of solutions in Musielak-Orlicz space



Preliminaries

Anisotropy

A function M which admits a decomposition
ZM &), €= (&1, &) ER™, M; : Q x R — [0, 00),

is called orthotroplc function.
® M(z,§) = ?:1 [
They have monotonicity property: if
§= (8, 58n)n=(m,-,nn),|&| < |mil, then M(z,&) < M(z,n).

Ying Li Existence of solutions in Musielak-Orlicz space



Preliminaries

Anisotropy

A function M which admits a decomposition
ZM &), €= (&1, &) ER™, M; : Q x R — [0, 00),

is called orthotroplc function.
® M(z,§) = ?:1 [
They have monotonicity property: if

€= (&, &n)n=(n, - smm), &l < [mif, then M(xz,§) < M(z,n).
(But, it not true in general!)
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Preliminaries

Anisotropy

A function M which admits a decomposition
ZM &), €= (&1, &) ER™, M; : Q x R — [0, 00),

is called orthotroplc function.
o M(x,g) = ?:1 ‘£L|Pl7
They have monotonicity property: if

§= (él» e 76”)777 = (7717 tr 77771)» |€7«| < |777J|7 then M("B,g) < M(m:n)'
(But, it not true in general!)
The family of fully anisotropic function is far more robust!
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Preliminaries

Anisotropy

A function M which admits a decomposition
ZM &), €= (&1, &) ER™, M; : Q x R — [0, 00),

is called orthotroplc function.
o M(x,g) = ?:1 ‘£L|Pl7
They have monotonicity property: if

§= (éh e 76”)777 = (7717 tr 77771)» |€7«| < |777J|7 then M("E,g) < M(m:n)'
(But, it not true in general!)
The family of fully anisotropic function is far more robust!

Essentially fully anisotropic: if there exists no linear invertible map
T :R"™ — R" such that

M@, T(&, - &) ZM ,1&l)

for some Young functions M; : Q@ x R — [0,00). [Chlebicka, Nayar, MMAS
2021].
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If we project it onto a 2-Dimension plane based on the growth, we will see

Figure: isotropic Figure: orthotropic =~ Figure: anisotropic

@ Isotropic: M(z,§) = M(x,|£|). Rely on the length of |£].
@ Orthotropic: M(z,&) = -7, |&[P*. Described by its behavior in
each direction separately.

@ Essentially fully anisotropic: It’s impossible to indicate the
direction of the quickest growth.
(The direction of the quickest growth man change on each level set.)
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Preliminaries

Essentially fully
anisotropic

orthotropic




Modular density

Under no such control on the growth, in the case of

@ Classical Orlicz-Sobolev space: Gossez, (Studia Math.1982)
Smooth functions are dense only with respect to modular topology
(not in norm).

Anisotropic: [Alberico, Chlebicka, Cianchi, Zatorska-Golstein,
CalcVar2018|
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Modular density

Under no such control on the growth, in the case of

@ Classical Orlicz-Sobolev space: Gossez, (Studia Math.1982)
Smooth functions are dense only with respect to modular topology
(not in norm).

Anisotropic: [Alberico, Chlebicka, Cianchi, Zatorska-Golstein,
CalcVar2018|

@ Musielak-Orlicz-Sobolev space: To get modular density of smooth
function in a Musielak-Orlicz-Sobolev space, one need to assume that
there is a condition balancing the behaviour of M with respect to its
variable.
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Modular density

Under no such control on the growth, in the case of

@ Classical Orlicz-Sobolev space: Gossez, (Studia Math.1982)
Smooth functions are dense only with respect to modular topology
(not in norm).

Anisotropic: [Alberico, Chlebicka, Cianchi, Zatorska-Golstein,
CalcVar2018|

@ Musielak-Orlicz-Sobolev space: To get modular density of smooth
function in a Musielak-Orlicz-Sobolev space, one need to assume that
there is a condition balancing the behaviour of M with respect to its
variable.

Ahmida, Borowski, Chlebika, Gwiazda, Miasojedow, Skrzeczkowski,
Swierczewska-GwiaZda, Wréblewska-Kamiriska, Youssfi,
Zatorska-Golstein...

Ying Li Existence of solutions in Musielak-Orlicz space



Preliminaries

Modular Convergence

Definition (Modularly convergence)

A sequence {&,} ., converges modularly to & in Las(2), which we denote

as & 2L ¢, if
/M(x,&ig)dx"%—ooﬂ)
o by

for some \ > 0.
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Preliminaries

Modular Convergence

Definition (Modularly convergence)

A sequence {&,} ., converges modularly to & in Las(2), which we denote

as & 2L ¢, if
/M(x,&ig)dx"%—ooﬂ)
o by

e If&, SN € in L (Q) then, up to a subsequence, &, —— ¢ in
o(Lar, Lag+).

for some \ > 0.
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Preliminaries

Modular Convergence

Definition (Modularly convergence)

A sequence {&,} ., converges modularly to & in Las(2), which we denote

as & 2L ¢, if
/M(x,&ig)dx"%—ooﬂ)
o by

e If&, SN € in L (Q) then, up to a subsequence, &, —— ¢ in
o(La, Lar+).

@ Let X and Y be subsets of L'(Q2) not necessarily related by duality.
We say fn — f for o(X,Y) if

for some \ > 0.

/fngdx —>n~>oo /fgdac
Q Q

forall g €Y.
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Preliminaries

Quick Review-Just mention a few

The difficulty caused by the lack of reflexivity of Las under non-doubling
regime was avoided by the idea of the complementary systems in
Orlicz—Sobolev spaces. Contributions in this direction were initiated by
Donaldson

@ T.Donaldson. Nonlinear elliptic boundary value problems in
Orlicz - Sobolev spaces. In: Journal of Differential Equations 10.3
(1971), pp. 507 - 528.

and continued by Gossez, Mustonen and Tienari,

@ J. Gossez. Nonlinear elliptic boundary value problems for equations
with rapidly (or slowly) increasing coefficients. In: Transactions of the
American Mathematical Society 190 (1974), pp. 163 - 205.

@ J. Gossez. Orlicz-Sobolev spaces and nonlinear elliptic boundary value
problems. In: Nonlinear analysis, function spaces and applications

(1979), pp. 59 - 94.

@ V. Mustonen and M. Tienari. On monotone-like mappings in

255 - 271,
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Preliminaries

Quick Review-Just mention a few

@ For analysis of problems in anisotropic Orlicz spaces governed by
possibly fully anisotropic modular function, which is independent of

the spacial variable:

@ A. Alberico, I. Chlebicka, A. Cianchi, A. Zatorska-Golstein. Fully
anisotropic elliptic problems with minimally integrable data. In:
Calc. Var. Partial Differential Equations 58:186 (2019).

@ G. Barletta and A. Cianchi. Dirichlet problems for fully
anisotropic elliptic equations. In: Proc. Roy. Soc. Edinburgh Sect.
A 147.1 (2017), pp. 25 - 60.

@ [. Chlebicka and P. Nayar. Fssentially fully anisotropic Orlicz
functions and uniqueness to measure data problem. In: Math.
Methods Appl. Sci. 45.14 (2022), pp. 8503 - 8527
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Preliminaries

Quick Review-Just mention a few

@ Existence to problems that are in the same time of general growth,
inhomogeneous, and fully anisotropic were studied in:

@ A. Denkowska, P. Gwiazda, and P. Kalita. On renormalized
solutions to elliptic inclusions with nonstandard growth. In: Calc.
Var. Partial Differential Equations 60.1 (2021), 21:52.

@ 1. Chlebicka, P. Gwiazda, and A. Zatorska-Goldstein. Ezistence of
renormalized solutions to elliptic equation in Musielak-Orlicz
space . In: Journal of Differential Equations 264.1 (2018), pp.

341 - 377.

@ I. Chlebicka, P. Gwiazda, and A. Zatorska-Goldstein. Parabolic

equation in time and space dependent anisotropic Musielak-Orlicz

in absence of Lavrentiev’s phenomenon. In: Ann. Inst. H.
Poincaré C Anal. Non Linéaire 36 (2019), no. 5, 1431 - 1465.
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Preliminaries

Quick Review-Just mention a few

@ Existence to problems that are in the same time of general growth,
inhomogeneous, and fully anisotropic were studied in:

@ A. Denkowska, P. Gwiazda, and P. Kalita. On renormalized
solutions to elliptic inclusions with nonstandard growth. In: Calc.
Var. Partial Differential Equations 60.1 (2021), 21:52.

@ 1. Chlebicka, P. Gwiazda, and A. Zatorska-Goldstein. Ezistence of
renormalized solutions to elliptic equation in Musielak-Orlicz
space . In: Journal of Differential Equations 264.1 (2018), pp.

341 - 377.

@ I. Chlebicka, P. Gwiazda, and A. Zatorska-Goldstein. Parabolic

equation in time and space dependent anisotropic Musielak-Orlicz

in absence of Lavrentiev’s phenomenon. In: Ann. Inst. H.
Poincaré C Anal. Non Linéaire 36 (2019), no. 5, 1431 - 1465.

But none of them provided a direct proof.
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Preliminaries

Quick Review-Just mention a few

@ Anisotropic problems with lower-order terms are less understood — we
can only refer to:

@ A. DiCastro. Anisotropic elliptic problems with natural growth
terms. In: Manuscripta Math 135.3-4 (2011), pp. 521 - 543.

@ P. Gwiazda et al. Renormalized solutions of nonlinear elliptic
problems in generalized Orlicz spaces. In: Journal of Differential
Equations 253.2 (2012), pp. 635 - 666.
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Quick Review-Just mention a few

@ Anisotropic problems with lower-order terms are less understood — we
can only refer to:

@ A. DiCastro. Anisotropic elliptic problems with natural growth
terms. In: Manuscripta Math 135.3-4 (2011), pp. 521 - 543.

@ P. Gwiazda et al. Renormalized solutions of nonlinear elliptic
problems in generalized Orlicz spaces. In: Journal of Differential
Equations 253.2 (2012), pp. 635 - 666.

But they do not cover our generality of the problem.
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Main Results

Main results-First one

In this talk, the first result I will introduce is the existence of weak
solutions for the following problem:

—div (A(z, Vu) + ®(u)) + b(z,u) = div F in Q, 1
u(z) =0 on o9, )

where € is a bounded Lipschitz domain in R", n > 1.
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Main Results

Main results-First one

In this talk, the first result I will introduce is the existence of weak
solutions for the following problem:

—div (A(z, Vu) + ®(u)) + b(z,u) = div F in Q, 1
u(z) =0 on o9, )

where € is a bounded Lipschitz domain in R", n > 1.

* No growth condition of doubling type is assumed on the function M.
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Main Results

The First Result-Existence of weak solution

Vector field A : Q x R™ — R" satisfies the following conditions:
(A1) A is a Carathéodory’s function;
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Main Results

The First Result-Existence of weak solution

Vector field A : Q x R™ — R" satisfies the following conditions:
(A1) A is a Carathéodory’s function;

(A2) [Gowth and coercivity condition]
A(z,0) = 0 for almost every = € Q and there exists an N-function
M : Q x R™ - R” and constants ¢\, ¢3!, ¢3!, ¢i* > 0 such that for all
& € R™ we have

A(z,€) - € > M(z,¢'€) — ha(z)

and
' M* (x, ¢35 Az, €)) < M(z,c1'€) + ha(),

where M* is the conjugate to M and hi, he € L'(Q);
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Main Results

The First Result-Existence of weak solution

Vector field A : Q x R™ — R" satisfies the following conditions:
(A1) A is a Carathéodory’s function;

(A2) [Gowth and coercivity condition]
A(z,0) = 0 for almost every = € Q and there exists an N-function
M : Q x R™ - R” and constants ¢\, ¢3!, ¢3!, ¢i* > 0 such that for all
& € R™ we have

A(z,€) - € 2 M(z,c1'€) — hi(x)
and
3 M* (x,¢5 A(,€)) < M(x, 7€) + ha (),
where M* is the conjugate to M and hi, he € L'(Q);

(A3) [Monotone condition] For all £, € R™ and for almost every = € Q
we have

(A(z, &) — A(z,m)) - (§ —n) = 0.
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Main Results

An example

@ In the case p-growth. M = c|¢|P, (A2) directly imply

Az, &) - € > cl¢]’ — ha(x),
and

|A(z, )| < €]’ + ha(x).
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Main Results

An example

@ In the case p-growth. M = c|¢|P, (A2) directly imply

Az, &) - € > cl¢]’ — ha(x),
and

|A(z, )| < €]’ + ha(x).

The form of (A2) is to keep full anisotropy. J
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Main Results

Existence of weak solutions

Moreover, we assume that

(P) ®:R — R" is bounded and continuous;
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Main Results

Existence of weak solutions

Moreover, we assume that
(P) ®:R — R" is bounded and continuous;

(b) b:Q xR — R is a Carathéodory’s function, which is nondecreasing
with respect to the second variable, and such that b(-,s) € L*(Q) and
b(-, s)sign(s) > 0 for every s € R.
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Main Results

Existence of weak solutions

Moreover, we assume that
(P) @ :R — R" is bounded and continuous;

(b) b:Q xR — R is a Carathéodory’s function, which is nondecreasing
with respect to the second variable, and such that b(-,s) € L*(Q) and
b(-, s)sign(s) > 0 for every s € R.

@ Let @ : R — R"™ be continuous and belong to L= (2, R™). Let
u € Wy (Q). Then

/Q@(u) -Vudx =0.
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Main Results

Existence of weak solutions

Theorem (I. Chlebicka, A. Kappinen, Y.Li, submitted)

Let Q € R™. N-function M is regular enough so that the set of smooth
functions is dense in Vg Ly () in the modular topology. Assume further
that F € En=(Q), A satisfies assumptions (A1), (A2) and (A8), ® satisfies
(P), and b satisfies (b). Then there exists at least one weak solution to the
problem (1). Namely, there exists a function u € Vi Lar () satisfying

/A(:E,Vu)-Vv+'1>(u)~Vv+b(x,u)vdx:/F~Vvda:
Q Q

for allv € Vg Ly (22) N L™ ().
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Main Results

Existence of weak solutions

Theorem (I. Chlebicka, A. Kappinen, Y.Li, submitted)

Let Q € R™. N-function M is regular enough so that the set of smooth
functions is dense in Vg Ly () in the modular topology. Assume further
that F € En=(Q), A satisfies assumptions (A1), (A2) and (A8), ® satisfies
(P), and b satisfies (b). Then there exists at least one weak solution to the
problem (1). Namely, there exists a function u € Vi Lar () satisfying

/A(:E,Vu)-Vv+'1>(u)~Vv+b(x,u)vdx:/F~Vvda:
Q Q

for allv € Vg Ly (22) N L™ ().

If, additionally, s — b(-,s) is strictly increasing and ® is Lipschitz
continuous, then the weak solution is unique.
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Main Results

Existence of weak solutions

@ The set of smooth functions is dense in Vi Las(Q) in the modular
topology can be ensured by the Balance condition (B).

Condition (B). Given an N-function M : Q x R™ — R™ suppose there
exists a constant Cas > 1 such that for every ball B C 2 with |B| < 1, every
x € B, and for all £ € R" such that |£] > 1 and M (z, Cm€) € [1, ﬁ} there

holds sup,c 5 M(y,§) < M(x, Cumé).
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Main Results

Existence of weak solutions

@ The set of smooth functions is dense in Vi Las(Q) in the modular
topology can be ensured by the Balance condition (B).

Condition (B). Given an N-function M : Q x R™ — R™ suppose there
exists a constant Cas > 1 such that for every ball B C 2 with |B| < 1, every
x € B, and for all £ € R" such that |£] > 1 and M (z, Cm€) € [1, ﬁ} there
holds sup,c 5 M(y,§) < M(x, Cumé).

Theorem ( Borowski-Chlebicka, J. Funct. Anal.(2022))

Assume that Q is a Lipschitz domain and M is an N -function satisfying the
Balance condition (B). Then for any ¢ € Vi La(Q), there exists a sequence
{#5}s=0 € C(Q) satisfying ¢5 — ¢ in L' () and Vs M, vé.
Additionally, if ¢ is bounded, then ||¢s||Loo (o) < C(Q)||P||Loo () for every
0> 0.
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Main Results

Existence of weak solutions

@ The set of smooth functions is dense in Vi Las(Q) in the modular
topology can be ensured by the Balance condition (B).

Condition (B). Given an N-function M : Q x R™ — R™ suppose there
exists a constant Cas > 1 such that for every ball B C 2 with |B| < 1, every
x € B, and for all £ € R" such that |£] > 1 and M (z, Cm€) € [1, ﬁ} there
holds sup,c 5 M(y,§) < M(x, Cumé).

Theorem ( Borowski-Chlebicka, J. Funct. Anal.(2022))

Assume that Q is a Lipschitz domain and M is an N -function satisfying the
Balance condition (B). Then for any ¢ € Vi La(Q), there exists a sequence
{#5}s=0 € C(Q) satisfying ¢5 — ¢ in L' () and Vs M, vé.
Additionally, if ¢ is bounded, then ||¢s||Loo (o) < C(Q)||P||Loo () for every
0> 0.

@ In our proof it only used to ensure the density of smooth functions.
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Main Results

Existence of weak solutions

@ The set of smooth functions is dense in Vi Las(Q) in the modular
topology can be ensured by the Balance condition (B).

Condition (B). Given an N-function M : Q x R™ — R™ suppose there
exists a constant Cas > 1 such that for every ball B C 2 with |B| < 1, every
x € B, and for all £ € R" such that |£] > 1 and M (z, Cm€) € [1, ﬁ} there
holds sup,c 5 M(y,§) < M(x, Cumé).

Theorem ( Borowski-Chlebicka, J. Funct. Anal.(2022))

Assume that Q is a Lipschitz domain and M is an N -function satisfying the
Balance condition (B). Then for any ¢ € Vi La(Q), there exists a sequence
{#5}s=0 € C(Q) satisfying ¢5 — ¢ in L' () and Vs M, vé.
Additionally, if ¢ is bounded, then ||¢s||Loo (o) < C(Q)||P||Loo () for every
0> 0.

@ In our proof it only used to ensure the density of smooth functions.
@ See also [Borowski-Chlebicka-Miasojedow, In arXiv:2210.15217].
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Main Results

Examples

The following N-functions satisfy the balance condition (B).

@ Variable exponent case: M(z,§) = |§|p(”>, where
p(z) : Q — [p~,pT] is log-Hélder continuous and
1<p™ <p(-) <p™ < oo

© Double phase case: M(z,§) = [P + a(z)|€]?, with 1 < p < ¢ < oo,
0<a€eC™(Q),ae (0,12 <1+ 2;

’p
© Anisotropic variable case: M(z,&) => ., |§Z~\pi(z), where
pi(z) : Q — [p;,pi] are log-Hélder continuous and
1 <p; <pi(-) <pf < oo
@ Anisotropic double phase case:
M(x, &) =327, (1617 + ai(@)|&]|"), where 1 < p; < gi < oo,
0<a; € C¥*(Q), a; € (0,1], and £= <14 5L

For the proof, see [Borowski-Chlebicka, J. Funct. Anal.(2022)]

Ying Li Existence of solutions in Musielak-Orlicz space



Main Results

Some Remarks

@ Our results cover among others problems with anisotropic polynomial,
Orlicz, variable exponent, and double phase growth.
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Main Results

Some Remarks

@ Our results cover among others problems with anisotropic polynomial,
Orlicz, variable exponent, and double phase growth.

@ Our result is valid in the case of bounded data. In fact, for each
g € L°°(Q), we know that there exists F': Q@ — R", such that
g=divF and F € En~(9).
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Main Results

Some Remarks

@ Our results cover among others problems with anisotropic polynomial,
Orlicz, variable exponent, and double phase growth.

@ Our result is valid in the case of bounded data. In fact, for each
g € L°°(Q), we know that there exists F': Q@ — R", such that
g=divF and F € En~(9).

* For the case ® =0 and b = 0,
see [Gwiazda, Minakowski & Wréblewska-Kamiriska, CEJM(2012)].
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Main Results

Some Remarks

@ Our results cover among others problems with anisotropic polynomial,
Orlicz, variable exponent, and double phase growth.

@ Our result is valid in the case of bounded data. In fact, for each
g € L°°(Q), we know that there exists F': Q@ — R", such that
g=divF and F € En~(9).

* For the case ® =0 and b = 0,
see [Gwiazda, Minakowski & Wréblewska-Kamiriska, CEJM(2012)].

* The main idea in their paper is to introduce a regularised
problem with solutions in the classical Orlicz—Sobolev
space, make use of the theory of pseudo-monotone
operators, and pass to the limit.
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Main Results

Some Remarks

@ Our results cover among others problems with anisotropic polynomial,
Orlicz, variable exponent, and double phase growth.

@ Our result is valid in the case of bounded data. In fact, for each
g € L°°(Q), we know that there exists F': Q@ — R", such that
g=divF and F € En~(9).

* For the case ® =0 and b = 0,
see [Gwiazda, Minakowski & Wréblewska-Kamiriska, CEJM(2012)].

* The main idea in their paper is to introduce a regularised
problem with solutions in the classical Orlicz—Sobolev
space, make use of the theory of pseudo-monotone
operators, and pass to the limit.

Our result is the first direct proof even in the homogeneous case
(M(z,&) = M(|€])) even in the absence of the lower-order terms.
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Sketch of Proof

Sketch of Proof

@ We first discuss finite dimensional approximations of our problem (1)
and their solutions, called Galerkin solutions. The weak solutions of
the problem (1) is found as a limit of subsequence of the Galerkin
solutions when the dimension of the approximating problem is
increased.
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Sketch of Proof

Sketch of Proof

@ We first discuss finite dimensional approximations of our problem (1)
and their solutions, called Galerkin solutions. The weak solutions of
the problem (1) is found as a limit of subsequence of the Galerkin
solutions when the dimension of the approximating problem is
increased. We divide our proof into 4 steps.
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Sketch of Proof

Sketch of Proof

@ We first discuss finite dimensional approximations of our problem (1)
and their solutions, called Galerkin solutions. The weak solutions of
the problem (1) is found as a limit of subsequence of the Galerkin
solutions when the dimension of the approximating problem is
increased. We divide our proof into 4 steps.

e Step 1: Existence of Galerkin solution
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Sketch of Proof

Sketch of Proof

@ We first discuss finite dimensional approximations of our problem (1)
and their solutions, called Galerkin solutions. The weak solutions of
the problem (1) is found as a limit of subsequence of the Galerkin
solutions when the dimension of the approximating problem is
increased. We divide our proof into 4 steps.

e Step 1: Existence of Galerkin solution
e Step 2: A priori estimate
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Sketch of Proof

Sketch of Proof

@ We first discuss finite dimensional approximations of our problem (1)
and their solutions, called Galerkin solutions. The weak solutions of
the problem (1) is found as a limit of subsequence of the Galerkin
solutions when the dimension of the approximating problem is
increased. We divide our proof into 4 steps.

e Step 1: Existence of Galerkin solution
e Step 2: A priori estimate
e Step 3: Extending the class of test functions
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Sketch of Proof

Sketch of Proof

@ We first discuss finite dimensional approximations of our problem (1)
and their solutions, called Galerkin solutions. The weak solutions of
the problem (1) is found as a limit of subsequence of the Galerkin
solutions when the dimension of the approximating problem is
increased. We divide our proof into 4 steps.

e Step 1: Existence of Galerkin solution

e Step 2: A priori estimate

e Step 3: Extending the class of test functions
o Step 4: Proved that h = A(z, Vu) a.e. in .
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Sketch of Proof

Existence of Galerkin Solution

Step 1 Existence of Galerkin Solution

Since C'2°(Q) is separable and dense in C} () we can extract a sequence of
—c!

{pi}52; C C°(Q) such that span{e1, @2,...} ° = C2(Q). We denote the

finite dimensional spaces as V,, := span{¢1,...pn}-
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Sketch of Proof

Existence of Galerkin Solution

Step 1 Existence of Galerkin Solution
Since C'2°(Q) is separable and dense in C} () we can extract a sequence of

1
{pi}i21 C CZ () such that span{¢1, pa,... }CC = C(Q2). We denote the
finite dimensional spaces as V,, := span{¢1,...pn}-

Lemma (Existence of Galerkin solutions)

For every n € N, there exists a function u,, € V,,, is called a Galerkin
solution satisfying

/ A(z,Vuyn) - Vo + D(uyn) - Vo + b(z, un)pdx = / F -V dz. (2)
Q Q

holds for every ¢ € V,,.
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Sketch of Proof

Uniform boundedness of Galerkin solutions

Step 2 A priori estimate Testing the equation by w,,, we obtain

/ A(z, Vuy) - Vun + @(un) - Vun + b(x, un)un, de = / F -Vu,dx J
Q Q
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Sketch of Proof

Uniform boundedness of Galerkin solutions

Step 2 A priori estimate Testing the equation by w,,, we obtain

/ A(z, Vuy) - Vun + @(un) - Vun + b(x, un)un, de = / F -Vu,dx J
Q Q

= there exists a constant C' independent of n such that for every
Galerkin solution u, it holds

/ Az, Vn) - Vun dz < C; ||V, @) < C; / b(z, un)un dz < C.
Q Q
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Sketch of Proof

Uniform boundedness of Galerkin solutions

Step 2 A priori estimate Testing the equation by w,,, we obtain

/ A(z, Vuy) - Vun + @(un) - Vun + b(x, un)un, de = / F -Vu,dx J
Q Q

= there exists a constant C' independent of n such that for every
Galerkin solution u, it holds

/ Az, Vn) - Vun dz < C; ||V, @) < C; / b(z, un)un dz < C.
Q Q

— There exists a function v € W, (Q) such that
Un —u in Wg'(Q), Vu, > Vu for o(La, Env),
and there exists a function h € Las=(€2) such that

A(z, Vuy,) Sk for o(La=, Enr).
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Sketch of Proof

Uniform boundedness of Galerkin solutions

@ As b is a Carathéodory’s function, we get b(z, un) — b(z,u) a.e. in Q.
By decomposing the integral interval, we obtain b(-, un) is uniformly
integrable in L'(Q). Then, by Vitali convergence theorem we have

b(-, un) = b(-,w) in L'(Q).
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Sketch of Proof

Uniform boundedness of Galerkin solutions

@ As b is a Carathéodory’s function, we get b(z, un) — b(z,u) a.e. in Q.
By decomposing the integral interval, we obtain b(-, u,) is uniformly
integrable in L'(Q). Then, by Vitali convergence theorem we have

b(-, un) = b(-,w) in L'(Q).
Therefore, we can pass to the limit with n in

Az, Vun)-Vo+®(un)-Vo+b(z,un)pde = [ F-Nodx for any ¢ € Vn.J
Q Q
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Sketch of Proof

Uniform boundedness of Galerkin solutions

@ As b is a Carathéodory’s function, we get b(z, un) — b(z,u) a.e. in Q.
By decomposing the integral interval, we obtain b(-, u,) is uniformly
integrable in L'(Q). Then, by Vitali convergence theorem we have

b(-, un) = b(-,w) in L'(Q).

Therefore, we can pass to the limit with n in

Az, Vuyn)-Vot+®(un)-Vo+b(z,un)pde = [ F-Nodr for any ¢ € V,.
Q Q

J(n — o0)

SS)

/h~Vg@+<I>(u)-Vg0+b(x,u)<pdx:/F-Vgo dx  for any ¢ € Vi, k € N.
Q Q

Existence of solutions in Musielak-Orlicz space
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Sketch of Proof

Extending the class of test functions

Step 3 Extending the class of test functions.

@ Extend the test function ¢ € Vi to ¢ € C°(Q).
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Sketch of Proof

Extending the class of test functions

Step 3 Extending the class of test functions.
@ Extend the test function ¢ € Vi to ¢ € C ().

Let ¢ € C2°(92) be arbitrary and ¢; € V; be a sequence of smooth function
such that ¢; — ¢ in C2(Q). Replace ¢ with ¢;,

/h-VLp—i—@(u)-V(p—!—b(x,u)cpdw:/F-V(p dxr for any ¢ € Vi, k € N.
Q Q
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Sketch of Proof

Extending the class of test functions

Step 3 Extending the class of test functions.
@ Extend the test function ¢ € Vi to ¢ € C ().

Let ¢ € C2°(92) be arbitrary and ¢; € V; be a sequence of smooth function
such that ¢; — ¢ in C2(Q). Replace ¢ with ¢;,

/h-VLp—i—@(u)-Vg@—!—b(x,u)cpdm:/F-ch dxr for any ¢ € Vi, k € N.
Q Q

|} to have

/ h-Ve;+ ®(u) - Vo, + b(z,u)p; doe = / F-NVy; dx forp; €V, j€
Q Q
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Sketch of Proof

Extend the test function ¢ € Vj to ¢ € C°(Q)

@ Remember that for ¢ € C2°(Q), we have ¢; — ¢ in C}(Q).
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Sketch of Proof

Extend the test function ¢ € Vj to ¢ € C°(Q)

@ Remember that for ¢ € C2°(9), we have ¢; — ¢ in C} (). Therefore,
we have h-Vy; — h-Vyp a.e. in Q.
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Sketch of Proof

Extend the test function ¢ € Vj to ¢ € C°(Q)

@ Remember that for ¢ € C2°(9), we have ¢; — ¢ in C} (). Therefore,
we have h - Vy; — h- Ve a.e. in (). By uniform convergence of
{Vp;}, for large enough j, we have

/h~Vg0j de/h~Vgp+1dm<oo.
Q Q
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Sketch of Proof

Extend the test function ¢ € Vj to ¢ € C°(Q)

@ Remember that for ¢ € C2°(9), we have ¢; — ¢ in C} (). Therefore,
we have h - Vy; — h- Ve a.e. in (). By uniform convergence of
{Vp;}, for large enough j, we have

/h~Vg0j de/h~Vgp+1dm<oo.
Q Q

Therefore, by dominated convergence theorem, we have
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Sketch of Proof

Extend the test function ¢ € Vj to ¢ € C°(Q)

@ Remember that for ¢ € C2°(9), we have ¢; — ¢ in C} (). Therefore,
we have h - Vy; — h- Ve a.e. in (). By uniform convergence of
{Vp;}, for large enough j, we have

/h~Vg0j de/h~Vgp+1dm<oo.
Q Q

Therefore, by dominated convergence theorem, we have

/h-V&p]-—F(I)(u)'thj+b(:t,u)<pjdx:/F-th]-dx for p; €V; J
Q Q

Jasj— o0
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Sketch of Proof

Extend the test function ¢ € Vj to ¢ € C°(Q)

@ Remember that for ¢ € C2°(9), we have ¢; — ¢ in C} (). Therefore,
we have h - Vy; — h- Ve a.e. in (). By uniform convergence of
{Vp;}, for large enough j, we have

/h~Vg0j d:rg/h~Vg0+1dm<oo.
Q Q

Therefore, by dominated convergence theorem, we have

/h-V&p]-—F(I)(u)'thj+b(:t,u)<pjdx:/F-th]-dx for ¢; €V; ’
Q Q

Jasj— o0

/h-Vnp+<I>(u)-Vg0+b(m,u)cpdx:/F-Vapdx for € CZ(Q) J
Q Q
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Sketch of Proof

Extend the class of test function

@ Extend the test function ¢ € C°(Q) to ¢ € Vi Lar(Q) N L¥(Q)
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Sketch of Proof

Extend the class of test function

@ Extend the test function ¢ € C°(Q) to ¢ € Vi Lar(Q) N L¥(Q)
Let ¢ € Vi La(Q) N L¥(Q).

Then there exist a subsequence {pr} C C° () satisfyting Vpr — Vo
modularly in Ly (Q), ox — ¢ in L'(Q). J
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Sketch of Proof

Extend the class of test function

@ Extend the test function ¢ € C°(Q) to ¢ € Vi Lar(Q) N L¥(Q)
Let ¢ € Vi La(Q) N L¥(Q).

Then there exist a subsequence {pr} C C° () satisfyting Vpr — Vo
modularly in Ly (Q), ox — ¢ in L'(Q). J

Recalling: Vo, — Vo for (L, La+). Therefore, we can extend
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Sketch of Proof

Extend the class of test function

@ Extend the test function ¢ € C°(Q) to ¢ € Vi Lar(Q) N L¥(Q)
Let ¢ € Vi La(Q) N L¥(Q).

Then there exist a subsequence {pr} C C° () satisfyting Vpr — Vo
modularly in Ly (Q), ox — ¢ in L'(Q). l

Recalling: Vo, — Vo for (L, La+). Therefore, we can extend

/ h -V + ®(u) - Vi + b(z, u)pr de = / F-Veopdr for op e CI(Q)
Q Q
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Sketch of Proof

Extend the class of test function

@ Extend the test function ¢ € C°(Q) to ¢ € Vi Lar(Q) N L¥(Q)
Let ¢ € Vi La(Q) N L¥(Q).

Then there exist a subsequence {pr} C C° () satisfyting Vpr — Vo
modularly in Ly (Q), ox — ¢ in L'(Q).

Recalling: Vo, — Vo for (L, La+). Therefore, we can extend

/ h -V + ®(u) - Vi + b(z, u)pr de = / F -Vordz for ¢r € C(Q)
Q Q

|} as k — oo

/h-Vg0+<I>(u)-Vnp+b(m,u)god:c:/F~Vg0dm for
Q Q

@ € Vo Lm(Q) N L™(Q).

Ying Li Existence of solutions in Musielak-Orlicz space



Sketch of Proof

Sketch of proof

Step 4 (h = A(z, Vu) almost everywhere).
Let w € L*(2,R"™) be arbitrary. By (A3) we have

0< lim [ (A(z, VT (un)) — Alz,w)) - (VTk(un) — w) dzx

n—oo [o

— lim (/Q.A(x,Vun)-VTk(un)da:—/Q.A(x,VTk(un))~wdx

—/QA(:uw)-VTk(un)dx—&-/ng(w,w)-wdx)

=L +1+ I3+ 14
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Sketch of Proof

In the case of I.

We illustrate the main feature without the lower-order term! J
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Sketch of Proof

In the case of I.

We illustrate the main feature without the lower-order term! J

We want to show

lim [ A(z,Vuy)- - VTg(up)de =7

n—o0 Jo
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Sketch of Proof

In the case of I.

We illustrate the main feature without the lower-order term! J

We want to show

lim [ A(z,Vuy)- - VTg(up)de =7

n—o0 Jo

Remember that u, is a Galerkin solution and the growth condition can give
only A(z, Vun) € Lar+(2). However, VTi(un) € Lar(R2) and Ly = (Ear)™.
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Sketch of Proof

In the case of I.

We illustrate the main feature without the lower-order term! J

We want to show

lim [ A(z,Vuy)- - VTg(up)de =7

n—o0 Jo

Remember that u, is a Galerkin solution and the growth condition can give
only A(z, Vun) € Lar+(2). However, VTi(un) € Lar(R2) and Ly = (Ear)™.
So, we can not test the function by Tj(uy)!
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Sketch of Proof

In the case of I.

We illustrate the main feature without the lower-order term! J

We want to show

lim [ A(z,Vuy)- - VTg(up)de =7

n—o0 Jo

Remember that u, is a Galerkin solution and the growth condition can give
only A(z, Vun) € Lar+(2). However, VTi(un) € Lar(R2) and Ly = (Ear)™.
So, we can not test the function by Tj(uy)!

@ Take a sequence (T (un))s satisfies that

V(Tk(un))(;%VTk(un) and Tk(un)s = Ti(un) in LI(Q) as J — 0.
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Sketch of Proof

In the case of I.

We illustrate the main feature without the lower-order term! J

We want to show

lim [ A(z,Vuy)- - VTg(up)de =7

n—o0 Jo

Remember that u, is a Galerkin solution and the growth condition can give
only A(z, Vun) € Lar+(2). However, VTi(un) € Lar(R2) and Ly = (Ear)™.
So, we can not test the function by Tj(uy)!

@ Take a sequence (T (un))s satisfies that
V(Tk(un))s M, VTi(un) and Tk(un)s = Tk(us) in LI(Q) as J — 0.

Therefore, we have
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Sketch of Proof

In the case of I.

We illustrate the main feature without the lower-order term! J

We want to show

lim [ A(z,Vuy)- - VTg(up)de =7

n—o0 Jo

Remember that u, is a Galerkin solution and the growth condition can give
only A(z, Vun) € Lar+(2). However, VTi(un) € Lar(R2) and Ly = (Ear)™.
So, we can not test the function by Tj(uy)!

@ Take a sequence (T (un))s satisfies that
V(Tk(un))s M, VTi(un) and Tk(un)s = Tk(us) in LI(Q) as J — 0.

Therefore, we have

n—o0o

lim /A(I,V’un) -V (Tk(un)) de
Q
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Sketch of Proof

In the case of I.

We illustrate the main feature without the lower-order term! J

We want to show

lim [ A(z,Vuy)- - VTg(up)de =7

n—o0 Jo

Remember that u, is a Galerkin solution and the growth condition can give
only A(z, Vun) € Lar+(2). However, VTi(un) € Lar(R2) and Ly = (Ear)™.
So, we can not test the function by Tj(uy)!

@ Take a sequence (T (un))s satisfies that
V(Tk(un))s M, VTi(un) and Tk(un)s = Tk(us) in LI(Q) as J — 0.

Therefore, we have

n—o0 n—00 60 Jo

lim / Az, Vuyn) - V(Tk(un)) de = lim lim [ A(z,Vuyn) - V(Tk(un))s dx
Q .
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In the case of I.

We illustrate the main feature without the lower-order term! J

We want to show

lim [ A(z,Vuy)- - VTg(up)de =7

n—o0 Jo

Remember that u, is a Galerkin solution and the growth condition can give
only A(z, Vun) € Lar+(2). However, VTi(un) € Lar(R2) and Ly = (Ear)™.
So, we can not test the function by Tj(uy)!

@ Take a sequence (T (un))s satisfies that
V(Tk(un))s M, VTi(un) and Tk(un)s = Tk(us) in LI(Q) as J — 0.

Therefore, we have

lim / Az, Vuyn) - V(Tk(un)) de = lim lim [ A(z,Vuyn) - V(Tk(un))s dx
Q .

n—o0 n—00 60 Jo

= lim lim [ F-V(Ti(un))sdx = lim [ F-VTi(un)dz

n—oo §—0 Q n—oo [q

= / F -VTi(u)de = / h-VTi(u)d.
Q o
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Sketch of proof

Combining all the estimates, we see that

0< /Q(h — A(z,w)) - (Vu — w) dz.
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Sketch of Proof

Sketch of proof

Combining all the estimates, we see that

0< /Q(h — A(z,w)) - (Vu — w) dz.

@ The monotonicity trick yields that h = A(z, Vu) almost everywhere in
Q.

Therefore, we finish the proof.
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Recent Results

Suppose that f: Q =R, f € L'(Q) and F € En+(Q;R™). We study the
following problem

—div (A(z, Vu) + ®(u)) + b(z,u) = f + div F in Q,
u(z) =0 on o9,

in a fully anisotropic and inhomogeneous Musielak-Orlicz space.
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Recent Results

Recent Results

Suppose that f: Q =R, f € L'(Q) and F € En+(Q;R™). We study the
following problem

—div (A(z, Vu) + ®(u)) + b(z,u) = f + div F in Q,
u(z) =0 on o9,

in a fully anisotropic and inhomogeneous Musielak-Orlicz space.

* @ :R — R" is a Lipschitz continuous function.

* As we consider problems with data of low integrability, it is reasonable
to work with renormalized solutions.

Joint work with Bartosz Budnarowski.

@ Bartosz Budnarowski, Ying Li, Ezistence of renormalized solutions tq
fully anisotropic and inhomogenous elliptic problems. (Submitted)
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Recent Results

Our main result reads as follows.

Theorem ( B. Budnarowski, Y. Li. Submitted 2022)

Suppose [ € L*(Q), F € Ex+(Q;R™), an N-function M is reqular enough
so that C°(Q) is dense in Vot Ly (Q) in the modular topology. Function A
satisfies assumptions (A1), (A2) and (A3), ® satisfies (P), and b satisfies
(b). Then there exists at least one renormalized solution to the problem

—div (A(z, Vu) + ®(u)) + b(z,u) = f + div F in Q,
u(z) =0 on 09,
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Theorem ( B. Budnarowski, Y. Li. Submitted 2022)

Suppose [ € L*(Q), F € Ex+(Q;R™), an N-function M is reqular enough
so that C°(Q) is dense in Vot Ly (Q) in the modular topology. Function A
satisfies assumptions (A1), (A2) and (A3), ® satisfies (P), and b satisfies
(b). Then there exists at least one renormalized solution to the problem

—div (A(z, Vu) + ®(u)) + b(z,u) = f + div F in Q,
u(z) =0 on 09,

Proposition

Additionally, if we assume that s — b(-, s) is strictly increasing, then the
renormalized solution is unique.
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In preparation

* Aim to generalized the second results to the situation when the single
valued mapping A becomes a multivalued map.
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In preparation

* Aim to generalized the second results to the situation when the single
valued mapping A becomes a multivalued map.

Establish the existence of renormalized solutions for the following problem

—div (A(z, Vu) + ) b(z,u)>f +divF in Q, 3)
= on 09,

where the function A : Q x R” — 28" is a maximally monotone
multifunction, f: Q =R, f € L*(Q).
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Thank you for your attention!
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