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Definition of N-function

A function M(x, ξ) : Ω× Rn → R is called an N -function if

it is a Carathéodory function satisfying M(x, 0) = 0;

it is a convex function with respect to ξ;

M(x, ξ) = M(x,−ξ) for a.e. x ∈ Ω;

there exist two convex functions m1,m2 : [0,∞)→ [0,∞) such that

lim
s→0+

m1(s)

s
= 0 = lim

s→0+

m2(s)

s
and lim

s→∞

m1(s)

s
=∞ = lim

s→∞

m2(s)

s
,

and for a.e. x ∈ Ω

m1(|ξ|) ≤M(x, ξ) ≤ m2(|ξ|).
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Musielak-Orlicz space

Suppose Ω ∈ Rn.

For an N -function we define the general Musielak–Orlicz class LM (Ω)
as the set of all measurable functions ξ : Ω→ Rn satisfying∫

Ω

M(x, ξ(x)) dx <∞ .

LM (Ω) are defined as sets of functions ξ : Ω→ Rn satisfying∫
Ω

M(x, λξ(x)) dx <∞

for some λ ∈ R.

EM (Ω) are defined as sets of functions ξ : Ω→ Rn satisfying∫
Ω

M(x, λξ(x)) dx <∞

for every λ ∈ R.
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Complementary function

Complementary (conjugate, Legendre’s transform) function M∗ to
an N -function M if defined by

M∗(x, η) := sup
ξ∈Rn

[ξ · η −M(x, ξ)] for any η ∈ Rn and a.e. x ∈ Ω.

M∗ is an N -function.

The Fenchel–Young inequality reads

ξ · η ≤M(x, ξ) +M∗(x, η) for all ξ, η ∈ Rn and a.e. x ∈ Ω.

Notation
V 1

0 LM (Ω) = {u ∈W 1,1
0 (Ω) : ∇u ∈ LM (Ω)}.
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Some properties of Musielak-Orlicz Space

EM (Ω;Rn) ⊂ LM (Ω;Rn) ⊂ LM (Ω;Rn)
Without growth conditions on M the inclusions are proper!

The space EM (Ω;Rn) is the closure in LM -norm of the set of bounded
functions.

(EM (Ω;Rn))∗ = LM∗(Ω;Rn) and (EM∗(Ω;Rn))∗ = LM (Ω;Rn) but no
other duality relations are expected.

Both are equipped with Luxemburg norm

‖ξ‖LM (Ω) := inf

{
λ > 0 :

∫
Ω

M

(
x,
ξ(x)

λ

)
dx ≤ 1

}
.

If M ∈ ∆2, then LM (Ω;Rn) = EM (Ω;Rn).
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∆2 condition

Definition of ∆2-condition

We say that an N-function M : Ω× [0,∞)→ R satisfies ∆2-condition if
there exists a constant c > 0 and h ∈ L1(Ω),h ≥ 0,such that

M(x, 2s) ≤ cM(x, s) + h(x).

Important! M,M∗ ∈ ∆2 ⇐⇒ LM is reflexive and separable.

But, in our paper, we do not control the growth of M with
respect to the second variable by any kind of doubling condition
or a power function.
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Framework

The leading part of the operator satisfies general conditions settling the
problem in the framework of fully anisotropic and inhomogeneous
Musielak-Orlicz space.

general growth – when the power function governing the growth of the
operator is substituted by an N -function M(x, ξ) = M(|ξ|), which do
not necessarily satisfy the so-called ∆2-condition (being a necessary
condition for an Orlicz space LM to be reflexive);

inhomogeneity – when the growth of the operator could be controlled
by an x-dependent function e.g. M(x, ξ) = |ξ|p(x) (which results in the
lack of the density of smooth functions in Lp(·), if p(·) is not regular
enough);

anisotropy – when the growth of the operator is governed by a
function depending on the full vector of ξ, not just its length |ξ|.
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Anisotropy

A function M which admits a decomposition

M(x, ξ) =
n∑
i=1

Mi(x, |ξi|), ξ = (ξ1, · · · , ξn) ∈ Rn,Mi : Ω× R→ [0,∞),

is called orthotropic function.

M(x, ξ) =
∑n
i=1 |ξi|

pi ,

They have monotonicity property: if
ξ = (ξ1, · · · , ξn), η = (η1, · · · , ηn), |ξi| ≤ |ηi|, then M(x, ξ) ≤M(x, η).
(But, it not true in general!)
The family of fully anisotropic function is far more robust!

Essentially fully anisotropic: if there exists no linear invertible map
T : Rn → Rn such that

M(x, T (ξ1, · · · , ξn)) =

n∑
i=1

Mi(x, |ξi|)

for some Young functions Mi : Ω× R→ [0,∞). [Chlebicka,Nayar, MMAS
2021].
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If we project it onto a 2-Dimension plane based on the growth, we will see

Figure: isotropic Figure: orthotropic Figure: anisotropic

Isotropic: M(x, ξ) = M(x, |ξ|). Rely on the length of |ξ|.
Orthotropic: M(x, ξ) =

∑n
i=1 |ξi|

pi . Described by its behavior in
each direction separately.

Essentially fully anisotropic: It’s impossible to indicate the
direction of the quickest growth.
(The direction of the quickest growth man change on each level set.)
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Figure: Venn diagram
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Modular density

Under no such control on the growth, in the case of

Classical Orlicz-Sobolev space: Gossez, (Studia Math.1982)
Smooth functions are dense only with respect to modular topology
(not in norm).
Anisotropic: [Alberico, Chlebicka, Cianchi, Zatorska-Golstein,
CalcVar2018]

Musielak-Orlicz-Sobolev space: To get modular density of smooth
function in a Musielak-Orlicz-Sobolev space, one need to assume that
there is a condition balancing the behaviour of M with respect to its
variable.
Ahmida, Borowski, Chlebika, Gwiazda, Miasojedow, Skrzeczkowski,
Świerczewska-Gwiazda, Wróblewska-Kamińska, Youssfi,
Zatorska-Golstein...
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Smooth functions are dense only with respect to modular topology
(not in norm).
Anisotropic: [Alberico, Chlebicka, Cianchi, Zatorska-Golstein,
CalcVar2018]

Musielak-Orlicz-Sobolev space: To get modular density of smooth
function in a Musielak-Orlicz-Sobolev space, one need to assume that
there is a condition balancing the behaviour of M with respect to its
variable.
Ahmida, Borowski, Chlebika, Gwiazda, Miasojedow, Skrzeczkowski,
Świerczewska-Gwiazda, Wróblewska-Kamińska, Youssfi,
Zatorska-Golstein...

Ying Li Existence of solutions in Musielak-Orlicz space



Preliminaries
Main Results

Sketch of Proof
Recent Results

Modular Convergence

Definition (Modularly convergence)

A sequence {ξn}∞n=1 converges modularly to ξ in LM (Ω), which we denote

as ξi
M−→ ξ, if ∫

Ω

M

(
x,
ξi − ξ
λ

)
dx

n→∞−−−−→ 0

for some λ > 0.

If ξn
M−→ ξ in LM (Ω) then, up to a subsequence, ξn

n→∞−−−−→ ξ in
σ(LM , LM∗).

Let X and Y be subsets of L1(Ω) not necessarily related by duality.
We say fn → f for σ(X,Y ) if∫

Ω

fng dx
n→∞−−−−→

∫
Ω

fg dx

for all g ∈ Y .
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Quick Review-Just mention a few

The difficulty caused by the lack of reflexivity of LM under non-doubling
regime was avoided by the idea of the complementary systems in
Orlicz–Sobolev spaces. Contributions in this direction were initiated by
Donaldson

T.Donaldson. Nonlinear elliptic boundary value problems in
OrliczõSobolev spaces. In: Journal of Differential Equations 10.3
(1971), pp. 507õ528.

and continued by Gossez, Mustonen and Tienari,

J. Gossez. Nonlinear elliptic boundary value problems for equations
with rapidly (or slowly) increasing coefficients. In: Transactions of the
American Mathematical Society 190 (1974), pp. 163õ205.

J. Gossez. Orlicz-Sobolev spaces and nonlinear elliptic boundary value
problems. In: Nonlinear analysis, function spaces and applications
(1979), pp. 59õ94.

V. Mustonen and M. Tienari. On monotone-like mappings in
OrliczõSobolev spaces. In: Mathematica Bohemica 124.2-3 (1999), pp.
255õ271.
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Quick Review-Just mention a few

For analysis of problems in anisotropic Orlicz spaces governed by
possibly fully anisotropic modular function, which is independent of
the spacial variable:

A. Alberico, I. Chlebicka, A. Cianchi, A. Zatorska-Golstein. Fully
anisotropic elliptic problems with minimally integrable data. In:
Calc. Var. Partial Differential Equations 58:186 (2019).

G. Barletta and A. Cianchi. Dirichlet problems for fully
anisotropic elliptic equations. In: Proc. Roy. Soc. Edinburgh Sect.
A 147.1 (2017), pp. 25õ60.

I. Chlebicka and P. Nayar. Essentially fully anisotropic Orlicz
functions and uniqueness to measure data problem. In: Math.
Methods Appl. Sci. 45.14 (2022), pp. 8503õ8527
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Quick Review-Just mention a few

Existence to problems that are in the same time of general growth,
inhomogeneous, and fully anisotropic were studied in:

A. Denkowska, P. Gwiazda, and P. Kalita. On renormalized
solutions to elliptic inclusions with nonstandard growth. In: Calc.
Var. Partial Differential Equations 60.1 (2021), 21:52.

I. Chlebicka, P. Gwiazda, and A. Zatorska-Goldstein. Existence of
renormalized solutions to elliptic equation in Musielak-Orlicz
space . In: Journal of Differential Equations 264.1 (2018), pp.
341õ377.

I. Chlebicka, P. Gwiazda, and A. Zatorska-Goldstein. Parabolic
equation in time and space dependent anisotropic Musielak-Orlicz
in absence of Lavrentiev’s phenomenon. In: Ann. Inst. H.
Poincaré C Anal. Non Linéaire 36 (2019), no. 5, 1431õ1465.

But none of them provided a direct proof.
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Quick Review-Just mention a few

Anisotropic problems with lower-order terms are less understood – we
can only refer to:

A. DiCastro. Anisotropic elliptic problems with natural growth
terms. In: Manuscripta Math 135.3-4 (2011), pp. 521õ543.

P. Gwiazda et al. Renormalized solutions of nonlinear elliptic
problems in generalized Orlicz spaces. In: Journal of Differential
Equations 253.2 (2012), pp. 635õ666.

But they do not cover our generality of the problem.
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Main results-First one

In this talk, the first result I will introduce is the existence of weak
solutions for the following problem:

{
− div

(
A(x,∇u) + Φ(u)

)
+ b(x, u) = divF in Ω,

u(x) = 0 on ∂Ω,
(1)

where Ω is a bounded Lipschitz domain in Rn, n > 1.

* No growth condition of doubling type is assumed on the function M .
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The First Result-Existence of weak solution

Vector field A : Ω× Rn → Rn satisfies the following conditions:

(A1) A is a Carathéodory’s function;

(A2) [Gowth and coercivity condition]
A(x, 0) = 0 for almost every x ∈ Ω and there exists an N -function
M : Ω× Rn → Rn and constants cA1 , c

A
2 , c
A
3 , c
A
4 > 0 such that for all

ξ ∈ Rn we have

A(x, ξ) · ξ ≥M(x, cA1 ξ)− h1(x)

and
cA2 M

∗(x, cA3 A(x, ξ)) ≤M(x, cA4 ξ) + h2(x),

where M∗ is the conjugate to M and h1, h2 ∈ L1(Ω)¶

(A3) [Monotone condition] For all ξ, η ∈ Rn and for almost every x ∈ Ω
we have

(A(x, ξ)−A(x, η)) · (ξ − η) ≥ 0.
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An example

In the case p-growth. M = c|ξ|p, (A2) directly imply

A(x, ξ) · ξ ≥ c|ξ|p − h1(x),

and
|A(x, ξ)| ≤ c|ξ|p−1 + h2(x).

The form of (A2) is to keep full anisotropy.
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Existence of weak solutions

Moreover, we assume that

(P) Φ : R→ Rn is bounded and continuous;

(b) b : Ω× R→ R is a Carathéodory’s function, which is nondecreasing
with respect to the second variable, and such that b(·, s) ∈ L1(Ω) and
b(·, s) sign(s) ≥ 0 for every s ∈ R.

Let Φ : R→ Rn be continuous and belong to L∞(Ω,Rn). Let
u ∈W 1,1

0 (Ω). Then ∫
Ω

Φ(u) · ∇u dx = 0.
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Existence of weak solutions

Theorem (I. Chlebicka, A. Kappinen, Y.Li, submitted)

Let Ω ∈ Rn. N-function M is regular enough so that the set of smooth
functions is dense in V 1

0 LM (Ω) in the modular topology. Assume further
that F ∈ EM∗(Ω), A satisfies assumptions (A1), (A2) and (A3), Φ satisfies
(P), and b satisfies (b). Then there exists at least one weak solution to the
problem (1). Namely, there exists a function u ∈ V 1

0 LM (Ω) satisfying∫
Ω

A(x,∇u) · ∇v + Φ(u) · ∇v + b(x, u)v dx =

∫
Ω

F · ∇v dx

for all v ∈ V 1
0 LM (Ω) ∩ L∞(Ω).

Proposition

If, additionally, s 7→ b(·, s) is strictly increasing and Φ is Lipschitz
continuous, then the weak solution is unique.

Ying Li Existence of solutions in Musielak-Orlicz space



Preliminaries
Main Results

Sketch of Proof
Recent Results

Existence of weak solutions

Theorem (I. Chlebicka, A. Kappinen, Y.Li, submitted)

Let Ω ∈ Rn. N-function M is regular enough so that the set of smooth
functions is dense in V 1

0 LM (Ω) in the modular topology. Assume further
that F ∈ EM∗(Ω), A satisfies assumptions (A1), (A2) and (A3), Φ satisfies
(P), and b satisfies (b). Then there exists at least one weak solution to the
problem (1). Namely, there exists a function u ∈ V 1

0 LM (Ω) satisfying∫
Ω

A(x,∇u) · ∇v + Φ(u) · ∇v + b(x, u)v dx =

∫
Ω

F · ∇v dx

for all v ∈ V 1
0 LM (Ω) ∩ L∞(Ω).

Proposition

If, additionally, s 7→ b(·, s) is strictly increasing and Φ is Lipschitz
continuous, then the weak solution is unique.

Ying Li Existence of solutions in Musielak-Orlicz space



Preliminaries
Main Results

Sketch of Proof
Recent Results

Existence of weak solutions

The set of smooth functions is dense in V 1
0 LM (Ω) in the modular

topology can be ensured by the Balance condition (B).

Condition (B). Given an N -function M : Ω× Rn → Rn suppose there
exists a constant CM > 1 such that for every ball B ⊂ Ω with |B| ≤ 1, every
x ∈ B, and for all ξ ∈ Rn such that |ξ| > 1 and M(x,CMξ) ∈ [1, 1

|B| ] there

holds supy∈BM(y, ξ) ≤M(x,CMξ).

Theorem ( Borowski-Chlebicka, J. Funct. Anal.(2022))

Assume that Ω is a Lipschitz domain and M is an N-function satisfying the
Balance condition (B). Then for any φ ∈ V 1

0 LM (Ω), there exists a sequence

{φδ}δ>0 ∈ C
∞
c (Ω) satisfying φδ → φ in L1(Ω) and ∇φδ

M−→ ∇φ.
Additionally, if φ is bounded, then ‖φδ‖L∞(Ω) ≤ C(Ω)‖φ‖L∞(Ω) for every
δ > 0.

In our proof it only used to ensure the density of smooth functions.

See also [Borowski-Chlebicka-Miasojedow, In arXiv:2210.15217].
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Examples

The following N -functions satisfy the balance condition (B).

1 Variable exponent case: M(x, ξ) = |ξ|p(x), where
p(x) : Ω→ [p−, p+] is log-Hölder continuous and
1 < p− ≤ p(·) ≤ p+ ≤ ∞;

2 Double phase case: M(x, ξ) = |ξ|p + a(x)|ξ|q, with 1 < p ≤ q <∞,
0 ≤ a ∈ C0,α(Ω), α ∈ (0, 1], q

p
≤ 1 + α

n
;

3 Anisotropic variable case: M(x, ξ) =
∑n
i=1 |ξi|

pi(x), where
pi(x) : Ω→ [p−i , p

+
i ] are log-Hölder continuous and

1 < p−i ≤ pi(·) ≤ p
+
i ≤ ∞;

4 Anisotropic double phase case:
M(x, ξ) =

∑n
i=1 (|ξi|pi + ai(x)|ξi|qi), where 1 < pi ≤ qi <∞,

0 ≤ ai ∈ C0,αi(Ω), αi ∈ (0, 1], and pi
qi
≤ 1 + αi

n
;

For the proof, see [Borowski-Chlebicka, J. Funct. Anal.(2022)]
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Some Remarks

Our results cover among others problems with anisotropic polynomial,
Orlicz, variable exponent, and double phase growth.

Our result is valid in the case of bounded data. In fact, for each
g ∈ L∞(Ω), we know that there exists F : Ω→ Rn, such that
g = divF and F ∈ EM∗(Ω).

* For the case Φ ≡ 0 and b ≡ 0,

see [Gwiazda, Minakowski & Wróblewska-Kamińska, CEJM(2012)].

* The main idea in their paper is to introduce a regularised
problem with solutions in the classical Orlicz–Sobolev
space, make use of the theory of pseudo-monotone
operators, and pass to the limit.

Our result is the first direct proof even in the homogeneous case
(M(x, ξ) = M(|ξ|)) even in the absence of the lower-order terms.
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Sketch of Proof

We first discuss finite dimensional approximations of our problem (1)

and their solutions, called Galerkin solutions. The weak solutions of

the problem (1) is found as a limit of subsequence of the Galerkin

solutions when the dimension of the approximating problem is

increased. We divide our proof into 4 steps.

Step 1: Existence of Galerkin solution
Step 2: A priori estimate
Step 3: Extending the class of test functions
Step 4µProved that h = A(x,∇u) a.e. in Ω.
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Existence of Galerkin Solution

Step 1 Existence of Galerkin Solution
Since C∞c (Ω) is separable and dense in C1

c (Ω) we can extract a sequence of

{ϕi}∞i=1 ⊂ C∞c (Ω) such that span{ϕ1, ϕ2, . . . }
C1

c = C1
c (Ω). We denote the

finite dimensional spaces as Vn := span{ϕ1, . . . ϕn}.

Lemma (Existence of Galerkin solutions)

For every n ∈ N, there exists a function un ∈ Vn, is called a Galerkin
solution satisfying∫

Ω

A(x,∇un) · ∇ϕ+ Φ(un) · ∇ϕ+ b(x, un)ϕdx =

∫
Ω

F · ∇ϕ dx. (2)

holds for every ϕ ∈ Vn.
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Uniform boundedness of Galerkin solutions

Step 2 A priori estimate Testing the equation by un, we obtain

∫
Ω

A(x,∇un) · ∇un + Φ(un) · ∇un + b(x, un)un dx =

∫
Ω

F · ∇un dx

=⇒ there exists a constant C independent of n such that for every
Galerkin solution un it holds∫

Ω

A(x,∇un) · ∇un dx ≤ C; ‖∇un‖LM (Ω) ≤ C;

∫
Ω

b(x, un)un dx ≤ C.

=⇒ There exists a function u ∈W 1,1
0 (Ω) such that

un ⇀ u in W 1,1
0 (Ω), ∇un

∗
⇀ ∇u for σ(LM , EM∗),

and there exists a function h ∈ LM∗(Ω) such that

A(x,∇un)
∗
⇀ h for σ(LM∗ , EM ).
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Uniform boundedness of Galerkin solutions

As b is a Carathéodory’s function, we get b(x, un)→ b(x, u) a.e. in Ω.
By decomposing the integral interval, we obtain b(·, un) is uniformly
integrable in L1(Ω). Then, by Vitali convergence theorem we have

b(·, un)→ b(·, u) in L1(Ω).

Therefore, we can pass to the limit with n in

∫
Ω

A(x,∇un)·∇ϕ+Φ(un)·∇ϕ+b(x, un)ϕdx =

∫
Ω

F ·∇ϕ dx for any ϕ ∈ Vn.

⇓(n→∞)

∫
Ω

h · ∇ϕ+ Φ(u) · ∇ϕ+ b(x, u)ϕdx =

∫
Ω

F · ∇ϕ dx for any ϕ ∈ Vk, k ∈ N.
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Extending the class of test functions

Step 3 Extending the class of test functions.

Extend the test function ϕ ∈ Vk to ϕ ∈ C∞c (Ω).

Let ϕ ∈ C∞c (Ω) be arbitrary and ϕj ∈ Vj be a sequence of smooth function
such that ϕj → ϕ in C1

c (Ω). Replace ϕ with ϕj ,

∫
Ω

h · ∇ϕ+ Φ(u) · ∇ϕ+ b(x, u)ϕdx =

∫
Ω

F · ∇ϕ dx for any ϕ ∈ Vk, k ∈ N.

⇓ to have

∫
Ω

h · ∇ϕj + Φ(u) · ∇ϕj + b(x, u)ϕj dx =

∫
Ω

F · ∇ϕj dx for ϕj ∈ Vj, j ∈ N.
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Extend the test function ϕ ∈ Vk to ϕ ∈ C∞
c (Ω)

Remember that for ϕ ∈ C∞c (Ω), we have ϕj → ϕ in C1
c (Ω). Therefore,

we have h · ∇ϕj → h · ∇ϕ a.e. in Ω. By uniform convergence of
{∇ϕj}, for large enough j, we have∫

Ω

h · ∇ϕj dx ≤
∫

Ω

h · ∇ϕ+ 1 dx <∞.

Therefore, by dominated convergence theorem, we have

∫
Ω

h · ∇ϕj + Φ(u) · ∇ϕj + b(x, u)ϕj dx =

∫
Ω

F · ∇ϕj dx for ϕj ∈ Vj

⇓ as j →∞
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Extend the class of test function

Extend the test function ϕ ∈ C∞c (Ω) to ϕ ∈ V 1
0 LM (Ω) ∩ L∞(Ω)

Let ϕ ∈ V 1
0 LM (Ω) ∩ L∞(Ω).

Then there exist a subsequence {ϕk} ⊂ C∞c (Ω) satisfyting ∇ϕk → ∇ϕ
modularly in LM (Ω), ϕk → ϕ in L1(Ω).

Recalling: ∇ϕk → ∇ϕ for σ(LM , LM∗). Therefore, we can extend

∫
Ω

h · ∇ϕk + Φ(u) · ∇ϕk + b(x, u)ϕk dx =
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0 LM (Ω) ∩ L∞(Ω).
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modularly in LM (Ω), ϕk → ϕ in L1(Ω).
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Step 4 (h = A(x,∇u) almost everywhere).
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In the case of I1.

We illustrate the main feature without the lower-order term!

We want to show

lim
n→∞

∫
Ω

A(x,∇un) · ∇Tk(un) dx = ?

Remember that un is a Galerkin solution and the growth condition can give
only A(x,∇un) ∈ LM∗(Ω). However, ∇Tk(un) ∈ LM (Ω) and LM∗ = (EM )∗.
So, we can not test the function by Tk(un)!

Take a sequence (Tk(un))δ satisfies that

∇(Tk(un))δ
M−→ ∇Tk(un) and Tk(un)δ → Tk(un) in L1(Ω) as δ → 0.

Therefore, we have
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Ω
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n→∞

∫
Ω

F · ∇Tk(un) dx

=

∫
Ω

F · ∇Tk(u) dx =

∫
Ω

h · ∇Tk(u) dx.
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Sketch of proof

Combining all the estimates, we see that

0 ≤
∫

Ω

(h−A(x,w)) · (∇u− w) dx.

The monotonicity trick yields that h = A(x,∇u) almost everywhere in
Ω.

Therefore, we finish the proof.
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Recent Results-Existence and Uniqueness of Renormalized
solutions
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Recent Results

Suppose that f : Ω→ R, f ∈ L1(Ω) and F ∈ EM∗(Ω;Rn). We study the
following problem{

−div
(
A(x,∇u) + Φ(u)

)
+ b(x, u) = f + divF in Ω,

u(x) = 0 on ∂Ω,

in a fully anisotropic and inhomogeneous Musielak-Orlicz space.

* Φ : R→ Rn is a Lipschitz continuous function.

* As we consider problems with data of low integrability, it is reasonable
to work with renormalized solutions.

Joint work with Bartosz Budnarowski.

Bartosz Budnarowski, Ying Li, Existence of renormalized solutions to
fully anisotropic and inhomogenous elliptic problems. (Submitted)
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Recent Results

Our main result reads as follows.

Theorem ( B. Budnarowski, Y. Li. Submitted 2022)

Suppose f ∈ L1(Ω), F ∈ EM∗(Ω;Rn), an N-function M is regular enough
so that C∞c (Ω) is dense in V 1

0 LM (Ω) in the modular topology. Function A
satisfies assumptions (A1), (A2) and (A3), Φ satisfies (P), and b satisfies
(b). Then there exists at least one renormalized solution to the problem{

− div
(
A(x,∇u) + Φ(u)

)
+ b(x, u) = f + divF in Ω,

u(x) = 0 on ∂Ω,

Proposition

Additionally, if we assume that s→ b(·, s) is strictly increasing, then the
renormalized solution is unique.

Ying Li Existence of solutions in Musielak-Orlicz space
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In preparation

* Aim to generalized the second results to the situation when the single
valued mapping A becomes a multivalued map.

Establish the existence of renormalized solutions for the following problem

{
− div

(
A(x,∇u) + Φ(u)

)
+ b(x, u)3f + divF in Ω,

u(x) = 0 on ∂Ω,
(3)

where the function A : Ω× Rn → 2Rn

is a maximally monotone
multifunction, f : Ω→ R, f ∈ L1(Ω).

* Φ : R→ Rn is a Lipschitz continuous function.

Ying Li Existence of solutions in Musielak-Orlicz space
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