

Faculty of Mathematics and Information Sciences, Warsaw University of Technology

Maximal operator in function spaces with nonstandard growth

Piotr Michał Bies

Warsaw, 2nd February 2023

Maximal operator in Musielak–Orlicz–Sobolev spaces

- Musielak–Orlicz–Sobolev spaces
- Boundedness of the maximal operator
- Continuity of the maximal operator

Maximal operator in Hölder spaces with variable exponent

- Hölder spaces with variable exponent
- Boudedness of the maximal operator
- Discontinuity of a maximal operator in Lipschitz space

Let $A \subset \mathbb{R}^n$ be a measurable set, by |A| we denote the Lebesgue measure of A and by $L^0(A)$ the set of measurable functions on A.

Let $A \subset \mathbb{R}^n$ be a measurable set, by |A| we denote the Lebesgue measure of A and by $L^0(A)$ the set of measurable functions on A. Let $\varphi : A \times [0, \infty) \to [0, \infty)$, p, q > 0. We say that φ satisfies $(alnc)_p$ if there exists $a \in [1, \infty)$ such that the inequality holds

$$\frac{\varphi(x,s)}{s^p} \le a \frac{\varphi(x,t)}{t^p} \quad \text{for almost all } x \in A \text{ and for all } 0 < s < t,$$

A D > A A + A

Let $A \subset \mathbb{R}^n$ be a measurable set, by |A| we denote the Lebesgue measure of A and by $L^0(A)$ the set of measurable functions on A. Let $\varphi : A \times [0, \infty) \to [0, \infty)$, p, q > 0. We say that φ satisfies $(alnc)_p$ if there exists $a \in [1, \infty)$ such that the inequality holds

$$\frac{\varphi(x,s)}{s^p} \le a \frac{\varphi(x,t)}{t^p} \quad \text{for almost all } x \in A \text{ and for all } 0 < s < t,$$

and we say that φ satisfies (aDec)_q if there exists $a \in [1,\infty)$ such that the inequality holds

$$\frac{\varphi(x,t)}{t^q} \le a \frac{\varphi(x,s)}{s^q} \quad \text{for almost all } x \in A \text{ and for all } 0 < s < t.$$

Let $A \subset \mathbb{R}^n$ be a measurable set, by |A| we denote the Lebesgue measure of A and by $L^0(A)$ the set of measurable functions on A. Let $\varphi : A \times [0, \infty) \to [0, \infty)$, p, q > 0. We say that φ satisfies $(\operatorname{alnc})_p$ if there exists $a \in [1, \infty)$ such that the inequality holds

$$\frac{\varphi(x,s)}{s^p} \le a \frac{\varphi(x,t)}{t^p} \quad \text{for almost all } x \in A \text{ and for all } 0 < s < t,$$

and we say that φ satisfies (aDec)_q if there exists $a \in [1,\infty)$ such that the inequality holds

$$\frac{\varphi(x,t)}{t^q} \le a \frac{\varphi(x,s)}{s^q} \quad \text{for almost all } x \in A \text{ and for all } 0 < s < t.$$

Furthermore, we denote

$$(\mathsf{alnc}) = \bigcup_{p \in (1,\infty)} (\mathsf{alnc})_p, \ (\mathsf{aDec}) = \bigcup_{p \in (1,\infty)} (\mathsf{aDec})_p.$$

Let $p: A \to [1, \infty)$. We define $\varphi: A \times [0, \infty) \to [0, \infty)$ as $\varphi(x, t) = t^{p(x)}$

2

メロト メタト メヨト メヨト

Let $p: A \to [1,\infty)$. We define $\varphi: A \times [0,\infty) \to [0,\infty)$ as $\varphi(x,t) = t^{p(x)}$

 φ satisfies (alnc) $\Leftrightarrow p^+ < \infty$

Ξ.

A D F A B F A B F A B F

Let $p: A \to [1,\infty)$. We define $\varphi: A \times [0,\infty) \to [0,\infty)$ as $\varphi(x,t) = t^{p(x)}$

 φ satisfies (alnc) $\Leftrightarrow p^+ < \infty$

 φ satisfies (aDec) $\Leftrightarrow p^- > 1$

Ξ.

A D F A B F A B F A B F

< □ > < 同 >

weak Φ-function if it satisfies (alnc)₁,

Image: Image:

- weak Φ -function if it satisfies $(alnc)_1$,
- convex Φ -function if $\varphi(x, \cdot)$ is left continuous and convex for almost every $x \in A$,

- weak Φ -function if it satisfies $(alnc)_1$,
- convex Φ -function if $\varphi(x, \cdot)$ is left continuous and convex for almost every $x \in A$,
- strong Φ function if $\varphi(x, \cdot)$ is continuous and convex for almost every $x \in A$.

- weak Φ -function if it satisfies $(alnc)_1$,
- convex Φ -function if $\varphi(x, \cdot)$ is left continuous and convex for almost every $x \in A$,

• strong Φ function if $\varphi(x, \cdot)$ is continuous and convex for almost every $x \in A$. The set of weak Φ -functions, convex Φ -functions and strong Φ -functions we shall denote by $\Phi_w(A)$, $\Phi_c(A)$ and $\Phi_s(A)$ respectively.

Image: A math a math

- weak Φ -function if it satisfies $(alnc)_1$,
- convex Φ -function if $\varphi(x, \cdot)$ is left continuous and convex for almost every $x \in A$,

• strong Φ function if $\varphi(x, \cdot)$ is continuous and convex for almost every $x \in A$. The set of weak Φ -functions, convex Φ -functions and strong Φ -functions we shall denote by $\Phi_w(A)$, $\Phi_c(A)$ and $\Phi_s(A)$ respectively. From the very definition we have $\Phi_s(A) \subset \Phi_c(A) \subset \Phi_w(A)$.

イロト イボト イヨト イヨ

- weak Φ -function if it satisfies $(alnc)_1$,
- convex Φ -function if $\varphi(x, \cdot)$ is left continuous and convex for almost every $x \in A$,

• strong Φ function if $\varphi(x, \cdot)$ is continuous and convex for almost every $x \in A$. The set of weak Φ -functions, convex Φ -functions and strong Φ -functions we shall denote by $\Phi_w(A)$, $\Phi_c(A)$ and $\Phi_s(A)$ respectively. From the very definition we have $\Phi_s(A) \subset \Phi_c(A) \subset \Phi_w(A)$. **Example:** $\varphi \in \Phi_s(A)$

For $\varphi \in \Phi_w(A)$ and $f \in L^0(A)$ we define

$$\rho_{\varphi}(f) = \int_{A} \varphi(x, |f(x)|) \, dx,$$
$$\|f\|_{\varphi,A} = \inf \left\{ \lambda > 0 : \rho_{\varphi}\left(\frac{f}{\lambda}\right) \le 1 \right\},$$

and a set

$$L^{\varphi}(A) = \{ f \in L^{0}(A) : \exists (\lambda > 0) \ \rho_{\varphi}(\lambda f) < \infty \}.$$

æ

For $\varphi \in \Phi_w(A)$ and $f \in L^0(A)$ we define

$$\rho_{\varphi}(f) = \int_{A} \varphi(x, |f(x)|) \, dx,$$
$$\|f\|_{\varphi,A} = \inf \left\{ \lambda > 0 : \rho_{\varphi}\left(\frac{f}{\lambda}\right) \le 1 \right\},$$

and a set

$$L^{\varphi}(A)=\{f\in L^0(A)\ :\ \exists (\lambda>0)\ \rho_{\varphi}(\lambda f)<\infty\}.$$

We shall simply write $||f||_{\varphi}$ when $A = \mathbb{R}^n$.

< □ > < 同 >

For $\varphi \in \Phi_w(A)$ and $f \in L^0(A)$ we define

$$\rho_{\varphi}(f) = \int_{A} \varphi(x, |f(x)|) \, dx,$$
$$\|f\|_{\varphi,A} = \inf \left\{ \lambda > 0 : \rho_{\varphi}\left(\frac{f}{\lambda}\right) \le 1 \right\},$$

and a set

$$L^{\varphi}(A) = \{ f \in L^{0}(A) : \exists (\lambda > 0) \ \rho_{\varphi}(\lambda f) < \infty \}.$$

We shall simply write $||f||_{\varphi}$ when $A = \mathbb{R}^{n}$.

Let us note that the Musielak-Orlicz space $(L^{\varphi}, \|\cdot\|_{\varphi,A})$ is a quasi-Banach space for $\varphi \in \Phi_w(A)$, and $(L^{\varphi}, \|\cdot\|_{\varphi,A})$ is a Banach space if $\varphi \in \Phi_c(A)$.

< < >>

For $\varphi \in \Phi_w(A)$ and $f \in L^0(A)$ we define

$$\rho_{\varphi}(f) = \int_{A} \varphi(x, |f(x)|) \, dx,$$
$$|f||_{\varphi,A} = \inf \left\{ \lambda > 0 : \rho_{\varphi}\left(\frac{f}{\lambda}\right) \le 1 \right\},$$

and a set

$$L^{\varphi}(A) = \{ f \in L^{0}(A) : \exists (\lambda > 0) \ \rho_{\varphi}(\lambda f) < \infty \}.$$

We shall simply write $||f||_{\varphi}$ when $A = \mathbb{R}^n$.

Let us note that the Musielak-Orlicz space $(L^{\varphi}, \|\cdot\|_{\varphi,A})$ is a quasi-Banach space for $\varphi \in \Phi_w(A)$, and $(L^{\varphi}, \|\cdot\|_{\varphi,A})$ is a Banach space if $\varphi \in \Phi_c(A)$. It is known, that if $\varphi, \psi \in \Phi_w(A)$ and $\varphi \simeq \psi$, then $L^{\varphi}(A) = L^{\psi}(A)$ and corresponding quasi-norms are equivalent.

For $\varphi \in \Phi_w(A)$ and $f \in L^0(A)$ we define

$$\rho_{\varphi}(f) = \int_{A} \varphi(x, |f(x)|) \, dx,$$
$$|f||_{\varphi,A} = \inf \left\{ \lambda > 0 : \rho_{\varphi}\left(\frac{f}{\lambda}\right) \le 1 \right\},$$

and a set

$$L^{\varphi}(A) = \{ f \in L^{0}(A) : \exists (\lambda > 0) \ \rho_{\varphi}(\lambda f) < \infty \}.$$

We shall simply write $||f||_{\varphi}$ when $A = \mathbb{R}^n$.

Let us note that the Musielak-Orlicz space $(L^{\varphi}, \|\cdot\|_{\varphi,A})$ is a quasi-Banach space for $\varphi \in \Phi_w(A)$, and $(L^{\varphi}, \|\cdot\|_{\varphi,A})$ is a Banach space if $\varphi \in \Phi_c(A)$. It is known, that if $\varphi, \psi \in \Phi_w(A)$ and $\varphi \simeq \psi$, then $L^{\varphi}(A) = L^{\psi}(A)$ and corresponding quasi-norms are equivalent. Moreover, if $\varphi \in \Phi_w(A)$, then there exists $\psi \in \Phi_s(A)$ such that $\varphi \simeq \psi$. Thus, even if $\|\cdot\|_{\varphi,A}$ is not a norm for a certain $\varphi \in \Phi_w(A)$ it has a Banach space structure.

For $\varphi \in \Phi_w(A)$ and $f \in L^0(A)$ we define

$$\rho_{\varphi}(f) = \int_{A} \varphi(x, |f(x)|) \, dx,$$
$$|f||_{\varphi,A} = \inf \left\{ \lambda > 0 : \rho_{\varphi}\left(\frac{f}{\lambda}\right) \le 1 \right\},$$

and a set

$$L^{\varphi}(A) = \{ f \in L^{0}(A) : \exists (\lambda > 0) \ \rho_{\varphi}(\lambda f) < \infty \}.$$

We shall simply write $||f||_{\varphi}$ when $A = \mathbb{R}^n$.

Let us note that the Musielak-Orlicz space $(L^{\varphi}, \|\cdot\|_{\varphi,A})$ is a quasi-Banach space for $\varphi \in \Phi_w(A)$, and $(L^{\varphi}, \|\cdot\|_{\varphi,A})$ is a Banach space if $\varphi \in \Phi_c(A)$. It is known, that if $\varphi, \psi \in \Phi_w(A)$ and $\varphi \simeq \psi$, then $L^{\varphi}(A) = L^{\psi}(A)$ and corresponding quasi-norms are equivalent. Moreover, if $\varphi \in \Phi_w(A)$, then there exists $\psi \in \Phi_s(A)$ such that $\varphi \simeq \psi$. Thus, even if $\|\cdot\|_{\varphi,A}$ is not a norm for a certain $\varphi \in \Phi_w(A)$ it has a Banach space structure.

Equivalence of Φ -functions

Let $\varphi, \psi : A \times [0, \infty) \to [0, \infty]$. We say that φ and ψ are equivalent $(\varphi \simeq \psi)$ if there exists $L \ge 1$ such that the inequalities $\psi(x, t/L) \le \varphi(x, t) \le \psi(x, Lt)$ are satisfied for almost every $x \in A$ and for all $t \in [0, \infty)$.

(MINI PW)

Let $A \subset \mathbb{R}^n$ be a measurable set. We say that $\varphi \in \Phi_w(A)$ satisfies (A0) if there exists a constant $\beta \in (0,1]$ such that $\beta \leq \varphi^{-1}(x,1) \leq 1/\beta$ for almost everyl $x \in A$, where φ^{-1} is left-inverse of φ .

< □ > < 同 >

Let $A \subset \mathbb{R}^n$ be a measurable set. We say that $\varphi \in \Phi_w(A)$ satisfies (A0) if there exists a constant $\beta \in (0,1]$ such that $\beta \leq \varphi^{-1}(x,1) \leq 1/\beta$ for almost everyl $x \in A$, where φ^{-1} is left-inverse of φ . **Example:** For $\varphi(x,t) = t^{p(x)}$, we have $\varphi^{-1}(x,t) = t^{1/p(x)}$. Thus, $\varphi^{-1}(x,1) = 1$, so φ satisfies (A0).

Image: Image:

Let $A \subset \mathbb{R}^n$ be a measurable set. We say that $\varphi \in \Phi_w(A)$ satisfies (A0) if there exists a constant $\beta \in (0,1]$ such that $\beta \leq \varphi^{-1}(x,1) \leq 1/\beta$ for almost everyl $x \in A$, where φ^{-1} is left-inverse of φ . **Example:** For $\varphi(x,t) = t^{p(x)}$, we have $\varphi^{-1}(x,t) = t^{1/p(x)}$. Thus, $\varphi^{-1}(x,1) = 1$, so φ satisfies (A0). For $\psi(x,t) = t^p + a(x)t^q$, where $1 \leq p < q < \infty$ and a is measurable it can be shown that

 ψ satisfies (A0) $\Leftrightarrow a \in L^{\infty}(A)$.

Let $\Omega \subset \mathbb{R}^n$ be an open set and $\varphi \in \Phi_w(\Omega)$, then

φ satisfies (A1) if there exists β ∈ (0,1) such that for every ball B such that
 |B| ≤ 1 the following inequality holds

$$\beta \varphi^{-1}(x,t) \leq \varphi^{-1}(y,t)$$

for every $t \in [1, 1/|B|]$ and for almost every $x, y \in B \cap \Omega$.

A D > A A P >

Let $\Omega \subset \mathbb{R}^n$ be an open set and $\varphi \in \Phi_w(\Omega)$, then

φ satisfies (A1) if there exists β ∈ (0,1) such that for every ball B such that
 |B| ≤ 1 the following inequality holds

$$\beta \varphi^{-1}(x,t) \leq \varphi^{-1}(y,t)$$

for every $t \in [1, 1/|B|]$ and for almost every $x, y \in B \cap \Omega$.

φ satisfies (A2) if for all s > 0 there exist β ∈ (0,1] and h ∈ L¹(Ω) ∩ L[∞](Ω)
 such that the following inequality holds

$$\beta \varphi^{-1}(x,t) \leq \varphi^{-1}(y,t)$$

for almost every $x, y \in \Omega$ and for all $t \in [h(x) + h(y), s]$.

Proposition

The Φ -function $\varphi(x, t) = t^{p(x)}$ satisifes (A1), iff $\frac{1}{p} \in C^{\log}$, i.e., there exists C such that for every distinct $x, y \in \Omega$

$$\left|\frac{1}{p(x)} - \frac{1}{p(y)}\right| \leq \frac{C}{\log(e+1/|x-y|)},$$

• • • • • • • • • •

Proposition

The Φ -function $\varphi(x, t) = t^{p(x)}$ satisifes (A1), iff $\frac{1}{p} \in C^{\log}$, i.e., there exists C such that for every distinct $x, y \in \Omega$

$$\left|\frac{1}{p(x)} - \frac{1}{p(y)}\right| \leq \frac{C}{\log(e+1/|x-y|)},$$

Proposition

The Φ -function $\varphi(x,t) = t^{p(x)}$ satisfies (A2), if $\frac{1}{p}$ satisfies log-Hölder decay condition, i.e., there exist C, p_{∞} such that

$$\left|\frac{1}{p(x)} - \frac{1}{p_{\infty}}\right| \leq \frac{C}{\log(e+|x|)}.$$

Image: A math a math

Let Ω be an open subset of \mathbb{R}^n and let $\varphi \in \Phi_w(\Omega)$.

< □ > < 同 >

Let Ω be an open subset of \mathbb{R}^n and let $\varphi \in \Phi_w(\Omega)$. The Musielak–Orlicz–Sobolev space $W^{1,\varphi}(\Omega)$ is a vector space of all $f \in L^{\varphi}(\Omega)$ for which the distributional derivatives belong to $L^{\varphi}(\Omega)$.

A D > A A P >

Let Ω be an open subset of \mathbb{R}^n and let $\varphi \in \Phi_w(\Omega)$. The Musielak–Orlicz–Sobolev space $W^{1,\varphi}(\Omega)$ is a vector space of all $f \in L^{\varphi}(\Omega)$ for which the distributional derivatives belong to $L^{\varphi}(\Omega)$. We equip $W^{1,\varphi}(\Omega)$ with the quasi-norm

$$||u||_{k,\varphi,\Omega} \coloneqq \sum_{|\alpha|\leq 1} ||D_{\alpha}u||_{\varphi,\Omega}.$$

Again, we will write simply $||u||_{1,\varphi}$ if $\Omega = \mathbb{R}^n$.

If f is locally integrable and A is a measurable set such that $0 < |A| < \infty$, then we denote the integral average of the function f over A as

$$\int_A f \, dx = \frac{1}{|A|} \, \oint_A f \, dx \, .$$

If f is locally integrable and A is a measurable set such that $0 < |A| < \infty$, then we denote the integral average of the function f over A as

$$\int_A f \, dx = \frac{1}{|A|} \, \int_A f \, dx \, .$$

For $f \in L^1_{loc}(\mathbb{R}^n)$ we define the maximal function $Mf: \mathbb{R}^n \to \mathbb{R}$ in a standard way

$$Mf(x) = \sup_{r>0} \int_{B(x,r)} |f(z)| \, dz.$$

< □ > < 同 >

Boundedness of the maximal operator

Theorem

Let $\varphi \in \Phi_w(\mathbb{R}^n)$ satisfies (A0), (A1), (A2), (alnc) and (aDec). If $f \in W^{1,\varphi}(\mathbb{R}^n)$, then $Mf \in W^{1,\varphi}(\mathbb{R}^n)$ and the inequality

 $|D_i M f(x)| \leq M D_i f(x),$

is satisfied for all i = 1, ..., n and for almost all $x \in \mathbb{R}^n$.

A D > A A P >

Theorem

Let $\varphi \in \Phi_w(\mathbb{R}^n)$ satisfies (A0), (A1), (A2), (alnc) and (aDec). If $f \in W^{1,\varphi}(\mathbb{R}^n)$, then $Mf \in W^{1,\varphi}(\mathbb{R}^n)$ and the inequality

 $|D_i M f(x)| \leq M D_i f(x),$

is satisfied for all i = 1, ..., n and for almost all $x \in \mathbb{R}^n$.

The sketch of the proof: For r > 0 let

$$h_r = \frac{1}{|B(0,r)|} \chi_{B(0,r)}.$$

Then, we have

$$|f|*h_r(x)=\int_{B(x,r)}|f(y)|\,dy\leq Mf(x).$$

Theorem

Let $\varphi \in \Phi_w(\mathbb{R}^n)$ satisfies (A0), (A1), (A2), (alnc) and (aDec). If $f \in W^{1,\varphi}(\mathbb{R}^n)$, then $Mf \in W^{1,\varphi}(\mathbb{R}^n)$ and the inequality

 $|D_i M f(x)| \leq M D_i f(x),$

is satisfied for all i = 1, ..., n and for almost all $x \in \mathbb{R}^n$.

The sketch of the proof: For r > 0 let

$$h_r = \frac{1}{|B(0,r)|} \chi_{B(0,r)}.$$

Then, we have

$$|f|*h_r(x)=\int_{B(x,r)}|f(y)|\,dy\leq Mf(x).$$

This estimate and properties of convolution yields

$$|D_i(|f| * h_r)(x)| = |(D_i|f|) * h_r(x)| \le MD_i|f|(x)$$

for almost all $x \in \mathbb{R}^n$.

(MINI PW)

A sketch of the proof

We have $Mf, MD_i|f| \in L^{\varphi}(\mathbb{R}^n)$, and therefore $|f| * h_r \in W^{1,\varphi}(\mathbb{R}^n)$.

э

< □ > < 同 >

A sketch of the proof

We have $Mf, MD_i|f| \in L^{\varphi}(\mathbb{R}^n)$, and therefore $|f| * h_r \in W^{1,\varphi}(\mathbb{R}^n)$. Let r_m be a sequence of all rational positive numbers, then

 $Mf = \sup_{m} |f| * h_{r_m}.$

< □ > < 同 >

We have $Mf, MD_i|f| \in L^{\varphi}(\mathbb{R}^n)$, and therefore $|f| * h_r \in W^{1,\varphi}(\mathbb{R}^n)$. Let r_m be a sequence of all rational positive numbers, then

$$Mf = \sup_{m} |f| * h_{r_m}.$$

For $g_k = \max_{1 \le m \le k} |f| * h_{r_m}$ we have

 $|D_i g_k(x)| \le \max_{1 \le m \le k} |D_i(|f| * h_{r_m})(x)| \le M(D_i|f|)(x) = M(D_if)(x)$

for almost all $x \in \mathbb{R}^n$ and all $k \in \mathbb{N}$.

We have $Mf, MD_i|f| \in L^{\varphi}(\mathbb{R}^n)$, and therefore $|f| * h_r \in W^{1,\varphi}(\mathbb{R}^n)$. Let r_m be a sequence of all rational positive numbers, then

$$Mf = \sup_{m} |f| * h_{r_m}.$$

For $g_k = \max_{1 \le m \le k} |f| * h_{r_m}$ we have

 $|D_ig_k(x)| \le \max_{1 \le m \le k} |D_i(|f| * h_{r_m})(x)| \le M(D_i|f|)(x) = M(D_if)(x)$

for almost all $x \in \mathbb{R}^n$ and all $k \in \mathbb{N}$. Therefore, we have

$$\|g_k\|_{1,\varphi} \leq \|Mf\|_{\varphi} + \sum_{i=1}^n \|M(D_if)\|_{\varphi} \leq C \|f\|_{1,\varphi}.$$

For $f \in L^1_{loc}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$ we define

$$\mathcal{R}f(x) = \left\{ r \ge 0 : \exists (\{r_k\} \subset (0,\infty)) r_k \to r \land Mf(x) = \lim_{k \to \infty} \int_{B(x,r_k)} |f(y)| \, dy \right\}.$$

э.

< □ > < □ > < □ > < □ > < □ >

For $f \in L^1_{loc}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$ we define

$$\mathcal{R}f(x) = \left\{ r \ge 0 : \exists (\{r_k\} \subset (0,\infty)) r_k \to r \land Mf(x) = \lim_{k \to \infty} \oint_{B(x,r_k)} |f(y)| dy \right\}.$$

Proposition

Let $\varphi \in \Phi_w(\mathbb{R}^n)$ satisfies (aDec) and (A0), then for every $f \in L^{\varphi}(\mathbb{R}^n)$, the following statements hold.

For $f \in L^1_{loc}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$ we define

$$\mathcal{R}f(x) = \left\{ r \ge 0 : \exists (\{r_k\} \subset (0,\infty)) r_k \to r \land Mf(x) = \lim_{k \to \infty} \oint_{B(x,r_k)} |f(y)| dy \right\}.$$

Proposition

Let $\varphi \in \Phi_w(\mathbb{R}^n)$ satisfies (aDec) and (A0), then for every $f \in L^{\varphi}(\mathbb{R}^n)$, the following statements hold.

(i) For all $x \in \mathbb{R}^n$ the set $\mathcal{R}f(x)$ is nonempty.

For $f \in L^1_{loc}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$ we define

$$\mathcal{R}f(x) = \left\{ r \ge 0 : \exists (\{r_k\} \subset (0,\infty)) r_k \to r \land Mf(x) = \lim_{k \to \infty} \oint_{B(x,r_k)} |f(y)| dy \right\}.$$

Proposition

Let $\varphi \in \Phi_w(\mathbb{R}^n)$ satisfies (aDec) and (A0), then for every $f \in L^{\varphi}(\mathbb{R}^n)$, the following statements hold.

(i) For all $x \in \mathbb{R}^n$ the set $\mathcal{R}f(x)$ is nonempty.

(ii) For all $x \in \mathbb{R}^n$ and r > 0 such that $r \in \mathcal{R}f(x)$ the equality

$$Mf(x) = \int_{B(x,r)} |f(y)| \, dy$$

holds.

For $f \in L^1_{loc}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$ we define

$$\mathcal{R}f(x) = \left\{ r \ge 0 : \exists (\{r_k\} \subset (0,\infty)) r_k \to r \land Mf(x) = \lim_{k \to \infty} \oint_{B(x,r_k)} |f(y)| dy \right\}.$$

Proposition

Let $\varphi \in \Phi_w(\mathbb{R}^n)$ satisfies (aDec) and (A0), then for every $f \in L^{\varphi}(\mathbb{R}^n)$, the following statements hold.

(i) For all $x \in \mathbb{R}^n$ the set $\mathcal{R}f(x)$ is nonempty.

(ii) For all $x \in \mathbb{R}^n$ and r > 0 such that $r \in \mathcal{R}f(x)$ the equality

$$Mf(x) = \int_{B(x,r)} |f(y)| \, dy$$

holds.

(iii) For almost all $x \in \mathbb{R}^n$ if $0 \in \mathcal{R}f(x)$, then

$$Mf(x) = |f(x)|.$$

Proposition

Let $\varphi \in \Phi_w(\mathbb{R}^n)$ satisfies (A0), (aDec)and (alnc). If $f_m, f \in L^{\varphi}(\mathbb{R}^n)$ and $f_m \to f$ in $L^{\varphi}(\mathbb{R}^n)$, then for all R > 0 and $\lambda > 0$ the set $\{x \in B(0, R) : \mathcal{R}f_m(x) \notin \mathcal{R}f(x)_{(\lambda)}\}$ is measurable and^a

 $\lim_{m\to\infty} \left| \left\{ x \in B(0,R) : \mathcal{R}f_m(x) \notin \mathcal{R}f(x)_{(\lambda)} \right\} \right| = 0.$

^aFor nonempty set $A \subset \mathbb{R}^n$ and $\lambda \ge 0$ we denote $A_{(\lambda)} = \{x \in \mathbb{R}^n : dist(x, A) \le \lambda\}$.

r

Proposition

Let $\varphi \in \Phi_w(\mathbb{R}^n)$ satisfies (A0), (aDec)and (alnc). If $f_m, f \in L^{\varphi}(\mathbb{R}^n)$ and $f_m \to f$ in $L^{\varphi}(\mathbb{R}^n)$, then for all R > 0 and $\lambda > 0$ the set $\{x \in B(0, R) : \mathcal{R}f_m(x) \notin \mathcal{R}f(x)_{(\lambda)}\}$ is measurable and^a

$$\lim_{n\to\infty} \left| \left\{ x \in B(0,R) : \mathcal{R}f_m(x) \notin \mathcal{R}f(x)_{(\lambda)} \right\} \right| = 0.$$

^aFor nonempty set $A \subset \mathbb{R}^n$ and $\lambda \ge 0$ we denote $A_{(\lambda)} = \{x \in \mathbb{R}^n : dist(x, A) \le \lambda\}$.

Lemma

Let us assume that $\varphi \in \Phi_w(\mathbb{R}^n)$ satisfies (A0), (A1), (A2), (alnc) and (aDec). If $f \in W^{1,\varphi}(\mathbb{R}^n)$, then for almost all $x \in \mathbb{R}^n$ and for all i = 1, ..., n we have

$$\begin{split} D_i M f(x) &= \int_{B(x,r)} D_i |f|(y) \, dy \text{ for all } r \in \mathcal{R} f(x), \, r > 0 \text{ and} \\ D_i M f(x) &= D_i |f|(x) \text{ if } 0 \in \mathcal{R} f(x). \end{split}$$

• • • • • • • • • • • •

Theorem

Let us assume that $\varphi \in \Phi_w(\mathbb{R}^n)$ satisfies (A0), (A1), (A2), (alnc) and (aDec), then the maximal operator

$$M: W^{1,\varphi}(\mathbb{R}^n) \to W^{1,\varphi}(\mathbb{R}^n)$$

is continuous.

Let (X, d, μ) be a metric measure space equipped with a metric d and the Borel measure μ . We assume that the measure of every open nonempty set is positive and that the measure of every bounded set is finite.

< < >>

Let (X, d, μ) be a metric measure space equipped with a metric d and the Borel measure μ . We assume that the measure of every open nonempty set is positive and that the measure of every bounded set is finite.

Given $\delta \in (0,1]$, we say that the space (X, d, μ) satisfies the δ -annular decay property if there exists a constant $K \ge 1$ such that for all $x \in X$, r > 0, $0 < \epsilon < 1$, we have

$$\mu\left(B(x,r) \setminus B(x,r(1-\epsilon))\right) \leq K\epsilon^{\delta}\mu(B(x,r)).$$

Let (X, d, μ) be a metric measure space equipped with a metric d and the Borel measure μ . We assume that the measure of every open nonempty set is positive and that the measure of every bounded set is finite.

Given $\delta \in (0,1]$, we say that the space (X, d, μ) satisfies the δ -annular decay property if there exists a constant $K \ge 1$ such that for all $x \in X$, r > 0, $0 < \epsilon < 1$, we have

$$\mu\left(B(x,r) \setminus B(x,r(1-\epsilon))\right) \leq K\epsilon^{\delta}\mu(B(x,r)).$$

Let (X, d) be a metric space, by C(X) we denote the space of continuous functions on X such that the norm

$$\|f\|_{\mathcal{C}(X)} = \sup_{x \in X} |f(x)|$$

is finite.

Let (X, d, μ) be a metric measure space equipped with a metric d and the Borel measure μ . We assume that the measure of every open nonempty set is positive and that the measure of every bounded set is finite.

Given $\delta \in (0,1]$, we say that the space (X, d, μ) satisfies the δ -annular decay property if there exists a constant $K \ge 1$ such that for all $x \in X$, r > 0, $0 < \epsilon < 1$, we have

$$\mu\left(B(x,r) \setminus B(x,r(1-\epsilon))\right) \leq K\epsilon^{\delta}\mu(B(x,r)).$$

Let (X, d) be a metric space, by C(X) we denote the space of continuous functions on X such that the norm

$$||f||_{C(X)} = \sup_{x \in X} |f(x)|$$

is finite. Moreover, for $\alpha: X \to [0,1]$ we denote by $C^{0,\alpha(\cdot)}(X)$ the variable exponent Hölder space, i.e. the space of $f \in C(X)$ such that

$$\|f\|_{C^{0,\alpha(\cdot)}(X)} := \|f\|_{C(X)} + \sup_{x\neq y} \frac{|f(x) - f(y)|}{d^{\alpha(x)}(x,y)} < \infty.$$

< ロ > < 同 > < 回 > < 回 >

Theorem

Suppose that $0 < \delta \le 1$, and that (X, d, μ) satisfies the δ -annular property. If $\alpha : X \to [0, \delta]$, then $M : C^{0,\alpha(\cdot)}(X) \to C^{0,\alpha(\cdot)}(X)$ and there exists $C_1 > 0$ such, that for $f \in C^{0,\alpha(\cdot)}(X)$ the following estimate holds

 $\|Mf\|_{C^{0,\alpha(\cdot)}(X)} \leq C_1 \|f\|_{C^{0,\alpha(\cdot)}(X)}.$

Theorem

Let $\delta \in (0,1]$ and (X, d, μ) satisfies the δ -annular property. If $\alpha : X \to (0,1]$ and $\beta : X \to [0,1]$ satisfy $\sup_{x \in X} \beta(x) / \alpha(x) < 1$, then the operator

$$M: C^{0,\alpha(\cdot)}(X) \to C^{0,\beta(\cdot)}(X)$$

is continuous.

< □ > < 同 >

Theorem

Let $\delta \in (0,1]$ and (X, d, μ) satisfies the δ -annular property. If $\alpha : X \to (0,1]$ and $\beta : X \to [0,1]$ satisfy $\sup_{x \in X} \beta(x) / \alpha(x) < 1$, then the operator

$$M: C^{0,\alpha(\cdot)}(X) \to C^{0,\beta(\cdot)}(X)$$

is continuous.

A sketch of the proof: Let us note since $\beta(\cdot) \leq \alpha(\cdot)$, we have $Id: C^{0,\alpha(\cdot)}(X) \rightarrow C^{0,\beta(\cdot)}(X)$. Therefore, we get $M: C^{0,\alpha(\cdot)}(X) \rightarrow C^{0,\beta(\cdot)}(X)$ is bounded.

A D > A A P >

Theorem

Let $\delta \in (0,1]$ and (X, d, μ) satisfies the δ -annular property. If $\alpha : X \to (0,1]$ and $\beta : X \to [0,1]$ satisfy $\sup_{x \in X} \beta(x) / \alpha(x) < 1$, then the operator

$$M: C^{0,\alpha(\cdot)}(X) \to C^{0,\beta(\cdot)}(X)$$

is continuous.

A sketch of the proof: Let us note since $\beta(\cdot) \leq \alpha(\cdot)$, we have $Id: C^{0,\alpha(\cdot)}(X) \to C^{0,\beta(\cdot)}(X)$. Therefore, we get $M: C^{0,\alpha(\cdot)}(X) \to C^{0,\beta(\cdot)}(X)$ is bounded.

In order to prove the continuity of M we fix $f \in C^{0,\alpha(\cdot)}(X)$ and a sequence $\{f_n\} \subset C^{0,\alpha(\cdot)}(X)$ such that $f_n \to f$ in $C^{0,\alpha(\cdot)}(X)$. It is easy to see that $Mf_n \to Mf$ in C(X).

Theorem

Let $\delta \in (0,1]$ and (X, d, μ) satisfies the δ -annular property. If $\alpha : X \to (0,1]$ and $\beta : X \to [0,1]$ satisfy $\sup_{x \in X} \beta(x) / \alpha(x) < 1$, then the operator

$$M: C^{0,\alpha(\cdot)}(X) \to C^{0,\beta(\cdot)}(X)$$

is continuous.

A sketch of the proof: Let us note since $\beta(\cdot) \leq \alpha(\cdot)$, we have $Id: C^{0,\alpha(\cdot)}(X) \to C^{0,\beta(\cdot)}(X)$. Therefore, we get $M: C^{0,\alpha(\cdot)}(X) \to C^{0,\beta(\cdot)}(X)$ is bounded.

In order to prove the continuity of M we fix $f \in C^{0,\alpha(\cdot)}(X)$ and a sequence $\{f_n\} \subset C^{0,\alpha(\cdot)}(X)$ such that $f_n \to f$ in $C^{0,\alpha(\cdot)}(X)$. It is easy to see that $Mf_n \to Mf$ in C(X). Thus, it is left to show that

$$\sup_{x\neq y}\frac{|Mf_n(x)-Mf(x)-Mf_n(y)+Mf(y)|}{d(x,y)^{\beta(x)}}\to 0.$$

We know that sequence $\{Mf_n\}$ is bounded in $C^{0,\alpha(\cdot)}(X)$, so we can assume that there exists $N \ge 1$ such that $\|Mf_n\|_{C^{0,\alpha(\cdot)}(X)} \le N$ for all n and $\|Mf\|_{C^{0,\alpha(\cdot)}(X)} \le N_{\mathcal{O},\alpha(\cdot)}(X)$

(MINI PW)

19 / 26

A sketch of the proof

Therefore, for $x, y \in X$ such that $x \neq y$, we get the following string of inequalities

$$\begin{split} &\frac{|Mf_{n}(x) - Mf(x) - Mf_{n}(y) + Mf(y)|}{d(x,y)^{\beta(x)}} \\ &= \left(\frac{|Mf_{n}(x) - Mf(x) - Mf_{n}(y) + Mf(y)|}{d(x,y)^{\alpha(x)}}\right)^{\frac{\beta(x)}{\alpha(x)}} |Mf_{n}(x) - Mf(x) - Mf_{n}(y) + Mf(y)|^{1-\beta(x)} \\ &\leq \left(\frac{|Mf_{n}(x) - Mf_{n}(y)|}{d(x,y)^{\alpha(x)}} + \frac{|Mf(x) - Mf(y)|}{d(x,y)^{\alpha(x)}}\right)^{\frac{\beta(x)}{\alpha(x)}} \left(2\|Mf_{n} - Mf\|_{C(X)}\right)^{1-\frac{\beta(x)}{\alpha(x)}} \\ &\leq (2N)^{\left(\frac{\beta}{\alpha}\right)^{+}} \left(2\|Mf_{n} - Mf\|_{C(X)}\right)^{1-\left(\frac{\beta}{\alpha}\right)^{+}}, \\ &\text{where } \left(\frac{\beta}{\alpha}\right)^{+} = \sup_{x \in X} \frac{\beta(x)}{\alpha(x)}. \text{ Hence,} \\ &\sup_{x \neq y} \frac{|Mf_{n}(x) - Mf(x) - Mf_{n}(y) + Mf(y)|}{d(x,y)^{\beta(x)}} \leq (2N)^{\left(\frac{\beta}{\alpha}\right)^{+}} \left(2\|Mf_{n} - Mf\|_{C(X)}\right)^{1-\left(\frac{\beta}{\alpha}\right)^{+}}. \end{split}$$

Since the right-hand side of the above inequality goes to 0 when $n \to \infty$, the proof follows.

(MINI PW)

Theorem

There exist $f, f_n \in C^{0,1}(\mathbb{R})$ such that $f_n \to f$ in $C^{0,1}(\mathbb{R})$ and $Mf_n \neq Mf$ in $C^{0,1}(\mathbb{R})$.

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous and 2-periodic function such that f(x) = |x| for $x \in [-1, 1]$.

Theorem

There exist $f, f_n \in C^{0,1}(\mathbb{R})$ such that $f_n \to f$ in $C^{0,1}(\mathbb{R})$ and $Mf_n \neq Mf$ in $C^{0,1}(\mathbb{R})$.

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous and 2-periodic function such that f(x) = |x| for $x \in [-1, 1]$.

(MINI PW)

Figure: A graph of the funtion Mf

We define a sequence $f_n(x) = f(x) - \frac{1}{n}$ for $x \in \mathbb{R}$.

We define a sequence $f_n(x) = f(x) - \frac{1}{n}$ for $x \in \mathbb{R}$. We see that $f_n \to f$ in $C^{0,1}(\mathbb{R})$.

We define a sequence $f_n(x) = f(x) - \frac{1}{n}$ for $x \in \mathbb{R}$. We see that $f_n \to f$ in $C^{0,1}(\mathbb{R})$.

Figure: A graph of few of functions Mf_n

Let us define $d_n = \frac{1}{2} - \frac{1}{4n^2}$.

A D > A A

Let us define $d_n = \frac{1}{2} - \frac{1}{4n^2}$. It is easy to calculate that

$$\frac{Mf(d_n) - Mf(\frac{1}{2})}{\frac{1}{2} - d_n} \rightarrow \frac{1}{3}$$

Let us define $d_n = \frac{1}{2} - \frac{1}{4n^2}$. It is easy to calculate that

$$\frac{Mf(d_n) - Mf(\frac{1}{2})}{\frac{1}{2} - d_n} \rightarrow \frac{1}{3}$$

On the other hand, it can be shown that for sufficiently big n the inequality

 $Mf_n(d_n) \leq Mf_n(\frac{1}{2}).$

is satisfied.

Let us define $d_n = \frac{1}{2} - \frac{1}{4n^2}$. It is easy to calculate that

$$\frac{Mf(d_n) - Mf(\frac{1}{2})}{\frac{1}{2} - d_n} \rightarrow \frac{1}{3}$$

On the other hand, it can be shown that for sufficiently big n the inequality

 $Mf_n(d_n) \leq Mf_n(\frac{1}{2}).$

is satisfied. Therefore, we obtain that for sufficient big that for sufficiently big n we have

$$\frac{|Mf_n(\frac{1}{2}) - Mf(\frac{1}{2}) - Mf_n(d_n) + Mf(d_n)|}{|\frac{1}{2} - d_n|} = \frac{Mf(d_n) - Mf(\frac{1}{2})}{\frac{1}{2} - d_n} + \frac{Mf_n(\frac{1}{2}) - Mf_n(d_n)}{\frac{1}{2} - d_n}$$
$$\geq \frac{Mf(d_n) - Mf(\frac{1}{2})}{\frac{1}{2} - d_n} \geq \frac{1}{6}.$$

Hence, it is not true that $Mf_n \to Mf$ in $C^{0,1}(\mathbb{R})$.

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- P. Bies, M. Gaczkowski, P. Górka, Maximal operator in Hölder spaces, *Sumbitted*.
- P. Bies, M. Gaczkowski, P. Górka, Maximal operator in Musielak–Orlicz–Sobolev spaces, *Submitted*.
- S. M. Buckley, Is the maximal function of a Lipschitz function continous?, *Ann. Acad. Sci. Fenn. Math.*, 24, (1999) 519–528.
 - P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics, tom 2236, Springer, Cham, 2019, URL https://doi.org/10.1007/978-3-030-15100-3.
- H. Luiro, Continuity of the maximal operator in Sobolev spaces, *Proc. Amer. Math. Soc.*, 135, (2006) 243–251.

< < >>

Thank you for your attention!

< □ > < 同 >