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Φ-function

Let A ⊂ Rn be a measurable set, by ∣A∣ we denote the Lebesgue measure of A and
by L0(A) the set of measurable functions on A.

Let φ ∶ A× [0,∞)→ [0,∞), p,q > 0. We say that φ satisfies (aInc)p if there exists
a ∈ [1,∞) such that the inequality holds

φ(x , s)
sp

≤ aφ(x , t)
tp

for almost all x ∈ A and for all 0 < s < t,

and we say that φ satisfies (aDec)q if there exists a ∈ [1,∞) such that the
inequality holds

φ(x , t)
tq

≤ aφ(x , s)
sq

for almost all x ∈ A and for all 0 < s < t.

Furthermore, we denote

(aInc) = ⋃
p∈(1,∞)

(aInc)p, (aDec) = ⋃
p∈(1,∞)

(aDec)p.

(MINI PW) Maximal operator in function spaces Warsaw, 2nd February 2023 3 / 26



Φ-function

Let A ⊂ Rn be a measurable set, by ∣A∣ we denote the Lebesgue measure of A and
by L0(A) the set of measurable functions on A.
Let φ ∶ A× [0,∞)→ [0,∞), p,q > 0. We say that φ satisfies (aInc)p if there exists
a ∈ [1,∞) such that the inequality holds

φ(x , s)
sp

≤ aφ(x , t)
tp

for almost all x ∈ A and for all 0 < s < t,

and we say that φ satisfies (aDec)q if there exists a ∈ [1,∞) such that the
inequality holds

φ(x , t)
tq

≤ aφ(x , s)
sq

for almost all x ∈ A and for all 0 < s < t.

Furthermore, we denote

(aInc) = ⋃
p∈(1,∞)

(aInc)p, (aDec) = ⋃
p∈(1,∞)

(aDec)p.

(MINI PW) Maximal operator in function spaces Warsaw, 2nd February 2023 3 / 26



Φ-function

Let A ⊂ Rn be a measurable set, by ∣A∣ we denote the Lebesgue measure of A and
by L0(A) the set of measurable functions on A.
Let φ ∶ A× [0,∞)→ [0,∞), p,q > 0. We say that φ satisfies (aInc)p if there exists
a ∈ [1,∞) such that the inequality holds

φ(x , s)
sp

≤ aφ(x , t)
tp

for almost all x ∈ A and for all 0 < s < t,

and we say that φ satisfies (aDec)q if there exists a ∈ [1,∞) such that the
inequality holds

φ(x , t)
tq

≤ aφ(x , s)
sq

for almost all x ∈ A and for all 0 < s < t.

Furthermore, we denote

(aInc) = ⋃
p∈(1,∞)

(aInc)p, (aDec) = ⋃
p∈(1,∞)

(aDec)p.

(MINI PW) Maximal operator in function spaces Warsaw, 2nd February 2023 3 / 26



Φ-function

Let A ⊂ Rn be a measurable set, by ∣A∣ we denote the Lebesgue measure of A and
by L0(A) the set of measurable functions on A.
Let φ ∶ A× [0,∞)→ [0,∞), p,q > 0. We say that φ satisfies (aInc)p if there exists
a ∈ [1,∞) such that the inequality holds

φ(x , s)
sp

≤ aφ(x , t)
tp

for almost all x ∈ A and for all 0 < s < t,

and we say that φ satisfies (aDec)q if there exists a ∈ [1,∞) such that the
inequality holds

φ(x , t)
tq

≤ aφ(x , s)
sq

for almost all x ∈ A and for all 0 < s < t.

Furthermore, we denote

(aInc) = ⋃
p∈(1,∞)

(aInc)p, (aDec) = ⋃
p∈(1,∞)

(aDec)p.

(MINI PW) Maximal operator in function spaces Warsaw, 2nd February 2023 3 / 26



Example

Let p∶A→ [1,∞). We define φ∶A × [0,∞)→ [0,∞) as

φ(x , t) = tp(x)

φ satisfies (aInc)⇔ p+ <∞

φ satisfies (aDec)⇔ p− > 1
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Φ-function

We say that φ ∶ A × [0,∞)→ [0,∞] is a Φ-prefunction if φ(x ,0) = 0, φ(x , ⋅) is
increasing, limt→0+ φ(x , t) = 0, limt→∞ φ(x , t) =∞ for almost every x ∈ A and the
map x ↦ φ(x , ∣f (x)∣) is measurable for f ∈ L0(A).

We say that a Φ-prefunction φ
is a

weak Φ-function if it satisfies (aInc)1,

convex Φ-function if φ(x , ⋅) is left continuous and convex for almost every
x ∈ A,

strong Φ function if φ(x , ⋅) is continuous and convex for almost every x ∈ A.

The set of weak Φ-functions, convex Φ-functions and strong Φ-functions we shall
denote by Φw(A), Φc(A) and Φs(A) respectively. From the very definition we
have Φs(A) ⊂ Φc(A) ⊂ Φw(A).
Example: φ ∈ Φs(A)
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Musielak–Orlicz spaces

For φ ∈ Φw(A) and f ∈ L0(A) we define

ρφ(f ) = ∫
A
φ(x , ∣f (x)∣) dx ,

∥f ∥φ,A = inf {λ > 0 ∶ ρφ ( fλ) ≤ 1} ,
and a set

Lφ(A) = {f ∈ L0(A) ∶ ∃(λ > 0) ρφ(λf ) <∞}.

We shall simply write ∥f ∥φ when A = Rn.
Let us note that the Musielak-Orlicz space (Lφ, ∥ ⋅ ∥φ,A) is a quasi-Banach space
for φ ∈ Φw(A), and (Lφ, ∥ ⋅ ∥φ,A) is a Banach space if φ ∈ Φc(A).
It is known, that if φ,ψ ∈ Φw(A) and φ ≃ ψ, then Lφ(A) = Lψ(A) and
corresponding quasi-norms are equivalent. Moreover, if φ ∈ Φw(A), then there
exists ψ ∈ Φs(A) such that φ ≃ ψ. Thus, even if ∥ ⋅ ∥φ,A is not a norm for a certain
φ ∈ Φw(A) it has a Banach space structure.

Equivalence of Φ-functions

Let φ,ψ ∶ A × [0,∞)→ [0,∞]. We say that φ and ψ are equivalent (φ ≃ ψ) if
there exists L ≥ 1 such that the inequalities ψ(x , t/L) ≤ φ(x , t) ≤ ψ(x ,Lt) are
satisfied for almost every x ∈ A and for all t ∈ [0,∞).
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(A0) property

Let A ⊂ Rn be a measurable set. We say that φ ∈ Φw(A) satisfies (A0) if there
exists a constant β ∈ (0,1] such that β ≤ φ−1(x ,1) ≤ 1/β for almost everyl x ∈ A,
where φ−1 is left-inverse of φ.

Example: For φ(x , t) = tp(x), we have φ−1(x , t) = t1/p(x). Thus, φ−1(x ,1) = 1, so
φ satisfies (A0).
For ψ(x , t) = tp + a(x)tq, where 1 ≤ p < q <∞ and a is measurable it can be
shown that

ψ satisfies (A0)⇔ a ∈ L∞(A).
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(A1) and (A2) properties

Let Ω ⊂ Rn be an open set and φ ∈ Φw(Ω), then

1 φ satisfies (A1) if there exists β ∈ (0,1) such that for every ball B such that
∣B ∣ ≤ 1 the following inequality holds

βφ−1(x , t) ≤ φ−1(y , t)

for every t ∈ [1,1/∣B ∣] and for almost every x , y ∈ B ∩Ω.

2 φ satisfies (A2) if for all s > 0 there exist β ∈ (0,1] and h ∈ L1(Ω) ∩ L∞(Ω)
such that the following inequality holds

βφ−1(x , t) ≤ φ−1(y , t)

for almost every x , y ∈ Ω and for all t ∈ [h(x) + h(y), s].
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Example

Proposition

The Φ-function φ(x , t) = tp(x) satisifes (A1), iff 1
p
∈ C log, i.e., there exists C such

that for every distinct x , y ∈ Ω

∣ 1

p(x)
− 1

p(y)
∣ ≤ C

log(e + 1/∣x − y ∣)
,

Proposition

The Φ-function φ(x , t) = tp(x) satisfies (A2), if 1
p

satisfies log-Hölder decay
condition, i.e., there exist C ,p∞ such that

∣ 1

p(x)
− 1

p∞
∣ ≤ C

log(e + ∣x ∣)
.
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Musielak–Orlicz–Sobolev spaces

Let Ω be an open subset of Rn and let φ ∈ Φw(Ω).

The Musielak–Orlicz–Sobolev
space W 1,φ(Ω) is a vector space of all f ∈ Lφ(Ω) for which the distributional
derivatives belong to Lφ(Ω). We equip W 1,φ(Ω) with the quasi-norm

∥u∥k,φ,Ω ∶= ∑
∣α∣≤1

∥Dαu∥φ,Ω.

Again, we will write simply ∥u∥1,φ if Ω = Rn.
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The maximal operator

If f is locally integrable and A is a measurable set such that 0 < ∣A∣ <∞, then we
denote the integral average of the function f over A as

∫
A
f dx = 1

∣A∣ ∫A
f dx .

For f ∈ L1loc(Rn) we define the maximal function Mf ∶Rn → R in a standard way

Mf (x) = sup
r>0
∫
B(x,r)

∣f (z)∣dz .
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Boundedness of the maximal operator

Theorem

Let φ ∈ Φw(Rn) satisfies (A0), (A1), (A2), (aInc) and (aDec). If f ∈W 1,φ(Rn),
then Mf ∈W 1,φ(Rn) and the inequality

∣DiMf (x)∣ ≤MDi f (x),

is satisfied for all i = 1, . . . ,n and for almost all x ∈ Rn.

The sketch of the proof: For r > 0 let

hr =
1

∣B(0, r)∣
χB(0,r).

Then, we have

∣f ∣ ∗ hr(x) = ∫
B(x,r)

∣f (y)∣dy ≤Mf (x).

This estimate and properties of convolution yields

∣Di(∣f ∣ ∗ hr)(x)∣ = ∣(Di ∣f ∣) ∗ hr(x)∣ ≤MDi ∣f ∣(x)

for almost all x ∈ Rn.
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A sketch of the proof

We have Mf ,MDi ∣f ∣ ∈ Lφ(Rn), and therefore ∣f ∣ ∗ hr ∈W 1,φ(Rn).

Let rm be a
sequence of all rational positive numbers, then

Mf = sup
m
∣f ∣ ∗ hrm .

For gk = max1≤m≤k ∣f ∣ ∗ hrm we have

∣Digk(x)∣ ≤ max
1≤m≤k

∣Di(∣f ∣ ∗ hrm)(x)∣ ≤M(Di ∣f ∣)(x) =M(Di f )(x)

for almost all x ∈ Rn and all k ∈ N.Therefore, we have

∥gk∥1,φ ≤ ∥Mf ∥φ +
n

∑
i=1

∥M(Di f )∥φ ≤ C∥f ∥1,φ.
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Auxiliary results

For f ∈ L1loc(Rn) and x ∈ Rn we define

Rf (x) = {r ≥ 0 ∶ ∃({rk} ⊂ (0,∞)) rk → r ∧Mf (x) = lim
k→∞
∫
B(x,rk)

∣f (y)∣dy} .

Proposition

Let φ ∈ Φw(Rn) satisfies (aDec) and (A0), then for every f ∈ Lφ(Rn), the
following statements hold.

(i) For all x ∈ Rn the set Rf (x) is nonempty.

(ii) For all x ∈ Rn and r > 0 such that r ∈Rf (x) the equality

Mf (x) = ∫
B(x,r)

∣f (y)∣dy

holds.

(iii) For almost all x ∈ Rn if 0 ∈Rf (x), then

Mf (x) = ∣f (x)∣.
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Auxiliary results

Proposition

Let φ ∈ Φw(Rn) satisfies (A0), (aDec)and (aInc). If fm, f ∈ Lφ(Rn) and fm → f in
Lφ(Rn), then for all R > 0 and λ > 0 the set {x ∈ B(0,R) ∶ Rfm(x) /⊂Rf (x)(λ)}
is measurable anda

lim
m→∞

∣{x ∈ B(0,R) ∶ Rfm(x) /⊂Rf (x)(λ)}∣ = 0.

aFor nonempty set A ⊂ Rn and λ ≥ 0 we denote A(λ) = {x ∈ Rn
∶ dist(x ,A) ≤ λ}.

Lemma

Let us assume that φ ∈ Φw(Rn) satisfies (A0), (A1), (A2), (aInc) and (aDec). If
f ∈W 1,φ(Rn), then for almost all x ∈ Rn and for all i = 1, . . . ,n we have

DiMf (x) = ∫
B(x,r)

Di ∣f ∣(y)dy for all r ∈Rf (x), r > 0 and

DiMf (x) = Di ∣f ∣(x) if 0 ∈Rf (x).
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Continuity of the maximal operator

Theorem

Let us assume that φ ∈ Φw(Rn) satisfies (A0), (A1), (A2), (aInc) and (aDec),
then the maximal operator

M ∶W 1,φ(Rn)→W 1,φ(Rn)

is continuous.
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Hölder spaces with variable exponent

Let (X ,d , µ) be a metric measure space equipped with a metric d and the Borel
measure µ. We assume that the measure of every open nonempty set is positive
and that the measure of every bounded set is finite.

Given δ ∈ (0,1], we say that the space (X ,d , µ) satisfies the δ-annular decay

property if there exists a constant K ≥ 1 such that for all x ∈ X , r > 0, 0 < ϵ < 1,
we have

µ (B(x , r) ∖B(x , r(1 − ϵ))) ≤ Kϵδµ(B(x , r)).

Let (X ,d) be a metric space, by C(X ) we denote the space of continuous
functions on X such that the norm

∥f ∥C(X) = sup
x∈X
∣f (x)∣

is finite.Moreover, for α ∶ X → [0,1] we denote by C 0,α(⋅)(X ) the variable

exponent Hölder space, i.e. the space of f ∈ C(X ) such that

∥f ∥C 0,α(⋅)(X) ∶= ∥f ∥C(X) + sup
x≠y

∣f (x) − f (y)∣
dα(x)(x , y)

<∞.
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Boudedness of the maximal operator

Theorem

Suppose that 0 < δ ≤ 1, and that (X ,d , µ) satisfies the δ-annular property. If
α ∶ X → [0, δ], then M ∶ C 0,α(⋅)(X )→ C 0,α(⋅)(X ) and there exists C1 > 0 such,
that for f ∈ C 0,α(⋅)(X ) the following estimate holds

∥Mf ∥C 0,α(⋅)(X) ≤ C1∥f ∥C 0,α(⋅)(X).
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Continuity of the maximal operator

Theorem

Let δ ∈ (0,1] and (X ,d , µ) satisfies the δ-annular property. If α ∶ X → (0,1] and
β ∶ X → [0,1] satisfy supx∈X β(x)/α(x) < 1, then the operator

M ∶ C 0,α(⋅)(X )→ C 0,β(⋅)(X )

is continuous.

A sketch of the proof: Let us note since β(⋅) ≤ α(⋅), we have
Id ∶ C 0,α(⋅)(X )→ C 0,β(⋅)(X ). Therefore, we get M ∶ C 0,α(⋅)(X )→ C 0,β(⋅)(X ) is
bounded.
In order to prove the continuity of M we fix f ∈ C 0,α(⋅)(X ) and a sequence
{fn} ⊂ C 0,α(⋅)(X ) such that fn → f in C 0,α(⋅)(X ). It is easy to see that Mfn →Mf
in C(X ).Thus, it is left to show that

sup
x≠y

∣Mfn(x) −Mf (x) −Mfn(y) +Mf (y)∣
d(x , y)β(x)

→ 0.

We know that sequence {Mfn} is bounded in C 0,α(⋅)(X ), so we can assume that
there exists N ≥ 1 such that ∥Mfn∥C 0,α(⋅)(X) ≤ N for all n and ∥Mf ∥C 0,α(⋅)(X) ≤ N.
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there exists N ≥ 1 such that ∥Mfn∥C 0,α(⋅)(X) ≤ N for all n and ∥Mf ∥C 0,α(⋅)(X) ≤ N.
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Continuity of the maximal operator

Theorem

Let δ ∈ (0,1] and (X ,d , µ) satisfies the δ-annular property. If α ∶ X → (0,1] and
β ∶ X → [0,1] satisfy supx∈X β(x)/α(x) < 1, then the operator

M ∶ C 0,α(⋅)(X )→ C 0,β(⋅)(X )

is continuous.

A sketch of the proof: Let us note since β(⋅) ≤ α(⋅), we have
Id ∶ C 0,α(⋅)(X )→ C 0,β(⋅)(X ). Therefore, we get M ∶ C 0,α(⋅)(X )→ C 0,β(⋅)(X ) is
bounded.
In order to prove the continuity of M we fix f ∈ C 0,α(⋅)(X ) and a sequence
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A sketch of the proof

Therefore, for x , y ∈ X such that x ≠ y , we get the following string of inequalities

∣Mfn(x) −Mf (x) −Mfn(y) +Mf (y)∣
d(x , y)β(x)

= ( ∣Mfn(x) −Mf (x) −Mfn(y) +Mf (y)∣
d(x , y)α(x)

)
β(x)
α(x)
∣Mfn(x) −Mf (x) −Mfn(y) +Mf (y)∣1−

β(x)
α(x)

≤ ( ∣Mfn(x) −Mfn(y)∣
d(x , y)α(x)

+ ∣Mf (x) −Mf (y)∣
d(x , y)α(x)

)
β(x)
α(x)
(2∥Mfn −Mf ∥C(X))

1−
β(x)
α(x)

≤ (2N)(
β
α )
+
(2∥Mfn −Mf ∥C(X))

1−( β
α )
+

,

where (β
α
)
+
= supx∈X

β(x)
α(x)

. Hence,

sup
x≠y

∣Mfn(x) −Mf (x) −Mfn(y) +Mf (y)∣
d(x , y)β(x)

≤ (2N)(
β
α )
+
(2∥Mfn −Mf ∥C(X))

1−( β
α )
+

.

Since the right-hand side of the above inequality goes to 0 when n →∞, the proof
follows.
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Discontinuity of a maximal operator in Lipschitz space

Theorem

There exist f , fn ∈ C 0,1(R) such that fn → f in C 0,1(R) and Mfn /→Mf in C 0,1(R).

Let f ∶ R→ R be a continuous and 2−periodic function such that f (x) = ∣x ∣ for
x ∈ [−1,1].

Figure: A graph of the funtion f
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A discontinuity of a maximal operator in Lipschitz space

Mf (x) =
⎧⎪⎪⎨⎪⎪⎩

2 −
√
x2 + 2, for 0 ≤ x ≤ 1

2

x , for 1
2
< x ≤ 1.

Figure: A graph of the funtion Mf
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A discontinuity of a maximal operator in Lipschitz space

We define a sequence fn(x) = f (x) − 1
n

for x ∈ R.

We see that fn → f in C 0,1(R).

Figure: A graph of few of functions Mfn
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A discontinuity of a maximal operator in Lipschitz space

Let us define dn = 1
2
− 1

4n2
.

It is easy to calculate that

Mf (dn) −Mf ( 1
2
)

1
2
− dn

→ 1

3
.

On the other hand, it can be shown that for sufficiently big n the inequality

Mfn(dn) ≤Mfn( 12).

is satisfied. Therefore, we obtain that for sufficient big that for sufficiently big n
we have

∣Mfn( 12) −Mf ( 1
2
) −Mfn(dn) +Mf (dn)∣
∣ 1
2
− dn∣

=
Mf (dn) −Mf ( 1

2
)

1
2
− dn

+
Mfn( 12) −Mfn(dn)

1
2
− dn

≥
Mf (dn) −Mf ( 1

2
)

1
2
− dn

≥ 1

6
.

Hence, it is not true that Mfn →Mf in C 0,1(R).
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Thank you for your attention!
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