On Musielak-Orlicz-Sobolev spaces and Lavrentiev's phenomenon

Michał Borowski

based on joint work with Iwona Chlebicka and Błażej Miasojedow

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

02.02.2023

We start with an example due to [Manià, 1934]. Let us consider the functional

$$\mathcal{I}[u] = \int_0^1 \left(u(x)^3 - x \right)^2 u'(x)^6 \, dx \, .$$

We consider the minimization problem for this functional with boundary conditions u(0) = 0 and u(1) = 1.

We start with an example due to [Manià, 1934]. Let us consider the functional

$$\mathcal{I}[u] = \int_0^1 \left(u(x)^3 - x \right)^2 u'(x)^6 \, dx \, .$$

We consider the minimization problem for this functional with boundary conditions u(0) = 0 and u(1) = 1.

For $u(x) = \sqrt[3]{x}$ we have $\mathcal{I}[u] = 0$, which is minimum of the functional.

We start with an example due to [Manià, 1934]. Let us consider the functional

$$\mathcal{I}[u] = \int_0^1 \left(u(x)^3 - x \right)^2 u'(x)^6 \, dx \, .$$

We consider the minimization problem for this functional with boundary conditions u(0) = 0 and u(1) = 1.

For $u(x) = \sqrt[3]{x}$ we have $\mathcal{I}[u] = 0$, which is minimum of the functional.

On the other hand, there exist a constant c > 0 such that if u is a Lipschitz function, then $\mathcal{I}[u] \ge c$.

We start with an example due to [Manià, 1934]. Let us consider the functional

$$\mathcal{I}[u] = \int_0^1 \left(u(x)^3 - x \right)^2 u'(x)^6 \, dx \, .$$

We consider the minimization problem for this functional with boundary conditions u(0) = 0 and u(1) = 1.

For $u(x) = \sqrt[3]{x}$ we have $\mathcal{I}[u] = 0$, which is minimum of the functional.

On the other hand, there exist a constant c > 0 such that if u is a Lipschitz function, then $\mathcal{I}[u] \ge c$.

This means that the minimizer of functional \mathcal{I} cannot be appropriately approximated by Lipschitz functions, and we deal with **Lavrentiev's phenomenon**.

Let us consider a variational problem

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx \, .$$

Let us consider a variational problem

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx \, .$$

In general, Lavrentiev's phenomenon occurs between spaces X and Y such that $Y \subset X,$ if

$$\inf_{u \in X} \mathcal{F}[u] < \inf_{u \in Y} \mathcal{F}[u].$$

Let us consider a variational problem

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx$$
.

In general, Lavrentiev's phenomenon occurs between spaces X and Y such that $Y \subset X,$ if

$$\inf_{u \in X} \mathcal{F}[u] < \inf_{u \in Y} \mathcal{F}[u].$$

We are interested in the situation

$$\inf_{u \in u_0 + W(\Omega)} \mathcal{F}[u] < \inf_{u \in u_0 + C_c^{\infty}(\Omega)} \mathcal{F}[u] \,,$$

where u_0 is a boundary condition and $W(\Omega)$ is admissible space for functional \mathcal{F} , with zero boundary functions.

Let us consider a variational problem

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx$$
.

In general, Lavrentiev's phenomenon occurs between spaces X and Y such that $Y \subset X,$ if

$$\inf_{u \in X} \mathcal{F}[u] < \inf_{u \in Y} \mathcal{F}[u].$$

We are interested in the situation

$$\inf_{u \in u_0 + W(\Omega)} \mathcal{F}[u] < \inf_{u \in u_0 + C_c^{\infty}(\Omega)} \mathcal{F}[u] \,,$$

where u_0 is a boundary condition and $W(\Omega)$ is admissible space for functional \mathcal{F} , with zero boundary functions. More or less, we can define

$$W(\Omega) = \{ u \in W_0^{1,1}(\Omega) : \mathcal{F}[u] < \infty \}.$$

Let us consider a variational problem

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx \, .$$

In general, Lavrentiev's phenomenon occurs between spaces X and Y such that $Y \subset X,$ if

$$\inf_{u \in X} \mathcal{F}[u] < \inf_{u \in Y} \mathcal{F}[u].$$

We are interested in the situation

$$\inf_{u \in u_0 + W(\Omega)} \mathcal{F}[u] < \inf_{u \in u_0 + C_c^{\infty}(\Omega)} \mathcal{F}[u],$$

where u_0 is a boundary condition and $W(\Omega)$ is admissible space for functional \mathcal{F} , with zero boundary functions. More or less, we can define

$$W(\Omega) = \{ u \in W_0^{1,1}(\Omega) : \mathcal{F}[u] < \infty \}.$$

The phenomenon is named after Lavrentiev, who provided the first example of its occurrence and conditions needed for its absence. [Lavrentiev, 1926]

The double phase functional [V. V. Zhikov, 1995]

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \,,$$

where $1 , <math>0 \le a \in L^{\infty}(\Omega)$.

The double phase functional [V. V. Zhikov, 1995]

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \,,$$

where $1 Let <math display="inline">a \in C^{0,\alpha}(\Omega)$ for some $\alpha \in (0,1].$ Then

The double phase functional [V. V. Zhikov, 1995]

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \,,$$

where $1 Let <math display="inline">a \in C^{0,\alpha}(\Omega)$ for some $\alpha \in (0,1].$ Then

• [L. Esposito, F. Leonetti, and G. Mingione, 2004] If $q \le p + \frac{p\alpha}{n}$, then there is no Lavrentiev's phenomenon;

The double phase functional [V. V. Zhikov, 1995]

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \,,$$

where $1 Let <math display="inline">a \in C^{0,\alpha}(\Omega)$ for some $\alpha \in (0,1].$ Then

• [L. Esposito, F. Leonetti, and G. Mingione, 2004] If $q \le p + \frac{p\alpha}{n}$, then there is no Lavrentiev's phenomenon; If $p < n < n + \alpha < q$, then for a specific a and Ω , Lavrentiev's phenomenon occurs;

The double phase functional [V. V. Zhikov, 1995]

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \,,$$

where $1 Let <math display="inline">a \in C^{0,\alpha}(\Omega)$ for some $\alpha \in (0,1].$ Then

- [L. Esposito, F. Leonetti, and G. Mingione, 2004] If $q \le p + \frac{p\alpha}{n}$, then there is no Lavrentiev's phenomenon; If $p < n < n + \alpha < q$, then for a specific a and Ω , Lavrentiev's phenomenon occurs;
- [M. Colombo and G. Mingione, 2015] [M. Bulíček, P. Gwiazda, J. Skrzeczkowski, 2022] If $q \le p + \alpha$, then there is no Lavrentiev's phenomenon;

The double phase functional [V. V. Zhikov, 1995]

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \,,$$

where $1 , <math>0 \le a \in L^{\infty}(\Omega)$. Let $a \in C^{0,\alpha}(\Omega)$ for some $\alpha \in (0,1]$. Then

- [L. Esposito, F. Leonetti, and G. Mingione, 2004] If $q \le p + \frac{p\alpha}{n}$, then there is no Lavrentiev's phenomenon; If $p < n < n + \alpha < q$, then for a specific a and Ω , Lavrentiev's phenomenon occurs;
- [M. Colombo and G. Mingione, 2015] [M. Bulíček, P. Gwiazda, J. Skrzeczkowski, 2022] If $q \le p + \alpha$, then there is no Lavrentiev's phenomenon;
- [A. K. Balci, L. Diening, and M. Surnachev, 2020] Examples of Lavrentiev's phenomenon for wider range of *p*, *q*.

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Our goal is to study absence of Lavrentiev's phenomenon as generally as possible, for

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx$$

< 回 > < 三 > < 三 >

Our goal is to study absence of Lavrentiev's phenomenon as generally as possible, for

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx$$

Let $F(x,u,\nabla u)\approx M(x,\nabla u).$ We want to cover some special instances, such as

< 同 > < 三 > < 三 >

Our goal is to study absence of Lavrentiev's phenomenon as generally as possible, for

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx \, .$$

Let $F(x, u, \nabla u) \approx M(x, \nabla u)$. We want to cover some special instances, such as • $M(x, \xi) = |\xi|^p + a(x)|\xi|^q$;

くぼう くほう くほう

Our goal is to study absence of Lavrentiev's phenomenon as generally as possible, for

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx$$

Let $F(x,u,\nabla u)\approx M(x,\nabla u).$ We want to cover some special instances, such as

•
$$M(x,\xi) = |\xi|^p + a(x)|\xi|^q;$$

• $M(x,\xi) = |\xi|^{p(x)};$

イロト イボト イヨト イヨト

Our goal is to study absence of Lavrentiev's phenomenon as generally as possible, for

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx$$
.

Let $F(x,u,\nabla u)\approx M(x,\nabla u).$ We want to cover some special instances, such as

- $M(x,\xi) = |\xi|^p + a(x)|\xi|^q;$
- $M(x,\xi) = |\xi|^{p(x)};$
- $M(x,\xi) = M(|\xi|);$

4 3 5 4 3 5 5

Our goal is to study absence of Lavrentiev's phenomenon as generally as possible, for

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx \, .$$

Let $F(x,u,\nabla u)\approx M(x,\nabla u).$ We want to cover some special instances, such as

•
$$M(x,\xi) = |\xi|^p + a(x)|\xi|^q;$$

- $M(x,\xi) = |\xi|^{p(x)};$
- $M(x,\xi) = M(|\xi|);$

•
$$M(x,\xi) = \sum_{i=1}^{n} |\xi_i|^{p_i} + a_i(x)|\xi_i|^{q_i};$$

くぼう くほう くほう

Our goal is to study absence of Lavrentiev's phenomenon as generally as possible, for

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx \, .$$

Let $F(x,u,\nabla u)\approx M(x,\nabla u).$ We want to cover some special instances, such as

•
$$M(x,\xi) = |\xi|^p + a(x)|\xi|^q;$$

- $M(x,\xi) = |\xi|^{p(x)};$
- $M(x,\xi) = M(|\xi|);$

•
$$M(x,\xi) = \sum_{i=1}^{n} |\xi_i|^{p_i} + a_i(x)|\xi_i|^{q_i};$$

• $M(x,\xi) = \sum_{i=1}^{n} |\xi_i|^{p_i(x)} + a_i(x)|\xi_i|^{q_i(x)};$

< 同 > < 三 > < 三 >

Our goal is to study absence of Lavrentiev's phenomenon as generally as possible, for

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx \, .$$

Let $F(x,u,\nabla u)\approx M(x,\nabla u).$ We want to cover some special instances, such as

•
$$M(x,\xi) = |\xi|^p + a(x)|\xi|^q;$$

• $M(x,\xi) = |\xi|^{p(x)};$

•
$$M(x,\xi) = M(|\xi|);$$

•
$$M(x,\xi) = \sum_{i=1}^{n} |\xi_i|^{p_i} + a_i(x)|\xi_i|^{q_i};$$

• $M(x,\xi) = \sum_{i=1}^{n} |\xi_i|^{p_i(x)} + a_i(x)|\xi_i|^{q_i(x)};$

•
$$M(x,\xi) = \phi(\xi) + a(x)\psi(\xi);$$

< 回 > < 三 > < 三 >

Our goal is to study absence of Lavrentiev's phenomenon as generally as possible, for

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx$$
.

Let $F(x,u,\nabla u)\approx M(x,\nabla u).$ We want to cover some special instances, such as

•
$$M(x,\xi) = |\xi|^p + a(x)|\xi|^q;$$

• $M(x,\xi) = |\xi|^{p(x)};$

•
$$M(x,\xi) = M(|\xi|);$$

•
$$M(x,\xi) = \sum_{i=1}^{n} |\xi_i|^{p_i} + a_i(x)|\xi_i|^{q_i};$$

• $M(x,\xi) = \sum_{i=1}^{n} |\xi_i|^{p_i(x)} + a_i(x)|\xi_i|^{q_i(x)};$

•
$$M(x,\xi) = \phi(\xi) + a(x)\psi(\xi);$$

•
$$M(x,\xi) = \sum_{i=1}^{n} \phi_i(\xi) + a_i(x)\psi_i(\xi).$$

< 回 > < 三 > < 三 >

Our goal is to study absence of Lavrentiev's phenomenon as generally as possible, for

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \, dx \, .$$

Let $F(x,u,\nabla u)\approx M(x,\nabla u).$ We want to cover some special instances, such as

- $M(x,\xi) = |\xi|^p + a(x)|\xi|^q;$
- $M(x,\xi) = |\xi|^{p(x)};$
- $M(x,\xi) = M(|\xi|);$
- $M(x,\xi) = \sum_{i=1}^{n} |\xi_i|^{p_i} + a_i(x)|\xi_i|^{q_i};$
- $M(x,\xi) = \sum_{i=1}^{n} |\xi_i|^{p_i(x)} + a_i(x)|\xi_i|^{q_i(x)};$
- $M(x,\xi) = \phi(\xi) + a(x)\psi(\xi);$
- $M(x,\xi) = \sum_{i=1}^{n} \phi_i(\xi) + a_i(x)\psi_i(\xi).$

Regularity of minimizers in those special instances were studied by [Zhikov '80-'10], [Belloni & Buttazzo, '92], [Buttazzo & Mizel '95], [Esposito, Leonetti, Mingione '04], [Fonseca, Maly & Mingione '04], [Balci, Diening & Surnachev '20], [Esposito, Leonetti & Petricca '19], [Leonetti & De Filippis '22], [Koch '22], [Bousquet '22], [Baasandorj & Byun '23].

・ 回 ト ・ ヨ ト ・ ヨ ト

This is the moment where Musielak–Orlicz spaces come in.

< ロ > < 回 > < 回 > < 回 > < 回 >

2

A function $M: \Omega \times \mathbb{R}^n \to [0, \infty)$ is called an N-function if it satisfies the following conditions:

▲ 同 ▶ → 三

A function $M : \Omega \times \mathbb{R}^n \to [0, \infty)$ is called an **N-function** if it satisfies the following conditions:

 M is a Carathéodory's function (i.e. measurable with respect to the first variable and continuous with respect to the second one);

A function $M: \Omega \times \mathbb{R}^n \to [0, \infty)$ is called an **N-function** if it satisfies the following conditions:

- M is a Carathéodory's function (i.e. measurable with respect to the first variable and continuous with respect to the second one);

A function $M: \Omega \times \mathbb{R}^n \to [0, \infty)$ is called an **N-function** if it satisfies the following conditions:

- M is a Carathéodory's function (i.e. measurable with respect to the first variable and continuous with respect to the second one);
- $\ \ \, {\bf 0} \ \ \, M(x,\xi)=M(x,-\xi) \ \ {\rm for \ a.a.} \ \ x\in\Omega \ {\rm and \ all} \ \xi\in\mathbb{R}^n;$
A function $M: \Omega \times \mathbb{R}^n \to [0, \infty)$ is called an **N-function** if it satisfies the following conditions:

- M is a Carathéodory's function (i.e. measurable with respect to the first variable and continuous with respect to the second one);
- $\ \ \, {\bf 0} \ \ \, M(x,\xi)=M(x,-\xi) \ \ {\rm for \ a.a.} \ \ x\in\Omega \ {\rm and \ all} \ \ \xi\in\mathbb{R}^n; \ \ \,$
- there exist two convex functions $m_1, m_2 : [0, \infty) \to [0, \infty)$ such that $m_2(s)/s \xrightarrow{s \to 0} 0, m_1(s)/s \xrightarrow{s \to \infty} \infty$ for and for a.a. $x \in \Omega$ it holds

 $m_1(|\xi|) \le M(x,\xi) \le m_2(|\xi|)$

A function $M: \Omega \times \mathbb{R}^n \to [0, \infty)$ is called an **N-function** if it satisfies the following conditions:

- M is a Carathéodory's function (i.e. measurable with respect to the first variable and continuous with respect to the second one);
- $\label{eq:main_states} \mathbf{0} \ M(x,\xi) = M(x,-\xi) \ \text{for a.a.} \ x \in \Omega \ \text{and all} \ \xi \in \mathbb{R}^n;$
- there exist two convex functions $m_1, m_2 : [0, \infty) \to [0, \infty)$ such that $m_2(s)/s \xrightarrow{s \to 0} 0, m_1(s)/s \xrightarrow{s \to \infty} \infty$ for and for a.a. $x \in \Omega$ it holds

$$m_1(|\xi|) \le M(x,\xi) \le m_2(|\xi|)$$

Some basic examples without x-dependence: $M(\xi) = |\xi|^p$, p > 1, $M(\xi) = |\xi| \log(1 + |\xi|)$, $M(\xi) = \exp(|\xi|) - 1$.

くぼう くちゃ くちゃ

A function $M : \Omega \times \mathbb{R}^n \to [0, \infty)$ is called an **N-function** if it satisfies the following conditions:

- M is a Carathéodory's function (i.e. measurable with respect to the first variable and continuous with respect to the second one);
- $\ \ \, {\bf 0} \ \ \, M(x,\xi)=M(x,-\xi) \ \ {\rm for \ a.a.} \ \ x\in\Omega \ \ {\rm and \ \ all} \ \ \xi\in\mathbb{R}^n;$
- there exist two convex functions $m_1, m_2 : [0, \infty) \to [0, \infty)$ such that $m_2(s)/s \xrightarrow{s \to 0} 0, m_1(s)/s \xrightarrow{s \to \infty} \infty$ for and for a.a. $x \in \Omega$ it holds

$$m_1(|\xi|) \le M(x,\xi) \le m_2(|\xi|)$$

Some basic examples without x-dependence: $M(\xi) = |\xi|^p$, p > 1, $M(\xi) = |\xi| \log(1 + |\xi|)$, $M(\xi) = \exp(|\xi|) - 1$. With x-dependence: $M(x,\xi) = |\xi|^{p(x)}$ for $1 < p^- \le p(\cdot) \in L^{\infty}$.

(4 回) 4 日) 4 日)

< ロ > < 回 > < 回 > < 回 > < 回 >

2

Special cases of N-functions:

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Special cases of N-functions: **isotropic** $M(x, \xi) = M(x, |\xi|);$

4 A b 4

Special cases of N-functions: isotropic $M(x,\xi) = M(x,|\xi|)$; orthotropic $M(x,\xi) = \sum_{i=1}^{n} M_i(x,|\xi_i|)$;

Special cases of N-functions:

isotropic $M(x,\xi) = M(x,|\xi|)$; orthotropic $M(x,\xi) = \sum_{i=1}^{n} M_i(x,|\xi_i|)$; fully anisotropic otherwise, for example

$$M(x,\xi) = |\xi_1 - \xi_2|^2 + |\xi_1| \log(e + |\xi_1|);$$

Special cases of *N*-functions:

isotropic $M(x,\xi) = M(x,|\xi|)$; orthotropic $M(x,\xi) = \sum_{i=1}^{n} M_i(x,|\xi_i|)$; fully anisotropic otherwise, for example

$$M(x,\xi) = |\xi_1 - \xi_2|^2 + |\xi_1| \log(e + |\xi_1|);$$

essentially fully anisotropic if we don't have that $M(x, T(\xi)) = \sum_{i=1}^{n} M_i(x, |\xi_i|)$ for some invertible, linear map T.

Special cases of *N*-functions:

isotropic $M(x,\xi) = M(x,|\xi|)$; orthotropic $M(x,\xi) = \sum_{i=1}^{n} M_i(x,|\xi_i|)$; fully anisotropic otherwise, for example

$$M(x,\xi) = |\xi_1 - \xi_2|^2 + |\xi_1| \log(e + |\xi_1|);$$

essentially fully anisotropic if we don't have that $M(x, T(\xi)) = \sum_{i=1}^{n} M_i(x, |\xi_i|)$ for some invertible, linear map T. Examples in [I. Chlebicka, P. Nayar, 2022].

Special cases of *N*-functions:

isotropic $M(x,\xi) = M(x,|\xi|)$; orthotropic $M(x,\xi) = \sum_{i=1}^{n} M_i(x,|\xi_i|)$; fully anisotropic otherwise, for example

$$M(x,\xi) = |\xi_1 - \xi_2|^2 + |\xi_1| \log(e + |\xi_1|);$$

essentially fully anisotropic if we don't have that $M(x, T(\xi)) = \sum_{i=1}^{n} M_i(x, |\xi_i|)$ for some invertible, linear map T. Examples in [I. Chlebicka, P. Nayar, 2022].

Some things that we lack:

Special cases of *N*-functions:

isotropic $M(x,\xi) = M(x,|\xi|)$; orthotropic $M(x,\xi) = \sum_{i=1}^{n} M_i(x,|\xi_i|)$; fully anisotropic otherwise, for example

$$M(x,\xi) = |\xi_1 - \xi_2|^2 + |\xi_1| \log(e + |\xi_1|);$$

essentially fully anisotropic if we don't have that $M(x, T(\xi)) = \sum_{i=1}^{n} M_i(x, |\xi_i|)$ for some invertible, linear map T. Examples in [I. Chlebicka, P. Nayar, 2022].

Some things that we lack:

• homogeneity, i.e., dependence on x is important

Special cases of *N*-functions:

isotropic $M(x,\xi) = M(x,|\xi|)$; orthotropic $M(x,\xi) = \sum_{i=1}^{n} M_i(x,|\xi_i|)$; fully anisotropic otherwise, for example

$$M(x,\xi) = |\xi_1 - \xi_2|^2 + |\xi_1| \log(e + |\xi_1|);$$

essentially fully anisotropic if we don't have that $M(x, T(\xi)) = \sum_{i=1}^{n} M_i(x, |\xi_i|)$ for some invertible, linear map T. Examples in [I. Chlebicka, P. Nayar, 2022].

Some things that we lack:

- homogeneity, i.e., dependence on x is important
- monotonicity

If $\eta \leq \xi$ ($\eta_i \leq \xi_i$ for every *i*), then not necessarily $M(x, \eta) \leq M(x, \xi)$.

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

э

Having an N-function M, we may define a modular

$$\varrho_M(\xi) = \int_{\Omega} M(x,\xi(x)) \, dx.$$

Having an N-function M, we may define a modular

$$\varrho_M(\xi) = \int_{\Omega} M(x,\xi(x)) \, dx.$$

It is not easy to define space of functions for the function M.

$$\mathcal{L}_M = \{\xi : \varrho_M(\xi) < \infty\},\$$

$$L_M = \{\xi : \exists_{\lambda>0} : \varrho_M(\xi/\lambda) < \infty\},\$$

$$E_M = \{\xi : \forall_{\lambda>0} : \varrho_M(\xi/\lambda) < \infty\},\$$

Having an N-function M, we may define a modular

$$\varrho_M(\xi) = \int_{\Omega} M(x,\xi(x)) \, dx.$$

It is not easy to define space of functions for the function M.

$$\mathcal{L}_M = \{\xi : \varrho_M(\xi) < \infty\},\$$

$$L_M = \{\xi : \exists_{\lambda>0} : \varrho_M(\xi/\lambda) < \infty\},\$$

$$E_M = \{\xi : \forall_{\lambda>0} : \varrho_M(\xi/\lambda) < \infty\},\$$

We always have that $E_M \subseteq \mathcal{L}_M \subseteq L_M$.

Having an N-function M, we may define a modular

$$\varrho_M(\xi) = \int_{\Omega} M(x,\xi(x)) \, dx.$$

It is not easy to define space of functions for the function M.

$$\mathcal{L}_M = \{\xi : \varrho_M(\xi) < \infty\},\$$

$$L_M = \{\xi : \exists_{\lambda>0} : \varrho_M(\xi/\lambda) < \infty\},\$$

$$E_M = \{\xi : \forall_{\lambda>0} : \varrho_M(\xi/\lambda) < \infty\}$$

We always have that $E_M \subseteq \mathcal{L}_M \subseteq L_M$. But we have that $E_M = \mathcal{L}_M = L_M$ if

 $M(x, 2\xi) \leq h(x) + cM(x, \xi)$ for some $h \in L^1(\Omega)$ $(M \in \Delta_2)$

Having an N-function M, we may define a modular

$$\varrho_M(\xi) = \int_{\Omega} M(x,\xi(x)) \, dx.$$

It is not easy to define space of functions for the function M.

$$\mathcal{L}_M = \{\xi : \varrho_M(\xi) < \infty\},\$$

$$L_M = \{\xi : \exists_{\lambda>0} : \varrho_M(\xi/\lambda) < \infty\},\$$

$$E_M = \{\xi : \forall_{\lambda>0} : \varrho_M(\xi/\lambda) < \infty\}$$

We always have that $E_M \subseteq \mathcal{L}_M \subseteq L_M$. But we have that $E_M = \mathcal{L}_M = L_M$ if

 $M(x, 2\xi) \le h(x) + cM(x, \xi)$ for some $h \in L^1(\Omega)$ $(M \in \Delta_2)$

Two types of convergence:

- In L_M : $\rho_M((\xi \xi_n)/\lambda) \to 0$ for some λ modular convergence;
- In E_M : $\rho_M((\xi \xi_n)/\lambda) \to 0$ for all λ norm convergence.

Having an N-function M, we may define a modular

$$\varrho_M(\xi) = \int_{\Omega} M(x,\xi(x)) \, dx \, .$$

It is not easy to define space of functions for the function M.

$$\mathcal{L}_M = \{\xi : \varrho_M(\xi) < \infty\},\$$

$$L_M = \{\xi : \exists_{\lambda>0} : \varrho_M(\xi/\lambda) < \infty\},\$$

$$E_M = \{\xi : \forall_{\lambda>0} : \varrho_M(\xi/\lambda) < \infty\},\$$

We always have that $E_M \subseteq \mathcal{L}_M \subseteq L_M$. But we have that $E_M = \mathcal{L}_M = L_M$ if

 $M(x, 2\xi) \le h(x) + cM(x, \xi)$ for some $h \in L^1(\Omega)$ $(M \in \Delta_2)$

Two types of convergence:

- In L_M : $\rho_M((\xi \xi_n)/\lambda) \to 0$ for some λ modular convergence;
- In E_M : $\varrho_M((\xi \xi_n)/\lambda) \to 0$ for all λ norm convergence.

If $M \in \Delta_2$, they both coincide with $\varrho_M(\xi - \xi_n) \rightarrow 0$.

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

э

Given the definitions of L_M and E_M , one can define

$$V_0 L_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in L_M \}$$
$$V_0 E_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in E_M \}$$

Given the definitions of L_M and E_M , one can define

$$V_0 L_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in L_M \}$$

$$V_0 E_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in E_M \}$$

Convergence: $u_n \rightarrow u$ in L^1 and

- In V_0L_M : $\varrho_M((\nabla u \nabla u_n)/\lambda) \to 0$ for some λ ;
- In $V_0 E_M$: $\varrho_M((\nabla u \nabla u_n)/\lambda) \to 0$ for all λ .

Given the definitions of L_M and E_M , one can define

$$V_0 L_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in L_M \}$$

$$V_0 E_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in E_M \}$$

Convergence: $u_n \to u$ in L^1 and

- In V_0L_M : $\varrho_M((\nabla u \nabla u_n)/\lambda) \to 0$ for some λ ;
- In $V_0 E_M$: $\varrho_M((\nabla u \nabla u_n)/\lambda) \to 0$ for all λ .

In case of $M(x,\xi)=|\xi|^p$, we just have $V_0L_M=V_0E_M=W_0^{1,p}$, i.e.,

$$\{u\in W^{1,1}_0(\Omega): \nabla u\in L^p(\Omega)\}=\overline{C^\infty_c(\Omega)}^{W^{1,p}}=W^{1,p}_0$$

Given the definitions of L_M and E_M , one can define

$$V_0 L_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in L_M \}$$

$$V_0 E_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in E_M \}$$

Convergence: $u_n \to u$ in L^1 and

- In V_0L_M : $\varrho_M((\nabla u \nabla u_n)/\lambda) \to 0$ for some λ ;
- In $V_0 E_M$: $\varrho_M((\nabla u \nabla u_n)/\lambda) \to 0$ for all λ .

In case of $M(x,\xi) = |\xi|^p$, we just have $V_0L_M = V_0E_M = W_0^{1,p}$, i.e.,

$$\{u \in W_0^{1,1}(\Omega) : \nabla u \in L^p(\Omega)\} = \overline{C_c^{\infty}(\Omega)}^{W^{1,p}} = W_0^{1,p}$$

This is the result of [N. Meyers, J. Serrin, 1964].

Given the definitions of L_M and E_M , one can define

$$V_0 L_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in L_M \}$$

$$V_0 E_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in E_M \}$$

Convergence: $u_n \rightarrow u$ in L^1 and

- In V_0L_M : $\varrho_M((\nabla u \nabla u_n)/\lambda) \to 0$ for some λ ;
- In $V_0 E_M$: $\varrho_M((\nabla u \nabla u_n)/\lambda) \to 0$ for all λ .

In case of $M(x,\xi) = |\xi|^p$, we just have $V_0L_M = V_0E_M = W_0^{1,p}$, i.e.,

$$\{u \in W_0^{1,1}(\Omega) : \nabla u \in L^p(\Omega)\} = \overline{C_c^{\infty}(\Omega)}^{W^{1,p}} = W_0^{1,p}$$

This is the result of [N. Meyers, J. Serrin, 1964]. In general, for an arbitrary M, it may happen that $V_0L_M \neq \overline{C_c^{\infty}(\Omega)}$, so smooth functions are not dense in the space.

Given the definitions of L_M and E_M , one can define

$$V_0 L_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in L_M \}$$

$$V_0 E_M = \{ u \in W_0^{1,1}(\Omega) : \nabla u \in E_M \}$$

Convergence: $u_n \rightarrow u$ in L^1 and

- In V_0L_M : $\varrho_M((\nabla u \nabla u_n)/\lambda) \to 0$ for some λ ;
- In $V_0 E_M$: $\varrho_M((\nabla u \nabla u_n)/\lambda) \to 0$ for all λ .

In case of $M(x,\xi) = |\xi|^p$, we just have $V_0L_M = V_0E_M = W_0^{1,p}$, i.e.,

$$\{u \in W_0^{1,1}(\Omega) : \nabla u \in L^p(\Omega)\} = \overline{C_c^{\infty}(\Omega)}^{W^{1,p}} = W_0^{1,p}$$

This is the result of [N. Meyers, J. Serrin, <u>1964</u>]. In general, for an arbitrary M, it may happen that $V_0L_M \neq \overline{C_c^{\infty}(\Omega)}$, so smooth functions are not dense in the space.

We want to know under what conditions on M we have the density in V_0L_M and V_0E_M .

Motivation

イロト イボト イヨト イヨト

э

Where the density of smooth functions in Musielak–Orlicz–Sobolev spaces may be applied?

Where the density of smooth functions in Musielak–Orlicz–Sobolev spaces may be applied?

• Absence of Lavrentiev's gap;

Where the density of smooth functions in Musielak–Orlicz–Sobolev spaces may be applied?

- Absence of Lavrentiev's gap;
- Existence results in the theory of PDEs with non-standard growth.

For simplicity, let us assume that $M \in \Delta_2$. Then, if smooth functions are dense in $V_0L_M = V_0E_M$, it means that for any $u \in V_0L_M$, there exists a sequence $(u_\delta)_\delta \subset C_c^\infty(\Omega)$, such that

$$\int_{\Omega} M\left(x, \nabla u - \nabla u_{\delta}\right) \xrightarrow{\delta \to 0} 0.$$

For simplicity, let us assume that $M \in \Delta_2$. Then, if smooth functions are dense in $V_0L_M = V_0E_M$, it means that for any $u \in V_0L_M$, there exists a sequence $(u_\delta)_\delta \subset C_c^\infty(\Omega)$, such that

$$\int_{\Omega} M\left(x, \nabla u - \nabla u_{\delta}\right) \xrightarrow{\delta \to 0} 0.$$

Now let us take the functional

$$\mathcal{F}[u] = \int_{\Omega} F(x,
abla u(x)) \, dx \,, \, \, \mathrm{where} \, \, F pprox M \,.$$

For simplicity, let us assume that $M \in \Delta_2$. Then, if smooth functions are dense in $V_0L_M = V_0E_M$, it means that for any $u \in V_0L_M$, there exists a sequence $(u_\delta)_\delta \subset C_c^\infty(\Omega)$, such that

$$\int_{\Omega} M\left(x, \nabla u - \nabla u_{\delta}\right) \xrightarrow{\delta \to 0} 0.$$

Now let us take the functional

$$\mathcal{F}[u] = \int_\Omega F(x, \nabla u(x)) \, dx \,, \, \, \text{where} \, \, F \approx M \,.$$

The space $V_0L_M = V_0E_M$ is admissible energy space for functional \mathcal{F} .

٠

For simplicity, let us assume that $M \in \Delta_2$. Then, if smooth functions are dense in $V_0L_M = V_0E_M$, it means that for any $u \in V_0L_M$, there exists a sequence $(u_\delta)_\delta \subset C_c^{\infty}(\Omega)$, such that

$$\int_{\Omega} M\left(x, \nabla u - \nabla u_{\delta}\right) \xrightarrow{\delta \to 0} 0.$$

Now let us take the functional

$$\mathcal{F}[u] = \int_\Omega F(x, \nabla u(x)) \, dx \,, \, \, \text{where} \, \, F \approx M \,.$$

The space $V_0L_M = V_0E_M$ is admissible energy space for functional \mathcal{F} . If we have the density, we can approximate minimizers with any boundary condition u_0 , and we have absence of Lavrentiev's phenomenon

$$\inf_{u \in u_0 + V_0 E_M} \mathcal{F}[u] = \inf_{u \in u_0 + C_c^{\infty}(\Omega)} \mathcal{F}[u].$$
Absence of Lavrentiev's phenomenon

٠

For simplicity, let us assume that $M \in \Delta_2$. Then, if smooth functions are dense in $V_0L_M = V_0E_M$, it means that for any $u \in V_0L_M$, there exists a sequence $(u_\delta)_\delta \subset C_c^\infty(\Omega)$, such that

$$\int_{\Omega} M\left(x, \nabla u - \nabla u_{\delta}\right) \xrightarrow{\delta \to 0} 0.$$

Now let us take the functional

$$\mathcal{F}[u] = \int_\Omega F(x, \nabla u(x)) \, dx \,, \, \, \text{where} \, \, F \approx M \,.$$

The space $V_0L_M = V_0E_M$ is admissible energy space for functional \mathcal{F} . If we have the density, we can approximate minimizers with any boundary condition u_0 , and we have absence of Lavrentiev's phenomenon

$$\inf_{u \in u_0 + V_0 E_M} \mathcal{F}[u] = \inf_{u \in u_0 + C_c^{\infty}(\Omega)} \mathcal{F}[u].$$

Note: The above holds true provided that we have density in $V_0 E_M$, regardless Δ_2 condition.

Nice references

-

[I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska-Kamińska. Partial differential equations in anisotropic Musielak-Orlicz spaces. Springer Monographs in Mathematics. Springer, ©2021.]

[I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska-Kamińska. Partial differential equations in anisotropic Musielak-Orlicz spaces. Springer Monographs in Mathematics. Springer, ©2021.]

[I. Chlebicka. A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces. Nonlinear Anal., 2018.]

Now we shall talk about the results concerning density in Musielak–Orlicz–Sobolev spaces.

• [Gossez, 1982] – the density in case of $M(x,\xi) = M(|\xi|)$;

- [Gossez, 1982] the density in case of $M(x,\xi) = M(|\xi|)$;
- [A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019] the density in case of $M(x, \xi) = M(\xi)$;

- [Gossez, 1982] the density in case of $M(x,\xi) = M(|\xi|)$;
- [A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019] the density in case of $M(x,\xi) = M(\xi)$;
- [P. Gwiazda, I. Skrzypczak, and A. Zatorska-Goldstein, 2018]
 [Y. Ahmida, I. Chlebicka, P. Gwiazda, and A. Youssfi, 2018]

- some sufficient conditions for the density in general case;

- [Gossez, 1982] the density in case of $M(x,\xi) = M(|\xi|)$;
- [A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019] the density in case of $M(x,\xi) = M(\xi)$;
- [P. Gwiazda, I. Skrzypczak, and A. Zatorska-Goldstein, 2018]
 [Y. Ahmida, I. Chlebicka, P. Gwiazda, and A. Youssfi, 2018]
 some sufficient conditions for the density in general case;
- [I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska-Kamińska, 2021] conditions revisited;

- [Gossez, 1982] the density in case of $M(x,\xi) = M(|\xi|)$;
- [A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019] the density in case of $M(x, \xi) = M(\xi)$;
- [P. Gwiazda, I. Skrzypczak, and A. Zatorska-Goldstein, 2018]
 [Y. Ahmida, I. Chlebicka, P. Gwiazda, and A. Youssfi, 2018]
 some sufficient conditions for the density in general case;
- [I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska-Kamińska, 2021] conditions revisited;

Benchmark

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \, .$$

- [Gossez, 1982] the density in case of $M(x,\xi) = M(|\xi|)$;
- [A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019] the density in case of $M(x, \xi) = M(\xi)$;
- [P. Gwiazda, I. Skrzypczak, and A. Zatorska-Goldstein, 2018]
 [Y. Ahmida, I. Chlebicka, P. Gwiazda, and A. Youssfi, 2018]
 some sufficient conditions for the density in general case;
- [I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska-Kamińska, 2021] – conditions revisited;

Benchmark

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \, .$$

- [P. Harjulehto and P. Hästö, 2019] isotropic condition, embracing $q \le p + \frac{p\alpha}{n}$;
- [B, I. Chlebicka, 2022] general condition, embracing $q \le p + \frac{p\alpha}{n}$;

- [Gossez, 1982] the density in case of $M(x,\xi) = M(|\xi|)$;
- [A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019] the density in case of $M(x,\xi) = M(\xi)$;
- [P. Gwiazda, I. Skrzypczak, and A. Zatorska-Goldstein, 2018]
 [Y. Ahmida, I. Chlebicka, P. Gwiazda, and A. Youssfi, 2018]
 some sufficient conditions for the density in general case;
- [I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska-Kamińska, 2021] conditions revisited;

Benchmark

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \, .$$

- [P. Harjulehto and P. Hästö, 2019] isotropic condition, embracing $q \le p + \frac{p\alpha}{n}$;
- [B, I. Chlebicka, 2022] general condition, embracing $q \le p + \frac{p\alpha}{n}$;
- [M. Bulíček, P. Gwiazda, J. Skrzeczkowski, 2022] isotropic condition, embracing $q \le p + \alpha$;

イロト イポト イラト イラト

- [Gossez, 1982] the density in case of $M(x,\xi) = M(|\xi|)$;
- [A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019] the density in case of $M(x,\xi) = M(\xi)$;
- [P. Gwiazda, I. Skrzypczak, and A. Zatorska-Goldstein, 2018]
 [Y. Ahmida, I. Chlebicka, P. Gwiazda, and A. Youssfi, 2018]
 some sufficient conditions for the density in general case;
- [I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska-Kamińska, 2021] conditions revisited;

Benchmark

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \, .$$

- [P. Harjulehto and P. Hästö, 2019] isotropic condition, embracing $q \le p + \frac{p\alpha}{n}$;
- [B, I. Chlebicka, 2022] general condition, embracing $q \le p + \frac{p\alpha}{n}$;
- [M. Bulíček, P. Gwiazda, J. Skrzeczkowski, 2022] isotropic condition, embracing $q \le p + \alpha$;
- [B, I. Chlebicka, B. Miasojedow, arXiv:2210.15217] general condition, embracing the condition q ≤ p + α.

- [Gossez, 1982] the density in case of $M(x,\xi) = M(|\xi|)$;
- [A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019] the density in case of $M(x,\xi) = M(\xi)$;
- [P. Gwiazda, I. Skrzypczak, and A. Zatorska-Goldstein, 2018]
 [Y. Ahmida, I. Chlebicka, P. Gwiazda, and A. Youssfi, 2018]
 some sufficient conditions for the density in general case;
- [I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska-Kamińska, 2021] – conditions revisited;

Benchmark

$$\mathcal{F}[u] = \int_{\Omega} \sum_{i} |\partial_{i} u(x)|^{p_{i}} + a_{i}(x)|\partial_{i} u(x)|^{q_{i}} dx.$$

• [P. Harjulehto and P. Hästö, 2019] – isotropic condition, embracing $q \le p + \frac{p\alpha}{n}$;

• [B, I. Chlebicka, 2022] – general condition, embracing $q_i \leq p_i + \frac{p_i \alpha_i}{n}$;

- [M. Bulíček, P. Gwiazda, J. Skrzeczkowski, 2022] isotropic condition, embracing $q \le p + \alpha$;
- [B, I. Chlebicka, B. Miasojedow, arXiv:2210.15217] general condition, embracing the condition q_i ≤ p_i + α_i.

э

A 1

Theorem (Gossez, 1982

A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019)

Let $M(\xi)$ be an N-function, Ω – Lipschitz domain. Then for any $u \in V_0L_M$ (V_0E_M), the exists a sequence $(u)_{\delta} \subseteq C_c^{\infty}(\Omega)$ approximating u in V_0L_M (V_0E_M).

Theorem (Gossez, 1982

A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019)

Let $M(\xi)$ be an N-function, Ω – Lipschitz domain. Then for any $u \in V_0L_M$ (V_0E_M), the exists a sequence $(u)_{\delta} \subseteq C_c^{\infty}(\Omega)$ approximating u in V_0L_M (V_0E_M).

Proof.

Let us use approximation by convolution with shrinking

$$S_{\delta}(\nabla u)(x) = \int_{B_{\delta}(0)} \rho_{\delta}(y) \nabla u((x-y)/\kappa_{\delta}) \, dy \, .$$

Theorem (Gossez, 1982

A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019)

Let $M(\xi)$ be an N-function, Ω – Lipschitz domain. Then for any $u \in V_0L_M$ (V_0E_M), the exists a sequence $(u)_{\delta} \subseteq C_c^{\infty}(\Omega)$ approximating u in V_0L_M (V_0E_M).

Proof.

Let us use approximation by convolution with shrinking

$$S_{\delta}(\nabla u)(x) = \int_{B_{\delta}(0)} \rho_{\delta}(y) \nabla u((x-y)/\kappa_{\delta}) \, dy \, .$$

By using Jensen's inequality

$$M(S_{\delta}(\nabla u)(x)) = M\left(\int_{B_{\delta}(0)} \rho_{\delta}(y)\nabla u((x-y)/\kappa_{\delta}) \, dy\right)$$
$$\leq \int_{B_{\delta}(0)} \rho_{\delta}(y)M(\nabla u((x-y)/\kappa_{\delta})) \, dy = S_{\delta}\left(M \circ \nabla u\right)(x)$$

Theorem (Gossez, 1982

A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019)

Let $M(\xi)$ be an N-function, Ω – Lipschitz domain. Then for any $u \in V_0L_M$ (V_0E_M), the exists a sequence $(u)_{\delta} \subseteq C_c^{\infty}(\Omega)$ approximating u in V_0L_M (V_0E_M).

Proof.

Let us use approximation by convolution with shrinking

$$S_{\delta}(\nabla u)(x) = \int_{B_{\delta}(0)} \rho_{\delta}(y) \nabla u((x-y)/\kappa_{\delta}) \, dy \, .$$

By using Jensen's inequality

$$M(S_{\delta}(\nabla u)(x)) = M\left(\int_{B_{\delta}(0)} \rho_{\delta}(y)\nabla u((x-y)/\kappa_{\delta}) \, dy\right)$$
$$\leq \int_{B_{\delta}(0)} \rho_{\delta}(y)M(\nabla u((x-y)/\kappa_{\delta})) \, dy = S_{\delta}\left(M \circ \nabla u\right)(x)$$

One should do the above for u/λ for admissible λ .

Theorem (Gossez, 1982

A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019)

Let $M(\xi)$ be an N-function, Ω – Lipschitz domain. Then for any $u \in V_0L_M$ (V_0E_M), the exists a sequence $(u)_{\delta} \subseteq C_c^{\infty}(\Omega)$ approximating u in V_0L_M (V_0E_M).

Proof.

Let us use approximation by convolution with shrinking

$$S_{\delta}(\nabla u)(x) = \int_{B_{\delta}(0)} \rho_{\delta}(y) \nabla u((x-y)/\kappa_{\delta}) \, dy \, .$$

By using Jensen's inequality

$$M(S_{\delta}(\nabla u)(x)) = M\left(\int_{B_{\delta}(0)} \rho_{\delta}(y)\nabla u((x-y)/\kappa_{\delta}) \, dy\right)$$
$$\leq \int_{B_{\delta}(0)} \rho_{\delta}(y)M(\nabla u((x-y)/\kappa_{\delta})) \, dy = S_{\delta}\left(M \circ \nabla u\right)(x)$$

One should do the above for u/λ for admissible λ . Vitali Converging Theorem actually ends the proof.

Difference in general case

Theorem (Gossez, 1982

A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, 2019)

Let $M(\xi)$ be an N-function, Ω – Lipschitz domain. Then for any $u \in V_0L_M$ (V_0E_M), the exists a sequence $(u)_{\delta} \subseteq C_c^{\infty}(\Omega)$ approximating u in V_0L_M (V_0E_M).

Proof.

Let us use approximation by convolution with shrinking

$$S_{\delta}(\nabla u)(x) = \int_{B_{\delta}(0)} \rho_{\delta}(y) \nabla u((x-y)/\kappa_{\delta}) \, dy \, .$$

By using Jensen's inequality

$$M(\boldsymbol{x}, S_{\delta}(\nabla u)(\boldsymbol{x})) = M\left(\boldsymbol{x}, \int_{B_{\delta}(0)} \rho_{\delta}(\boldsymbol{y}) \nabla u((\boldsymbol{x}-\boldsymbol{y})/\kappa_{\delta})\right) d\boldsymbol{y}$$

$$\leq \int_{B_{\delta}(0)} \rho_{\delta}(\boldsymbol{y}) M(\boldsymbol{x}, \nabla u((\boldsymbol{x}-\boldsymbol{y})/\kappa_{\delta})) d\boldsymbol{y} \neq S_{\delta} \left(M(\cdot, \nabla u(\cdot))\right)(\boldsymbol{x})$$

One should do the above for u/λ for admissible λ . Vitali Converging Theorem actually ends the proof.

Isotropic case

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

э

Isotropic condition ($\mathsf{B}_0^{\mathsf{iso}}$). For some constants C, c > 0:

 $M(x, |\xi|) \le M(y, C|\xi|) + 1$ whenever $|\xi| \le c|x - y|^{-1}$

周 ト イ ヨ ト イ ヨ ト

3

Isotropic case

Isotropic condition (B_0^{iso}). For some constants C, c > 0:

 $M(x,|\xi|) \le M(y,C|\xi|) + 1 \quad \text{whenever} \quad |\xi| \le c|x-y|^{-1}$

Examples:

伺い イラト イラト

3

Isotropic condition (B_0^{iso}). For some constants C, c > 0:

 $M(x,|\xi|) \le M(y,C|\xi|) + 1 \quad \text{whenever} \quad |\xi| \le c|x-y|^{-1}$

Examples:

• For $M(x,\xi)=|\xi|^p+a(x)|\xi|^q,$ we can take $a\in C^{0,\alpha},$ where $q\leq p+\alpha;$

伺い イラト イラト

-

Isotropic condition (B_0^{iso}). For some constants C, c > 0:

 $M(x,|\xi|) \le M(y,C|\xi|) + 1 \quad \text{whenever} \quad |\xi| \le c|x-y|^{-1}$

Examples:

- For $M(x,\xi) = |\xi|^p + a(x)|\xi|^q$, we can take $a \in C^{0,\alpha}$, where $q \le p + \alpha$;
- For $M(x,\xi) = |\xi|^{p(x)}$, we can take $p \in \mathcal{P}^{\log}$.

-

Isotropic condition $(\mathsf{B}_0^{\mathsf{iso}})$. For some constants C, c > 0:

 $M(x,|\xi|) \le M(y,C|\xi|) + 1 \quad \text{whenever} \quad |\xi| \le c|x-y|^{-1}$

Examples:

• For $M(x,\xi)=|\xi|^p+a(x)|\xi|^q,$ we can take $a\in C^{0,\alpha},$ where $q\leq p+\alpha;$

• For
$$M(x,\xi) = |\xi|^{p(x)}$$
, we can take $p \in \mathcal{P}^{\log}$.

Theorem (B, I. Chlebicka, B. Miasojedow, arXiv:2210.15217 also following from M. Bulíček, P. Gwiazda, J. Skrzeczkowski, 2022)

If isotropic $M(x, |\xi|)$ satisfies $(\mathsf{B}_0^{\mathsf{iso}})$, then any function $u \in V_0 L_M$ may be approximated by functions from $C_c^{\infty}(\Omega)$.

Isotropic condition $(\mathsf{B}_0^{\mathsf{iso}})$. For some constants C, c > 0:

 $M(x,|\xi|) \le M(y,C|\xi|) + 1 \quad \text{whenever} \quad |\xi| \le c|x-y|^{-1}$

Examples:

• For $M(x,\xi)=|\xi|^p+a(x)|\xi|^q,$ we can take $a\in C^{0,\alpha},$ where $q\leq p+\alpha;$

• For
$$M(x,\xi) = |\xi|^{p(x)}$$
, we can take $p \in \mathcal{P}^{\log}$.

Theorem (B, I. Chlebicka, B. Miasojedow, arXiv:2210.15217 also following from M. Bulíček, P. Gwiazda, J. Skrzeczkowski, 2022)

If isotropic $M(x, |\xi|)$ satisfies $(\mathsf{B}_0^{\mathsf{iso}})$, then any function $u \in V_0 L_M$ may be approximated by functions from $C_c^{\infty}(\Omega)$.

Density in $V_0 E_M$ requires a bit stronger condition, which is described in our paper.

Michał Borowski On Musielak-Orlicz-Sobolev spaces and Lavrentiev's phenomenon 20/32

We need three more facts.

We need three more facts.

Lemma

Space $L^{\infty} \cap V_0 L_M$ is dense in $V_0 L_M$.

We need three more facts.

Lemma

Space $L^{\infty} \cap V_0 L_M$ is dense in $V_0 L_M$. We can just approximate any $u \in V_0 L_M$ by $\phi_k = \max(-k, \min(k, u))$.

We need three more facts.

Lemma

Space $L^{\infty} \cap V_0 L_M$ is dense in $V_0 L_M$. We can just approximate any $u \in V_0 L_M$ by $\phi_k = \max(-k, \min(k, u))$.

This allows us to consider just functions from $L^{\infty} \cap V_0 L_M$.

We need three more facts.

Lemma

Space $L^{\infty} \cap V_0 L_M$ is dense in $V_0 L_M$. We can just approximate any $u \in V_0 L_M$ by $\phi_k = \max(-k, \min(k, u))$.

This allows us to consider just functions from $L^{\infty} \cap V_0 L_M$.

Lemma

$$\|\nabla S_{\delta}v\|_{L^{\infty}} \leq \delta^{-1} \|v\|_{L^{\infty}} \|\nabla\rho\|_{L^{1}}$$

We need three more facts.

Lemma

Space $L^{\infty} \cap V_0 L_M$ is dense in $V_0 L_M$. We can just approximate any $u \in V_0 L_M$ by $\phi_k = \max(-k, \min(k, u))$.

This allows us to consider just functions from $L^{\infty} \cap V_0 L_M$.

Lemma

$$\|\nabla S_{\delta}v\|_{L^{\infty}} \le \delta^{-1} \|v\|_{L^{\infty}} \|\nabla\rho\|_{L^{1}}$$

Under the condition $(\mathsf{B}_0^{\mathsf{iso}})$, we have the following for sufficiently large λ .

$$M(x, \frac{1}{\lambda} |\nabla S_{\delta} v(x)|) \leq \inf_{z \in B_{\delta}(x)} M(z, \frac{C}{\lambda} |\nabla S_{\delta} v(x)|) + 1.$$

We need three more facts.

Lemma

Space $L^{\infty} \cap V_0 L_M$ is dense in $V_0 L_M$. We can just approximate any $u \in V_0 L_M$ by $\phi_k = \max(-k, \min(k, u))$.

This allows us to consider just functions from $L^{\infty} \cap V_0 L_M$.

Lemma

$$\|\nabla S_{\delta}v\|_{L^{\infty}} \le \delta^{-1} \|v\|_{L^{\infty}} \|\nabla\rho\|_{L^{1}}$$

Under the condition $(\mathsf{B}_0^{\mathsf{iso}})$, we have the following for sufficiently large λ .

$$M(x, \frac{1}{\lambda} |\nabla S_{\delta} v(x)|) \le \inf_{z \in B_{\delta}(x)} M(z, \frac{C}{\lambda} |\nabla S_{\delta} v(x)|) + 1.$$

Lemma

Infimum of convex 1-dimensional functions is almost convex, actually

$$f(\frac{1}{4}s + \frac{1}{4}t) \le \frac{1}{2}f(s) + \frac{1}{2}f(t)$$
.
Isotropic case - idea of the proof

We need three more facts.

Lemma

Space $L^{\infty} \cap V_0 L_M$ is dense in $V_0 L_M$. We can just approximate any $u \in V_0 L_M$ by $\phi_k = \max(-k, \min(k, u))$.

This allows us to consider just functions from $L^{\infty} \cap V_0 L_M$.

Lemma

$$\|\nabla S_{\delta}v\|_{L^{\infty}} \leq \delta^{-1} \|v\|_{L^{\infty}} \|\nabla\rho\|_{L^{1}}$$

Under the condition $(\mathsf{B}_0^{\mathsf{iso}})$, we have the following for sufficiently large λ .

$$M(x, \frac{1}{\lambda} |\nabla S_{\delta} v(x)|) \le \inf_{z \in B_{\delta}(x)} M(z, \frac{C}{\lambda} |\nabla S_{\delta} v(x)|) + 1.$$

Lemma

Infimum of convex 1-dimensional functions is almost convex, actually

$$f(\frac{1}{4}s + \frac{1}{4}t) \le \frac{1}{2}f(s) + \frac{1}{2}f(t)$$
.

Michał Borowski On Musielak-Orlicz-Sobolev spaces and Lavrentiev's phenomenon 21/32

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

If isotropic $M(x, |\xi|)$ satisfies $(\mathsf{B}_0^{\mathsf{iso}})$, then any function $u \in V_0 L_M$ may be approximated by functions from $C_c^{\infty}(\Omega)$.

Proof.

If isotropic $M(x, |\xi|)$ satisfies $(\mathsf{B}_0^{\mathsf{iso}})$, then any function $u \in V_0 L_M$ may be approximated by functions from $C_c^{\infty}(\Omega)$.

Proof.

Denote $M^-(|\xi|) \coloneqq \inf_{z \in B_{\delta}(0)} M(z, |\xi|).$

If isotropic $M(x, |\xi|)$ satisfies $(\mathsf{B}_0^{\mathsf{iso}})$, then any function $u \in V_0 L_M$ may be approximated by functions from $C_c^{\infty}(\Omega)$.

Proof.

Denote $M^-(|\xi|) \coloneqq \inf_{z \in B_{\delta}(0)} M(z, |\xi|)$. Given function $u \in L^{\infty} \cap V_0 L_M$, we can estimate for sufficiently large $\lambda > 0$

If isotropic $M(x, |\xi|)$ satisfies $(\mathsf{B}_0^{\mathsf{iso}})$, then any function $u \in V_0 L_M$ may be approximated by functions from $C_c^{\infty}(\Omega)$.

Proof.

Denote $M^-(|\xi|) \coloneqq \inf_{z \in B_{\delta}(0)} M(z, |\xi|)$. Given function $u \in L^{\infty} \cap V_0 L_M$, we can estimate for sufficiently large $\lambda > 0$

$$M(x, \frac{1}{\lambda} | S_{\delta}(\nabla u)(x)|) \lesssim M^{-} \left(\frac{1}{\lambda} | S_{\delta}(\nabla u)(x)| \right)$$

$$\lesssim S_{\delta} \left(M^{-} \circ \frac{\nabla u}{\lambda}\right)(x) \lesssim S_{\delta} \left(M(\cdot, \frac{1}{\lambda} | \nabla u(\cdot)|)\right)(x)$$

If isotropic $M(x, |\xi|)$ satisfies $(\mathsf{B}_0^{\mathsf{iso}})$, then any function $u \in V_0 L_M$ may be approximated by functions from $C_c^{\infty}(\Omega)$.

Proof.

Denote $M^-(|\xi|) \coloneqq \inf_{z \in B_{\delta}(0)} M(z, |\xi|)$. Given function $u \in L^{\infty} \cap V_0 L_M$, we can estimate for sufficiently large $\lambda > 0$

$$\begin{split} M(x, \frac{1}{\lambda} |S_{\delta}(\nabla u)(x)|) &\lesssim M^{-} \left(\frac{1}{\lambda} |S_{\delta}(\nabla u)(x)|\right) \\ &\lesssim S_{\delta} \left(M^{-} \circ \frac{\nabla u}{\lambda}\right)(x) \lesssim S_{\delta} \left(M(\cdot, \frac{1}{\lambda} |\nabla u(\cdot)|)\right)(x) \end{split}$$

Again, Vitali Converging Theorem ends the proof.

Let us see how to generalize this result.

-

Lemma

If $u \in C^{0,\gamma}(\Omega)$, $\gamma \in (0,1]$, then

$$\|\nabla S_{\delta}(u)\|_{L^{\infty}} \leq \frac{\delta^{\gamma-1}}{\kappa_{\delta}^{\gamma}} [u]_{0,\gamma} \|\nabla \rho\|_{L^{1}}$$

くぼう くほう くほう

Lemma

If $u \in C^{0,\gamma}(\Omega)$, $\gamma \in (0,1]$, then

$$\|\nabla S_{\delta}(u)\|_{L^{\infty}} \leq \frac{\delta^{\gamma-1}}{\kappa_{\delta}^{\gamma}} [u]_{0,\gamma} \|\nabla \rho\|_{L^{1}} =: C\delta^{\gamma-1}.$$

くぼう くほう くほう

Lemma

If $u \in C^{0,\gamma}(\Omega)$, $\gamma \in (0,1]$, then

$$\|\nabla S_{\delta}(u)\|_{L^{\infty}} \leq \frac{\delta^{\gamma-1}}{\kappa_{\delta}^{\gamma}} [u]_{0,\gamma} \|\nabla \rho\|_{L^{1}} =: C\delta^{\gamma-1}.$$

Isotropic condition ($\mathsf{B}_{\gamma}^{\mathsf{iso}}$). For some constants C, c > 0:

 $M(x,|\xi|) \leq M(y,C|\xi|) + 1 \quad \text{whenever} \quad |\xi| \leq c|x-y|^{\gamma-1}$

同 ト イヨ ト イヨ ト 二 ヨ

Lemma

If $u \in C^{0,\gamma}(\Omega)$, $\gamma \in (0,1]$, then

$$\|\nabla S_{\delta}(u)\|_{L^{\infty}} \leq \frac{\delta^{\gamma-1}}{\kappa_{\delta}^{\gamma}} [u]_{0,\gamma} \|\nabla \rho\|_{L^{1}} =: C\delta^{\gamma-1}.$$

Isotropic condition ($\mathsf{B}_{\gamma}^{\mathsf{iso}}$). For some constants C, c > 0:

 $M(x,|\xi|) \le M(y,C|\xi|) + 1$ whenever $|\xi| \le c|x-y|^{\gamma-1}$

For $M(x,\xi) = |\xi|^p + a(x)|\xi|^q$, we can take $a \in C^{0,\alpha}$, where $q \leq p + \frac{\alpha}{1-\gamma}$.

通 と く ヨ と く ヨ と 二 ヨ・

Lemma

If $u \in C^{0,\gamma}(\Omega)$, $\gamma \in (0,1]$, then

$$\|\nabla S_{\delta}(u)\|_{L^{\infty}} \leq \frac{\delta^{\gamma-1}}{\kappa_{\delta}^{\gamma}} [u]_{0,\gamma} \|\nabla \rho\|_{L^{1}} =: C\delta^{\gamma-1}.$$

Isotropic condition ($\mathsf{B}_{\gamma}^{\mathsf{iso}}$). For some constants C, c > 0:

 $M(x,|\xi|) \leq M(y,C|\xi|) + 1 \quad \text{whenever} \quad |\xi| \leq c|x-y|^{\gamma-1}$

For $M(x,\xi) = |\xi|^p + a(x)|\xi|^q$, we can take $a \in C^{0,\alpha}$, where $q \le p + \frac{\alpha}{1-\gamma}$.

Theorem (B, I. Chlebicka, B. Miasojedow, arXiv:2210.15217)

If isotropic $M(x, |\xi|)$ satisfies $(\mathsf{B}_{\gamma}^{\mathsf{iso}})$, then any function $u \in V_0 L_M \cap C^{0,\gamma}$ may be approximated by functions from $C_c^{\infty}(\Omega)$.

Lemma

If $u \in C^{0,\gamma}(\Omega)$, $\gamma \in (0,1]$, then

$$\|\nabla S_{\delta}(u)\|_{L^{\infty}} \leq \frac{\delta^{\gamma-1}}{\kappa_{\delta}^{\gamma}} [u]_{0,\gamma} \|\nabla \rho\|_{L^{1}} =: C\delta^{\gamma-1}.$$

Isotropic condition ($\mathsf{B}_{\gamma}^{\mathsf{iso}}$). For some constants C, c > 0:

 $M(x,|\xi|) \leq M(y,C|\xi|) + 1 \quad \text{whenever} \quad |\xi| \leq c|x-y|^{\gamma-1}$

For $M(x,\xi) = |\xi|^p + a(x)|\xi|^q$, we can take $a \in C^{0,\alpha}$, where $q \le p + \frac{\alpha}{1-\gamma}$.

Theorem (B, I. Chlebicka, B. Miasojedow, arXiv:2210.15217)

If isotropic $M(x, |\xi|)$ satisfies $(\mathsf{B}_{\gamma}^{\mathsf{iso}})$, then any function $u \in V_0 L_M \cap C^{0,\gamma}$ may be approximated by functions from $C_c^{\infty}(\Omega)$. If $\gamma = 0$, then we can approximate any $u \in V_0 L_M$.

Lemma

If $u \in C^{0,\gamma}(\Omega)$, $\gamma \in (0,1]$, then

$$\|\nabla S_{\delta}(u)\|_{L^{\infty}} \leq \frac{\delta^{\gamma-1}}{\kappa_{\delta}^{\gamma}} [u]_{0,\gamma} \|\nabla \rho\|_{L^{1}} =: C\delta^{\gamma-1}.$$

Isotropic condition ($\mathsf{B}_{\gamma}^{\mathsf{iso}}$). For some constants C, c > 0:

 $M(x,|\xi|) \leq M(y,C|\xi|) + 1 \quad \text{whenever} \quad |\xi| \leq c|x-y|^{\gamma-1}$

For $M(x,\xi) = |\xi|^p + a(x)|\xi|^q$, we can take $a \in C^{0,\alpha}$, where $q \le p + \frac{\alpha}{1-\gamma}$.

Theorem (B, I. Chlebicka, B. Miasojedow, arXiv:2210.15217)

If isotropic $M(x, |\xi|)$ satisfies $(\mathsf{B}_{\gamma}^{\mathsf{iso}})$, then any function $u \in V_0 L_M \cap C^{0,\gamma}$ may be approximated by functions from $C_c^{\infty}(\Omega)$. If $\gamma = 0$, then we can approximate any $u \in V_0 L_M$.

Note that for $\gamma = 1$ the condition $(\mathsf{B}_{\gamma}^{\mathsf{iso}})$ is always satisfied.

If the function M is orthotropic, i.e., such that $M(x,\xi) = \sum_{i=1}^n M_i(x,|\xi_i|)$

If the function M is orthotropic, i.e., such that $M(x,\xi)=\sum_{i=1}^n M_i(x,|\xi_i|),$ then we can define

Orthotropic condition $(\mathsf{B}_{\gamma}^{\mathsf{ort}})$. For some constants C, c > 0:

 $M_i(x, |\xi_i|) \le M_i(y, C|\xi_i|) + 1$ whenever $|\xi_i| \le c|x - y|^{\gamma - 1}$

If the function M is orthotropic, i.e., such that $M(x,\xi)=\sum_{i=1}^n M_i(x,|\xi_i|),$ then we can define

Orthotropic condition $(\mathsf{B}_{\gamma}^{\mathsf{ort}})$. For some constants C, c > 0:

 $M_i(x, |\xi_i|) \le M_i(y, C|\xi_i|) + 1$ whenever $|\xi_i| \le c|x - y|^{\gamma - 1}$

For $M(x,\xi) = \sum_{i=1}^n |\xi_i|^{p_i} + a_i(x)|\xi_i|^{q_i}$, we can take $a_i \in C^{0,\alpha_i}$, where $q_i \leq p_i + \frac{\alpha_i}{1-\gamma}$.

If the function M is orthotropic, i.e., such that $M(x,\xi)=\sum_{i=1}^n M_i(x,|\xi_i|),$ then we can define

Orthotropic condition $(\mathsf{B}_{\gamma}^{\mathsf{ort}})$. For some constants C, c > 0:

 $M_i(x, |\xi_i|) \le M_i(y, C|\xi_i|) + 1$ whenever $|\xi_i| \le c|x - y|^{\gamma - 1}$

For $M(x,\xi) = \sum_{i=1}^{n} |\xi_i|^{p_i} + a_i(x)|\xi_i|^{q_i}$, we can take $a_i \in C^{0,\alpha_i}$, where $q_i \leq p_i + \frac{\alpha_i}{1-\gamma}$.

Theorem (B, I. Chlebicka, B. Miasojedow, arXiv:2210.15217)

If orthotropic $M(x,\xi)$ satisfies $(\mathsf{B}^{\mathsf{ort}}_{\gamma})$, then any function $u \in V_0 L_M \cap C^{0,\gamma}$ may be approximated by functions from $C_c^{\infty}(\Omega)$. If $\gamma = 0$, we can approximate any $u \in V_0 L_M$.

-

For a function $H:\mathbb{R}^n\to[0,\infty),$ let $H^{**}:\mathbb{R}^n\to[0,\infty)$ be its greatest convex minorant

For a function $H: \mathbb{R}^n \to [0,\infty)$, let $H^{**}: \mathbb{R}^n \to [0,\infty)$ be its greatest convex minorant, i.e.

- H^{**} is convex;
- $H^{**} \leq H;$
- for any convex N such that $N \leq H,$ it holds $N \leq H^{**}.$

For a function $H: \mathbb{R}^n \to [0, \infty)$, let $H^{**}: \mathbb{R}^n \to [0, \infty)$ be its greatest convex minorant, i.e.

- H^{**} is convex;
- $H^{**} \leq H$;

• for any convex N such that $N \leq H$, it holds $N \leq H^{**}$. Let $M_{\delta}^{-}(\xi) = \inf_{z \in B_{\delta}(x)} M(z, \xi)$.

For a function $H : \mathbb{R}^n \to [0, \infty)$, let $H^{**} : \mathbb{R}^n \to [0, \infty)$ be its greatest convex minorant, i.e.

- H^{**} is convex;
- $H^{**} \leq H;$
- for any convex N such that $N \leq H$, it holds $N \leq H^{**}.$

Let $M^-_{\delta}(\xi) = \inf_{z \in B_{\delta}(x)} M(z,\xi).$ One can prove density under the condition

$$M(x,\xi) \leq \left(M_{\delta}^{-}\right)^{**}(C\xi) + 1 \quad \text{whenever} \quad |\xi| \leq c \delta^{\gamma-1}$$

For a function $H: \mathbb{R}^n \to [0,\infty)$, let $H^{**}: \mathbb{R}^n \to [0,\infty)$ be its greatest convex minorant, i.e.

- H^{**} is convex;
- $H^{**} \leq H$;
- for any convex N such that $N \leq H$, it holds $N \leq H^{**}.$

Let $M^-_{\delta}(\xi) = \inf_{z \in B_{\delta}(x)} M(z,\xi).$ One can prove density under the condition

$$M(x,\xi) \leq \left(M_{\delta}^{-}\right)^{**}(C\xi) + 1 \quad \text{whenever} \quad |\xi| \leq c \delta^{\gamma-1}.$$

Some conditions using this object were considered in

- · [P. Gwiazda, I. Skrzypczak, and A. Zatorska-Goldstein, 2018]
- [I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska-Kamińska, 2021].

As $\left(M_{\delta}^{-}\right)^{**}$ is a very complicated object, the conditions are hard to verify.

Michał Borowski On Musielak-Orlicz-Sobolev spaces and Lavrentiev's phenomenon 26/32

・ ロ ト ・ 同 ト ・ ヨ ト ・

-

Theorem (P. Hästö, 2022)

The following conditions are equivalent.

$$i) \quad \exists_{C>0} \quad M(x,\xi) \le \left(M_{\delta}^{-}\right)^{**}(C\xi) + 1 \quad \text{whenever} \quad \left(M_{\delta}^{-}\right)^{**}(C\xi) \le \frac{1}{|B_{\delta}|};$$

$$ii) \quad \exists_{T-\delta} \quad M(x,\xi) \le M^{-}(C\xi) + 1 \quad \text{whenever} \quad M^{-}(C\xi) \le \frac{1}{|B_{\delta}|};$$

$$\exists_{C>0} \quad M(x,\xi) \leq M_{\delta}^{-}(C\xi) + 1 \quad \text{whenever} \quad M_{\delta}^{-}(C\xi) \leq \frac{1}{|B_{\delta}|}.$$

- ● ● - ●

Theorem (P. Hästö, 2022)

The following conditions are equivalent.

$$i) \quad \exists_{C>0} \quad M(x,\xi) \leq \left(M_{\delta}^{-}\right)^{**}(C\xi) + 1 \quad \text{whenever} \quad \left(M_{\delta}^{-}\right)^{**}(C\xi) \leq \frac{1}{|B_{\delta}|};$$

$$ii) \quad \exists_{C>0} \quad M(x,\xi) \le M_{\delta}^{-}(C\xi) + 1 \quad \text{whenever} \quad M_{\delta}^{-}(C\xi) \le \frac{1}{|B_{\delta}|}.$$

Using this theorem, we formulated the general condition embracing $(B_{\gamma}^{\text{iso}})$ and $(B_{\gamma}^{\text{ort}})$. [B, I. Chlebicka, B. Miasojedow, arXiv:2210.15217]

Other general condition

A 10

Other general condition

$\label{eq:General condition (B)} \textbf{General condition (B)}.$

 $M(x,\xi) \le M(y,C\xi) + 1$ whenever $M(y,C\xi) \le c|x-y|^{-n}$

4 3 5 4 3 5 5

Other general condition

$\label{eq:General condition (B)} \textbf{General condition (B)}.$

```
M(x,\xi) \le M(y,C\xi) + 1 whenever M(y,C\xi) \le c|x-y|^{-n}
```

This condition looks good, captures full anisotropy and it is rather easy to verify, but is not optimal.

$\label{eq:General condition (B)} \textbf{General condition (B)}.$

```
M(x,\xi) \leq M(y,C\xi) + 1 \quad \text{whenever} \quad M(y,C\xi) \leq c|x-y|^{-n}
```

This condition looks good, captures full anisotropy and it is rather easy to verify, but is not optimal.

Theorem (B, I. Chlebicka, 2022)

If $M(x,\xi)$ satisfies (B), then any function $u \in V_0L_M$ may be approximated by functions from $C_c^{\infty}(\Omega)$, in V_0L_M .

$\label{eq:General condition (B)} \textbf{General condition (B)}.$

```
M(x,\xi) \leq M(y,C\xi) + 1 \quad \text{whenever} \quad M(y,C\xi) \leq c|x-y|^{-n}
```

This condition looks good, captures full anisotropy and it is rather easy to verify, but is not optimal.

Theorem (B, I. Chlebicka, 2022)

If $M(x,\xi)$ satisfies (B), then any function $u \in V_0L_M$ may be approximated by functions from $C_c^{\infty}(\Omega)$, in V_0L_M . Also, any function $u \in V_0E_M$ may be approximated by smooth functions in V_0E_M .

$\label{eq:General condition (B)} \textbf{General condition (B)}.$

```
M(x,\xi) \leq M(y,C\xi) + 1 \quad \text{whenever} \quad M(y,C\xi) \leq c|x-y|^{-n}
```

This condition looks good, captures full anisotropy and it is rather easy to verify, but is not optimal.

Theorem (B, I. Chlebicka, 2022)

If $M(x,\xi)$ satisfies (B), then any function $u \in V_0L_M$ may be approximated by functions from $C_c^{\infty}(\Omega)$, in V_0L_M . Also, any function $u \in V_0E_M$ may be approximated by smooth functions in V_0E_M .

The proof of this fact uses Theorem of P. Hästö and some tricks to keep full anisotropy of the space.
Absence of Lavrentiev's phenomenon

Absence of Lavrentiev's phenomenon

Theorem (B, I. Chlebicka, B. Miasojedow, arXiv:2210.15217)

Let the functional ${\mathcal F}$ be given by

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)),$$

where Ω is Lipschitz domain.

Absence of Lavrentiev's phenomenon

Theorem (B, I. Chlebicka, B. Miasojedow, arXiv:2210.15217)

Let the functional ${\mathcal F}$ be given by

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)),$$

where Ω is Lipschitz domain. Moreover, let $M\in\Delta_2$ be an N-function such that $F\approx M$

Let the functional $\mathcal F$ be given by

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)),$$

where Ω is Lipschitz domain. Moreover, let $M\in\Delta_2$ be an N -function such that $F\approx M,$ in the sense that

 $c_1 M(x,\xi) \le F(x,z,\xi) \le c_2 M(x,\xi) + h(x), \quad h \in L^1(\Omega).$

Let the functional $\mathcal F$ be given by

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)),$$

where Ω is Lipschitz domain. Moreover, let $M\in\Delta_2$ be an N -function such that $F\approx M,$ in the sense that

 $c_1 M(x,\xi) \le F(x,z,\xi) \le c_2 M(x,\xi) + h(x), \quad h \in L^1(\Omega).$

Let u_0 be such that $\mathcal{F}[u_0] < \infty$.

Let the functional \mathcal{F} be given by

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \,,$$

where Ω is Lipschitz domain. Moreover, let $M\in\Delta_2$ be an N -function such that $F\approx M,$ in the sense that

 $c_1 M(x,\xi) \le F(x,z,\xi) \le c_2 M(x,\xi) + h(x), \quad h \in L^1(\Omega).$

Let u_0 be such that $\mathcal{F}[u_0] < \infty$.

• Let M satisfy one of the conditions (B_{γ}^{iso}) , (B_{γ}^{ort}) , (B_{γ}^{gen}) with $\gamma = 0$ or condition (B). Then

$$\inf_{u\in u_0+V_0L_M}\mathcal{F}[u]=\inf_{u\in u_0+C_c^\infty(\Omega)}\mathcal{F}[u]\,;$$

Let the functional \mathcal{F} be given by

$$\mathcal{F}[u] = \int_{\Omega} F(x, u(x), \nabla u(x)) \,,$$

where Ω is Lipschitz domain. Moreover, let $M\in\Delta_2$ be an N -function such that $F\approx M,$ in the sense that

$$c_1 M(x,\xi) \le F(x,z,\xi) \le c_2 M(x,\xi) + h(x), \quad h \in L^1(\Omega).$$

Let u_0 be such that $\mathcal{F}[u_0] < \infty$.

• Let M satisfy one of the conditions (B_{γ}^{iso}) , (B_{γ}^{ort}) , (B_{γ}^{gen}) with $\gamma = 0$ or condition (B). Then

$$\inf_{u \in u_0 + V_0 L_M} \mathcal{F}[u] = \inf_{u \in u_0 + C_c^\infty(\Omega)} \mathcal{F}[u];$$

• Let $\gamma \in (0,1]$ and M satisfy one of the conditions $(\mathsf{B}_{\gamma}^{\mathsf{iso}})$, $(\mathsf{B}_{\gamma}^{\mathsf{ort}})$, $(\mathsf{B}_{\gamma}^{\mathsf{gen}})$. Then

$$\inf_{u\in u_0+(V_0L_M\cap C^{0,\gamma})}\mathcal{F}[u]=\inf_{u\in u_0+C_c^\infty(\Omega)}\mathcal{F}[u]\,.$$

Examples

イロト イボト イヨト イヨト

э

$$\mathcal{F}[u] = \int_\Omega M(x, \nabla u(x)) \, dx \,, \, \, \text{where} \quad \ F \approx M \,,$$

$$\mathcal{F}[u] = \int_\Omega M(x, \nabla u(x)) \, dx \,, \, \, \text{where} \quad \ F \approx M \,,$$

•
$$M(x,\xi) = |\xi|^{p(x)}$$
, if $1 < p^- < p \in \mathcal{P}^{\mathsf{loc}}$;

$$\mathcal{F}[u] = \int_\Omega M(x, \nabla u(x)) \, dx \,, \, \, \text{where} \quad \ F \approx M \,,$$

•
$$M(x,\xi) = |\xi|^{p(x)}$$
, if $1 < p^- < p \in \mathcal{P}^{\mathsf{loc}}$;

•
$$M(x,\xi) = |\xi|^p + a(x)|\xi|^q$$
, if $a \in C^{0,\alpha}$, $q \le p + \alpha$;

$$\mathcal{F}[u] = \int_\Omega M(x, \nabla u(x)) \, dx \,, \, \, \text{where} \quad \ F \approx M \,,$$

•
$$M(x,\xi) = |\xi|^{p(x)}$$
, if $1 < p^- < p \in \mathcal{P}^{\mathsf{loc}}$;

•
$$M(x,\xi) = |\xi|^p + a(x)|\xi|^q$$
, if $a \in C^{0,\alpha}$, $q \le p + \alpha$;

•
$$M(x,\xi) = \sum_{i=1}^{n} |\xi_i|^{p_i} + a_i(x)|\xi_i|^{q_i}$$
, if $a_i \in C^{0,\alpha_i}$, $q_i \le p_i + \alpha_i$;

$$\mathcal{F}[u] = \int_\Omega M(x, \nabla u(x)) \, dx \,, \, \, \text{where} \quad \ F \approx M \,,$$

•
$$M(x,\xi) = |\xi|^{p(x)}$$
, if $1 < p^- < p \in \mathcal{P}^{\mathsf{loc}}$;
• $M(x,\xi) = |\xi|^p + a(x)|\xi|^q$, if $a \in C^{0,\alpha}$, $q \le p + \alpha$;
• $M(x,\xi) = \sum_{i=1}^n |\xi_i|^{p_i} + a_i(x)|\xi_i|^{q_i}$, if $a_i \in C^{0,\alpha_i}$, $q_i \le p_i + \alpha_i$;
• $M(x,\xi) = \phi(|\xi|) + a(x)\psi(|\xi|)$, if $\phi, \psi \in \Delta_2$, $\omega_a(t) \le \frac{\phi(t^{-1})}{\psi(t^{-1})}$;

$$\mathcal{F}[u] = \int_\Omega F(x,u(x),\nabla u(x))\,dx\,,\,\,\text{where}\quad F\approx M\,,$$

does not occur between $V_0 E_M \cap C^{0,\gamma}$ and $C_c^{\infty}(\Omega)$ in the following cases

$$\begin{array}{l} \bullet \ M(x,\xi) = |\xi|^{p(x)}, \quad \text{if } 1 < p^{-} < p \in \mathcal{P}^{\mathsf{loc}}; \\ \bullet \ M(x,\xi) = |\xi|^{p} + a(x)|\xi|^{q}, \quad \text{if } a \in C^{0,\alpha}, \, q \leq p + \frac{\alpha}{1-\gamma}; \\ \bullet \ M(x,\xi) = \sum_{i=1}^{n} |\xi_{i}|^{p_{i}} + a_{i}(x)|\xi_{i}|^{q_{i}}, \quad \text{if } a_{i} \in C^{0,\alpha_{i}}, \, q_{i} \leq p_{i} + \frac{\alpha_{i}}{1-\gamma}; \\ \bullet \ M(x,\xi) = \phi(|\xi|) + a(x)\psi(|\xi|), \quad \text{if } \phi, \psi \in \Delta_{2}, \, \omega_{a}(t) \leq \frac{\phi(t^{\gamma-1})}{\psi(t^{\gamma-1})}; \end{array}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Let us again consider the double phase functional

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \, .$$

Let us again consider the double phase functional

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \, .$$

The condition $a \in C^{0,\alpha}$ for $q \leq p + \alpha$ is meaningful only if $q \leq p + 1$.

Let us again consider the double phase functional

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \, .$$

The condition $a \in C^{0,\alpha}$ for $q \leq p + \alpha$ is meaningful only if $q \leq p + 1$.

Is there any condition which captures p and q arbitrary far away?

Let us again consider the double phase functional

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \, .$$

The condition $a \in C^{0,\alpha}$ for $q \leq p + \alpha$ is meaningful only if $q \leq p + 1$.

Is there any condition which captures p and q arbitrary far away?

Does condition (B_0^{iso}) require that *a* is Hölder continuous?

くぼう くまり くまり

Let us again consider the double phase functional

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q \, dx \, .$$

The condition $a \in C^{0,\alpha}$ for $q \leq p + \alpha$ is meaningful only if $q \leq p + 1$.

Is there any condition which captures p and q arbitrary far away?

Does condition (B_0^{iso}) require that *a* is Hölder continuous?

We have answers and we will publish them soon:

B, I. Chlebicka, F. De Filippis, B. Miasojedow, *Absence and presence of Lavrentiev's phenomenon in double phase functionals for every choice of exponents.*

Thank you for your attention!