Unbounded supersolutions with generalized Orlicz growth

Petteri Harjulehto

University of Turku

Monday’s Nonstandard Seminar 2.11.2020
We say that \(\varphi : \Omega \times [0, \infty) \to [0, \infty] \) is a \textit{weak \(\Phi \)-function}, and write \(\varphi \in \Phi_w(\Omega) \), if the following conditions hold:

- For every measurable function \(f : \Omega \to \mathbb{R} \) the function \(x \mapsto \varphi(x, f(x)) \) is measurable and for every \(x \in \Omega \) the function \(t \mapsto \varphi(x, t) \) is non-decreasing.
- \(\varphi(x, 0) = \lim_{t \to 0^+} \varphi(x, t) = 0 \) and \(\lim_{t \to \infty} \varphi(x, t) = \infty \) for every \(x \in \Omega \).
- The function \(t \mapsto \frac{\varphi(x,t)}{t} \) is \(L \)-almost increasing on \((0, \infty)\) with \(L \) independent of \(x \).
Some special cases of Φ-functions:

- $\varphi(x, t) = t^p$ the classical Lebesgue space
- $\varphi(x, t) = \varphi(t)$ the Orlicz space
- $\varphi(x, t) = t^{p(x)} a(x)$ the variable exponent Lebesgue space
- $\varphi(x, t) = t^{p(x)} \log(e + t)$
- $\varphi(x, t) = t^p + a(x) t^q$ the double phase case
We assume that $f : \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ satisfies the following φ-growth conditions:

$$\nu \varphi(x, |\xi|) \leq f(x, \xi) \cdot \xi \quad \text{and} \quad |f(x, \xi)| |\xi| \leq \Lambda \varphi(x, |\xi|)$$

for all $x \in \Omega$ and $\xi \in \mathbb{R}^n$, and fixed but arbitrary constants $0 < \nu \leq \Lambda$. We are interested in local (weak) supersolutions:

Definition 1

A function $u \in W^{1,\varphi}_{\text{loc}}(\Omega)$ is a supersolution if

$$\int_{\Omega} f(x, \nabla u) \cdot \nabla h \, dx \geq 0,$$

for all non-negative $h \in W^{1,\varphi}(\Omega)$ with compact support in Ω.
If φ is differentiable wrt second variable, then our assumptions covers also the equation

$$
\int_{\Omega} \frac{\varphi'(x, |\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla h \geq 0,
$$

for all non-negative $h \in W_{0}^{1,\varphi}(\Omega)$.

Instead of supersolutions, you can think local superminimizers: Every open set $D \subseteq \Omega$ and for every non-negative $v \in W^{1,\varphi}(\Omega)$ with a compact support in D, we have

$$
\int_{D} F(x, |\nabla u|) \, dx \leq \int_{D} F(x, |\nabla (u + v)|) \, dx.
$$

Here $F(x, t) \approx \varphi(x, t)$.
Special case: $\varphi(x, t) = t^p$.

The standard p-Laplace equation $-\text{div}(|\nabla u|^{p-2}\nabla u) = 0$, $1 < p < \infty$. The non-negative weak supersolutions satisfies the weak Harnack inequality

$$\left(\int_{2B} u^s \, dx\right)^{\frac{1}{s}} \lesssim \text{ess inf}_B u,$$

where

- the constant is independent of u,
- $0 < s < \frac{n}{n-p}(p-1)$ when $p < n$, and $s \in (0, \infty)$ when $p \geq n$.

Trudinger (1967)
Special case: Orlicz $\varphi(x, t) = \varphi(t)$.

Theorem 2 (Arriagada–Huentutripay (2018))

Assume that $1 < p \leq \frac{t\psi(t)}{\varphi(t)} \leq q < \infty$ and $\varphi(t) = \int_0^t \psi(t) \, dt$. Let $u \geq 0$ be bounded supersolution. Then

\[
\left(\int_B u^s \, dx \right)^{\frac{1}{s}} \lesssim \text{ess inf}_B u + \text{diam}(B).
\]

There have to be some results for corresponding minimizers.
Special case: variable exponent $\varphi(x, t) = t^{p(x)}$.

Theorem 3 (Lukkari (2010))

Assume that p is log-Hölder continuous and $1 < p^- \leq p^+ < \infty$. Let $t > 0$, $0 < s < \frac{n}{n-1}(p^- - 1)$, and let $u \geq 0$ be supersolution. Then

$$
\left(\int_{2B} u^s \, dx \right)^{\frac{1}{s}} \lesssim \text{ess inf}_B u + \text{diam}(B),
$$

where the constant depends on $L^t_{t}(4B)$-norm of u.

- Bounded supersolutions and $0 < s < \frac{n}{n-1}(p_0 - 1)$, Alkhutov–Krasheninnikova (2004).
Special case: variable exponent $\varphi(x, t) = t^{p(x)}$.

- "$+ \text{diam}(B)$" is not needed if $p \in C^1$, Julin (2015)
- It is not known if "$+ \text{diam}(B)$" is necessary or not.
- In the Harnack’s inequality the constant cannot be independent of u, example in H–Kinnunen–Lukkari (2007)
Special case: double phase $\varphi(x, t) = t^p + a(x)t^q$.

Theorem 4 (Baroni–Colombo–Mingione (2015))

Let $a \in C^{0, \alpha}$, $\alpha \geq \frac{n}{p}(q - p)$. Let $u \geq 0$ be bounded supersolution. Then there exists $s > 0$ such that

$$\left(\int_B u^s \, dx\right)^{\frac{1}{s}} \lesssim \text{ess inf}_B u.$$

Here the constant depends on $\|u\|_{\infty}$.
Other related results:

- \(\varphi(x, t) = t^{p(x)} \) and general structural conditions, Latvala–Toivanen (2017)

- \(\varphi(x, t) = t^{p(x)} \) and \(p \) makes a jump at a hyperplane, Alkhutov–Surnachev (2019)

- \(\varphi(x, t) = t^{p(x)} \) and \(p \) is piecewise constant, Alkhutov–Surnachev (2019, 2020)

- \(\varphi(x, t) = t^{p(x)} \log(e + t) \), Ok (2018)

- Generalized double phase functional, Byen–Oh (2020)
Let \(p, q, s > 0 \) and let \(\omega : \Omega \times [0, \infty) \rightarrow [0, \infty) \) be almost increasing. We say that \(\varphi : \Omega \times [0, \infty) \rightarrow [0, \infty) \) satisfies

(A0) if there exists \(\beta \in (0, 1] \) such that \(\beta \leq \varphi^{-1}(x, 1) \leq \frac{1}{\beta} \) for a.e. \(x \in \Omega \),

(A1-ω) if there exists \(\beta \in (0, 1] \) such that, for every ball \(B \) and a.e. \(x, y \in B \cap \Omega \),

\[
\varphi(x, \beta t) \leq \varphi(y, t) \quad \text{when} \quad \omega_B^{-}(t) \in \left[1, \frac{1}{|B|} \right];
\]

(A1-s) if it satisfies (A1-ω) for \(\omega(x, t) := t^s \);

(A1) if it satisfies (A1-ϕ);

(alnc)_p if \(t \mapsto \frac{\varphi(x,t)}{t^p} \) is \(L_p \)-almost increasing in \((0, \infty)\) for some \(L_p \geq 1 \) and a.e. \(x \in \Omega \);

(aDec)_q if \(t \mapsto \frac{\varphi(x,t)}{t^q} \) is \(L_q \)-almost decreasing in \((0, \infty)\) for some \(L_q \geq 1 \) and a.e. \(x \in \Omega \).
\[\varphi(x, t) := \begin{cases} (A0) & \text{true} \\ (A1) & \text{true} \\ (A1-s) & \text{true} \\ (aInc) & \nabla_2 \\ (aDec) & \Delta_2 \end{cases} \]

<table>
<thead>
<tr>
<th>\varphi(t)</th>
<th>(A0)</th>
<th>(A1)</th>
<th>(A1-s)</th>
<th>(aInc)</th>
<th>(aDec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[t^p a(x)]</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>[\nabla_2]</td>
<td>[\Delta_2]</td>
</tr>
<tr>
<td>[t^p \log(e + t)]</td>
<td>[a \approx 1]</td>
<td>[p \in C^{\log}]</td>
<td>[p \in C^{\log}]</td>
<td>[p^- > 1]</td>
<td>[p^+ < \infty]</td>
</tr>
<tr>
<td>[t^p + a(x)t^q]</td>
<td>[a \in L^\infty]</td>
<td>[a \in C^{0, \frac{n}{p}(q-p)}]</td>
<td>[a \in C^{0, \frac{n}{s}(q-p)}]</td>
<td>[p > 1]</td>
<td>[q < \infty]</td>
</tr>
</tbody>
</table>

Table: Assumptions in some special cases
Theorem 5 (Benyaiche-H-Hästö-Karppinen (accepted))

Suppose \(\varphi \) satisfies (A0), (aInc)\(p \) and (aDec)\(q \), \(1 < p \leq q < \infty \).
Let \(u \geq 0 \) be a supersolution. Assume one of the following:

1. \(\varphi \) satisfies (A1-\(s_* \)) and \(\|u\|_{L^s(B_{2R})} \leq d \), where \(s_* := \frac{ns}{n+s} \) and \(s \in [q-p, \infty] \).
2. \(\varphi \) satisfies (A1) and \(\|u\|_{W^{1,\varphi}(B_{2R})} \leq d \).

Then there exist positive constants \(\ell_0 \) and \(C \) such that

\[
\left(\int_{B_{2R}} (u + R)^{\ell_0} \, dx \right)^{\frac{1}{\ell_0}} \leq C (\text{ess inf}_{B_{R}} u + R).
\]

If (1) holds with \(s > \max\{\frac{n}{p}, 1\}(q-p) \) or if (2) holds with \(p^* > q \), then the weak Harnack inequality holds for any \(\ell_0 < \ell(p) \), where \(\ell(p) = \frac{n}{n-p}(p-1) \) if \(p < n \), and \(\ell(p) = \infty \) if \(p \geq n \).
Other results on generalized Orlicz spaces:

- Bounded supersolutions, Benyaiche–Khlifi (2020).
Proposition 6 (Benyaiche–H–Hästö–Karppinen (accepted))

The (A1-${s}_*$) assumption in the previous theorem is sharp, since for any $s' < s_*$ if, instead of (1), φ satisfies (A1-s') and $\|u\|_{L^s(B_{2R})} \leq d$, then the weak Harnack inequality need not hold.
Let $\varphi \in \Phi_w(\mathbb{R})$ be defined by $\varphi(x, 0) := 0$ and
\[
\varphi'(x, t) := \max\{t^{p-1}, a(x)t^{q-1}\},
\]
so that $\varphi(x, t) \approx \max\{t^p, a(x)t^q\} \approx t^p + a(x)t^q$.
Let u be a solution of $(\varphi'(x, |u'|) \frac{u'}{|u'|})' = 0$ on the interval (a, b). We assume that $\lim_{x \to a^+} u(x) < \lim_{x \to b^-} u(x)$, so u is increasing and $\frac{u'}{|u'|} = 1$. Then the differential equation reduces to $\varphi'(x, u') \equiv c$, i.e.
\[
u'(x) = \begin{cases} \frac{1}{c^{p-1}}, & \text{when } c^{-\frac{q-p}{p-1}} \geq a(x), \\ (c/a(x))^{\frac{1}{q-1}}, & \text{otherwise}. \end{cases}
\]
We further assume that $a(x) := \max\{-x, 0\}^\alpha$. Since a is decreasing, we obtain that
\[
u'(x) = \begin{cases} \frac{1}{c^{p-1}}, & \text{when } x \geq -x_0, \\ (c|x|^{-\alpha})^{\frac{1}{q-1}}, & \text{when } x < -x_0, \end{cases} \quad \text{for } x_0 := c^{-\frac{1}{\alpha}} \frac{q-p}{p-1}.
Figure: Solution for $c = 1.01, 1.1, 1.2, 1.3, 1.4$ in $[-1, 1]$. The parameters are $p = 1.1$, $q = 2$ and $\alpha = 0.5$. The right boundary values have been partly cut away but they are in the range $[2, 32]$. The point indicates x_0.