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Physical laws and simplifications

® mass balance
0+ odivvy =0 Oro+div(ov) =0

® linear momentum balance
pv=divT + b p(Ov+v-Vv)=divT + b
® angular momentum balance supplement:
T symmetric

T = T — pl is Cauchy stress (for contact forces), b are body forces (e.g. fields)

Working assumptions
® incompressible divv =0 — p =0

i homogenous 0 = const
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Specific models

Ov+v-Vv+Vp=divT +b, divve=0
Aim: choose T
* T(Vv), so by frame indifference 7(Dv) and T isotropic

® representation of isotropic functions
T(Dv) = al + BDv + v(Dv)?

«, B, scalar functions depending on invariants of Dv:
tr, $((tr)* — tr(%)), det

Example of choices
® o = 3 =~ =0: Euler's equation
® o =v=0, 8= 1o Navier-Stokes equation

* a=~v=08=(w+ |Dv|)"72: non-Newtonian fluid
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Newtonian vs non-Newtonian fluids

Ov+v-Vv+ Vp=diviyDv + b, divv=0
vo: constant viscosity (Newtonian)
(clip)

but viscosity may change under applied forces (non-Newtonian), e.g.
Orv+v-Vv+Vp=div <(Vo+‘DV‘)q_2DV>+b, divv =0

power-law model: 1929 Norton for molten steel, Ostwald for polymers

® g < 2 forces decrease viscosity (paints, ketchup, ice)

® g > 2 forces increase viscosity (corn starch+water, silicone solutions)
(clip)
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job of an (applied) mathematician

take a reasonable model and check its basic analytical properties

(i) existence of solutions
(ii

) uniqueness of solutions (for reasonable initial data)
(i) stability on data
)

(iv) dynamical/regularity properties
for Euler and Navier-Stokes: only (i) satisfactorily answered

Ladyzhenskaya ICM 1966 suggestion: think of power-law fluids
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Rules of thumb

Otv + v - Vv —div ((1/0 + \Dv\)q72Dv) =Vp
divv=0

Jivb@ 2 [ [wo+ Dy 2o

Scaling (case v = 0)

Energy

-1
= A v(Ax, AT with = g--
A ( ) 3 4
Suggest:

e WY cc L for g > d2f2 — existence of a solution
® energy of vy as A — oo blows up iff g > 3j++22
3d+2
d+2 !

—> v - Vv plays no role

for g > i.e. uniqueness
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results overview

rigorous proofs of g > d+2 and g > 3j++22 thresholds 1969-2020:
Ladyzhenskaya, Ne&as, Malek, Diening, Buli¢ek

existence of a Leray-Hopf solution

uniqueness of energy-class
solutions

\J

\J

1 2d 2 3d+2 B
d+2 ¥ d+2 ¥

cumpactness threshold scaling threshold
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our contribution (B, Modena, Székelyhidi)

dual picture in g

Multiple Leray-Hopf solutions possible.

Multiple kinetic energy solutions possible.
For each L2 datum there are many weak
solutions.

>
1 2d 2 3d+2 g
d+2 ¥ d+2 ¥

compactness threshold scaling threshold

recall:

existence of a Leray-Hopf solution

uniqueness of energy-class

solutions \
b | Y
1 2d 2 3d+2 P
A2 ¥ d+2 ¥

compactness threshold scaling threshold
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h-principle in fluid dynamics

® relax PDE to PDRelation with error R
® correct solution to PDR with fast-oscillating function to reduce R

® if problem is flexible enough, we can produce a solution to PDE, which is
‘close’ to PDR

® many PDRs = many solutions to PDEs
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h-principle in fluid dynamics

® relax PDE to PDRelation with error R
® correct solution to PDR with fast-oscillating function to reduce R

® if problem is flexible enough, we can produce a solution to PDE, which is
‘close’ to PDR

® many PDRs = many solutions to PDEs

v 4+ div (v ® v) — divA(Dv) = Vp

average

OV +div (v ® v) — divA(DV) — Vp =div (V® vV — v® v) — div (A(DV) — A(Dv))
=:divR

v - ‘laminar flow’, R - Reynolds stress (measure of turbulence)
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Reducing the error

take (uo, qo, Ro) solving Non-Newtonian-Reynolds
B¢ uo + div (0o ® o) — div ((vo + |Duo\)q72Duo) +Vp=—divRy
aim: produce (u1, g1, R1) via
uy = Up + Up

so that u, ® up, — Ro small.

M= TiM)k® k
keK

up:Z\/\Ro\l—k(&)Wk, WEe W=k k
X |R0| Jd

R
Up @ Up— Ro =Y |R0\ri(|Tz|)P#0Wk ® Wk
k

div(W W) =0 = div (up®@up—R: Zv(u&mr2 R |)) PoW oW*

Ry = div ™~ (Ev(mork |R|)) P¢0Wk®Wk)
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Full derivative by concentrated Mikado flows

up—Z\/|R0 rk(‘R ‘>W
divWi, =0, div(Wi,e WS,) =0,

][d Wk, =0, ][d WE, @ Wey=kek
T T

W:’A and W, , have disjoint supports for k # r and

d—1

d—
VW irray < Cls, [KDA 7
If d —1— d above, then

VWil 29 - <A™

2d_ =
Ld+2 (Td)
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d = 3 by concentrated, localized, traveling Mikado flows

Aim: d — d — 1. Localisation destroys Euler-like properties.

div(W' @ W) =0 = div(u, ® up — Ro) = »_ V(ak)PaW* @ W*
k

div (up @ up — Ro) ~ > (ProW" ® W )V (a})
kekK

+> (][ Wk e wk - k®k)V(ai)+Zaﬁdiv(Wk® wh).

keK kek

Yk~ —ldiv(wk @ WH
w
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Iteration Step

Fix any e € C*°([0,1]; [3,1]). (uo, ™o, Ro) solves

Ortp + div (uo ® wg) — div A(Dup) + Vo = —div Ry,
divu =0.

Take any 6,7 € (0,1]. Assume

%56( t) < e(t) — (/ uo® t)+2/ / Duo)DUo)< 20e(t)

and 5
(B, < T rh

Then, 3 solution (u1, w1, R1)
(1 = w)(t)|2 < M6

[(u1 — wo)(t)|wre <7
[Ru(t)[, <.

%(Se(t) <e(t)— </1rd lu[2(t) + 2/0t/Td A(Dul)Du1> < gée(t).
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Highlights

® non-uniqueness picture, sharp in powers
Multiple Leray-Hopf solutions possible.
Multiple kinetic energy solutions possible.

For each L2 datum there are many weak
solutions.

sca\mé threshold

® improves regularity of NSE non-unique weak solutions by
Buckmaster&Vicol

® avoids Fourier side
® avoids meticulous control of decays

® introduces concentration mechanism into fluid-dynamics convex
integration

® provides improved antidivergence operators
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