Local behaviour of solutions

to nonstandard growth measure data problems

Iwona Chlebicka
joint project with Flavia Giannetti and Anna Zatorska-Goldstein

MIMUW @ University of Warsaw

PolWoMath Seminar
13.10.2010

1of14
EEEEE————————————————————————



Goals

—divA(x,Du) = in Q c RN

with nonnegative bounded measure p and Carathéodory's function
A: QxRN — RN — nonlinear operator (including A and A,).
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Goals

—divA(x,Du) = in Q c RN
with nonnegative bounded measure p and Carathéodory's function

A: QxRN — RN — nonlinear operator (including A and A,).

Solutions can be unbounded, but we can control them precisely by a
certain potential and infer local properties such as Holder continuity.

C., Giannetti, Zatorska—Goldstein, Wolff potentials and local behaviour of
solutions to measure data elliptic problems with Orlicz growth, arxiv:2006.02172
Problems:

e definition of solution

e Orlicz growth (no homogeneity A(x, k&) = |k|P72kA(x, €))

® measurable dependence x — A(x, )
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Measure data problems

—Au=_p
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Measure data problems

—Au=_p

~Apu = —div(|DulP~2Du) = p

—divA(x, Du) = p,
where A(x,€) - £ ~ G(|¢|) <= doubling e.g. Gp o(s) = s”log®(1 + s)
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Who can be called ‘a solution’?

A function u € W,i’CG(Q) is called a weak solution to a problem

—divA(x,Du) = p in Q,
u=0 on 09,

if /A(x7 Du)- D¢ dx = / ¢ du(x) forevery ¢ e C°(RQ).
Q Q
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—divA(x,Du) = p in Q,
u=0 on 09,

if /A(x7 Du)- D¢ dx = / ¢ du(x) forevery ¢ e C°(RQ).
Q Q

It's too restrictive for arbitrary data!

Weak solutions are too restrictive,
distributional solutions can be wild... :(
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Who can be called ‘a solution’?

Wild, but not too wild
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Who can be called ‘a solution’?

Wild, but not too wild
Well, already for —A,u = g in B(0,1)
we deal with the so-called fundamental solution

1) ifl<p<n,
60 =g, { (7T 1) 1Py
—log|x| if p=n,

which does not belong to the enegy space Wol’p(B(O, 1)), but we like it!
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we deal with the so-called fundamental solution

1) ifl<p<n,
60 =g, { (7T 1) 1Py
—log|x| if p=n,

which does not belong to the enegy space Wol’p(B(O, 1)), but we like it!

One may study various kids of very weak solutions:

SOLA (Boccardo&Gallouét '89), renormalized solutions

(DiPerna&Lions '89, Boccardo, Giachetti, Diaz, Murat '93), entropy

solution (Bénilan, Boccardo, Gallouét, Gariepy, Pierre, Vazquez,

Murat '95), or (Kilpeldinen, Kuusi, Tuhola-Kujanpaa '11)

A-superharmonic functions.
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A-harmonicity
A continuous function u € W,i’CG(Q) is an A-harmonic function in an
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implies u > h in K (u is A-subharmonic if (—u) is A-superharmonic).
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A-harmonicity
A continuous function u € W,i’CG(Q) is an A-harmonic function in an
open set Q if it is a (weak) solution to —div.A(x, Du) = 0.

A-super/subharmonicity

We say that a lower semicontinuous function u is A-superharmonic if
for any K € Q and any A-harmonic h € C(K) in K, u > h on 0K
implies u > h in K (u is A-subharmonic if (—u) is A-superharmonic).

An A-superharmonic function
e is defined everywhere,

e can be unbounded,

® generates a measure.

This guy we want to ‘control by a potential’ and prove its regularity.
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Potential estimate in the linear case 1/2

Global case

If usolves —Au = i in RV, then
u(x) = / G(x,y)du(y)
RN

with Green's function

Ix —y|>=" if n> 2,

G(x) = c,,{

—log|x —y| ifn=2,
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Potential estimate in the linear case 1/2

Global case

If usolves —Au = i in RV, then
u(x) = / G(x,y)du(y)
RN

with Green's function

Ix —y|>=" if n> 2,

G(x) = c,,{

—log|x —y| ifn=2,
so it can be estimated as follows

d
lu()l < /RN |X’_H)’/(|),:)_2 =:Ip(Jul)(x) < Riesz potential
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Potential estimate in the linear case 2/2

Local behaviour of solutions to —Au = p

Localized/trucated Riesz potential of a nonnegative measure

5(x, R) ::/RM(BQ(X))C/Q <n/B dlul(y)

0 Qn—2 0 ~ (%) |X _y|n—2

d
< /RN m = Ix(|u])(x) < Riesz potential

Then locally

lu(x)| < C (I5(x, R) + ‘sth not that much important’) .
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Local behaviour of solutions to —Au = p

Localized/trucated Riesz potential of a nonnegative measure

Py (G Ly Tl

0 Qn—2 0 ~ (%) |X _y|n—2

d
< /RN m = Ix(|u])(x) <= Riesz potential

Then locally

lu(x)| < C (I5(x, R) + ‘sth not that much important”) .
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Potential estimate in the power growth case
—Apu = —div(|DulP™2Du) = p for 1 < p < oo

Expecting
lu(x)| < C (WHh(x, R) + ‘sth(u, R) not that much important') ,

we have to employ another potential

Wi, R) = / (m@g») i

Qn

called Wolff potential (similar ones were considered by Havin & Maz'ya).
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Potential estimate in the power growth case
—Apu = —div(|DulP™2Du) = p for 1 < p < oo

Expecting
lu(x)| < C (WHh(x, R) + ‘sth(u, R) not that much important') ,
we have to employ another potential
1 (By(x))
Wg(X, R):/ ( ngl dg

0 [
called Wolff potential (similar ones were considered by Havin & Maz'ya).
For p = 2 we are back with Riesz potential.

Kilpeldinen & Maly ['92,'94] proven that for 1 > 0 we actually have
WE(x, R) < u(x) S WhH(x,2R) + 'sth(u, R)'
"I;rudlinger & Wang [2002], Korte & Kuusi [2010], Kuusi & Mingione [2018]
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The operator of general growth

Growth & ellipticity condition

G < Ax.€) € and  JA(x, )| < cg'g([¢)),
g=G and Ge A, NV,
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The operator of general growth

Growth & ellipticity condition

G'GEN <A €) -6 and A < cs'g(€]),
g =G and G € ANV, (= G is sandwiched between power functions)
e.g. Zygmund-type function Gp o(s) = s”log®(1 + s)

Examples

—div(a(x)Du) = p with 0k ae€ L*(Q)
—div (a(x)|Du|p_2Du> =pu with 0<ael™(Q)

—div (a(x) G’(D‘SL;D Du) =pu with 0<ael™(Q)
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Theorem

Assume that v is a nonnegative function being A-superharmonic and
finite a.e. in B(xp, Ryy) € Q for some Ryy. Let (Havin-Mazy'a-)Wolff
potential be given by

Wi )= [t (1Bl

rn—l

with 11, generated by v and g = G'.
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potential be given by

W (x0, R) = /ORg‘l (’l”(i(f‘i’ r))> dr

with s, generated by u and g = G'. Then for R € (0, Ryy/2) we have

CL Wi (x0,R) — R) < u(xo) < Cy ( inf_u(x) + Wi (x0, R) + R)

(X07R)

with Cp, Cy > 0 depending only on parameters ig, sg, CiA, c{‘, n.

11 of 14



Theorem

Assume that v is a nonnegative function being A-superharmonic and
finite a.e. in B(xp, Ryy) € Q for some Ryy. Let (Havin-Mazy'a-)Wolff
potential be given by

We' (%0, R) = /OR g (””(B(X‘Jr))> dr

rn—l

with s, generated by u and g = G'. Then for R € (0, Ryy/2) we have

(X07R)

CL Wi (x0,R) — R) < u(xo) < Cy ( inf_u(x) + Wi (x0, R) + R)

with Cp, Cy > 0 depending only on parameters ig, sg, CiA, c{‘, n.
* Similar upper bound was proven by Maly [2003] for .A-superminimizer.
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Powerful corollaries
u > 0 is A-superharmonic and finite a.e. and p, := —div.A(x, Du) (distrib.)

e The result is sharp as the same potential controls bounds from
above and from below.

* uis continuous in xg <= WZ¢“(x, r) is small for x € B(xo, r).

e if —div.A(x, Du) = p, = dx,; x is close to xg, r = |x — xp|, then

o1 (/2r g1 (Slfn) ds — r> < u(x)
<c (/2rg_1 (sl_”) ds +infu+ r) .
r BZr

If additionally G is so fast in infinity that [y g~ (s'™") ds < oo,
then u € L°°(B,). This bound is optimal.
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Powerful corollaries
u > 0 is A-superharmonic and finite a.e. and p, := —div.A(x, Du) (distrib.)

® uc CO’B(Q) = puo(B(x,r)) < cr"tg(rf=1) ~ =06 (7Y

loc

(Orlicz-Morrey-type condition; * [C., Karppinen, 2019])
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(1€ L(5, = ~1.)(Q)) implies continuity of the solution

e Orlicz version of the fact that Marcinkiewicz regularity of the
datum (u € L( )(2)) implies Holder continuity of the

solution.

_n___
po(p—1) >°
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(Orllcz Morrey-type condition; * [C., Karppinen, 2019])

e Orlicz version of the fact that Lorentz regularity of the datum
(1€ L(5, = ~1.)(Q)) implies continuity of the solution

e Orlicz version of the fact that Marcinkiewicz regularity of the
datum (u € L( 00)(£2)) implies Holder continuity of the
solution.

e Orlicz version of Hedberg—Wolff Theorem yielding full
characterization of the natural dual space to WOI’G(Q) by the
means of the Wolff potential

_n___
p+6(p—1)°
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Powerful corollaries
u > 0 is A-superharmonic and finite a.e. and p, := —div.A(x, Du) (distrib.)

e ue CAQ) = puo(B(x,r)) < cr"lg(r'7) ~ r=0G(r07Y)
(Orllcz Morrey-type condition; * [C., Karppinen, 2019])

e Orlicz version of the fact that Lorentz regularity of the datum
(1€ L(5, = ~1.)(Q)) implies continuity of the solution

e Orlicz version of the fact that Marcinkiewicz regularity of the
datum (u € L( 00)(£2)) implies Holder continuity of the
solution.

e Orlicz version of Hedberg—Wolff Theorem yielding full
characterization of the natural dual space to WOI’G(Q) by the
means of the Wolff potential

e For more see C., Giannetti, Zatorska—Goldstein, Wolff
potentials and local behaviour of solutions to measure data elliptic
problems with Orlicz growth, arXiv:2006.02172
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Thank you for your attention!

see https://wuw.mimuw.edu.pl/ ichlebicka/publications
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