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Goals

−divA(x ,Du) = µ in Ω ⊂ RN

with nonnegative bounded measure µ and Carathéodory’s function
A : Ω× RN → RN =⇒ nonlinear operator (including ∆ and ∆p).

Solutions can be unbounded, but we can control them precisely by a
certain potential and infer local properties such as Hölder continuity.

C., Giannetti, Zatorska–Goldstein, Wolff potentials and local behaviour of
solutions to measure data elliptic problems with Orlicz growth, arXiv:2006.02172

Problems:
• definition of solution
• Orlicz growth (no homogeneity A(x , kξ) = |k |p−2kA(x , ξ))
• measurable dependence x 7→ A(x , ξ)
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C., Giannetti, Zatorska–Goldstein, Wolff potentials and local behaviour of
solutions to measure data elliptic problems with Orlicz growth, arXiv:2006.02172

Problems:
• definition of solution
• Orlicz growth (no homogeneity A(x , kξ) = |k |p−2kA(x , ξ))
• measurable dependence x 7→ A(x , ξ)

2 of 14



Goals

−divA(x ,Du) = µ in Ω ⊂ RN

with nonnegative bounded measure µ and Carathéodory’s function
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Measure data problems

−∆u = µ

−∆pu = −div(|Du|p−2Du) = µ

−divA(x ,Du) = µ,

where A(x , ξ) · ξ ' G (|ξ|)⇐ doubling e.g. Gp,α(s) = sp logα(1 + s)
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Who can be called ‘a solution’?

A function u ∈W 1,Gloc (Ω) is called a weak solution to a problem{
−divA(x ,Du) = µ in Ω,

u = 0 on ∂Ω,

if
∫

Ω

A(x ,Du) · Dφ dx =

∫
Ω

φ dµ(x) for every φ ∈ C∞c (Ω).

It’s too restrictive for arbitrary data!

Weak solutions are too restrictive,
distributional solutions can be wild... :(
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Who can be called ‘a solution’?

Wild, but not too wild

Well, already for −∆pu = δ0 in B(0, 1)
we deal with the so-called fundamental solution

G (x) = cn,p

{(
|x |

p−n
p−1 − 1

)
if 1 < p < n,

− log |x | if p = n,
|x | 6= 0,

which does not belong to the enegy space W 1,p0 (B(0, 1)), but we like it!

One may study various kids of very weak solutions:
SOLA (Boccardo&Gallouët ’89), renormalized solutions
(DiPerna&Lions ’89, Boccardo, Giachetti, Diaz, Murat ’93), entropy
solution (Bénilan, Boccardo, Gallouët, Gariepy, Pierre, Vazquez,
Murat ’95), or (Kilpeläinen, Kuusi, Tuhola-Kujanpää ’11)

A-superharmonic functions.
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Who can be called ‘a solution’?

A-harmonicity
A continuous function u ∈W 1,Gloc (Ω) is an A-harmonic function in an
open set Ω if it is a (weak) solution to −divA(x ,Du) = 0.

A-super/subharmonicity
We say that a lower semicontinuous function u is A-superharmonic if
for any K b Ω and any A-harmonic h ∈ C (K ) in K , u ­ h on ∂K
implies u ­ h in K (u is A-subharmonic if (−u) is A-superharmonic).

An A-superharmonic function
• is defined everywhere,
• can be unbounded,
• generates a measure.

This guy we want to ‘control by a potential’ and prove its regularity.
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Potential estimate in the linear case 1/2
Global case

If u solves −∆u = µ in RN , then

u(x) =

∫
RN

G (x , y) dµ(y)

with Green’s function

G (x) = cn

{
|x − y |2−n if n > 2,

− log |x − y | if n = 2,

so it can be estimated as follows

|u(x)| .
∫
RN

d |µ|(y)

|x − y |n−2
=: I2(|µ|)(x) ⇐ Riesz potential
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Potential estimate in the linear case 2/2
Local behaviour of solutions to −∆u = µ

Localized/trucated Riesz potential of a nonnegative measure

Iµ2 (x ,R) :=

∫ R

0

|µ|(B%(x))

%n−2
d%

%
.n

∫
BR(x)

d |µ|(y)

|x − y |n−2

¬
∫
RN

d |µ|(y)

|x − y |n−2
= I2(|µ|)(x) ⇐ Riesz potential

Then locally

|u(x)| ¬ C
(
Iµ2 (x ,R) + ‘sth not that much important ′

)
.
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Potential estimate in the power growth case
−∆pu = −div(|Du|p−2Du) = µ for 1 < p <∞

Expecting

|u(x)| ¬ C
(
Wµ

p (x ,R) + ‘sth(u,R) not that much important ′
)
,

we have to employ another potential

Wµ
p (x ,R) =

∫ R

0

(
|µ|(B%(x))

%n−1

) 1
p−1

d%

called Wolff potential (similar ones were considered by Havin & Maz’ya).

For p = 2 we are back with Riesz potential.

Kilpeläinen & Malý [’92,’94] proven that for µ ­ 0 we actually have

Wµ
p (x ,R) . u(x) .Wµ

p (x , 2R) + ‘sth(u,R)′

Trudinger & Wang [2002], Korte & Kuusi [2010], Kuusi & Mingione [2018]
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Kilpeläinen & Malý [’92,’94] proven that for µ ­ 0 we actually have

Wµ
p (x ,R) . u(x) .Wµ

p (x , 2R) + ‘sth(u,R)′

Trudinger & Wang [2002], Korte & Kuusi [2010], Kuusi & Mingione [2018]
9 of 14



The operator of general growth

Growth & ellipticity condition

cA1 G (|ξ|) ¬ A(x , ξ) · ξ and |A(x , ξ)| ¬ cA2 g(|ξ|),

g = G ′ and G ∈ ∆2 ∩∇2

(⇒ G is sandwiched between power functions)
e.g. Zygmund-type function Gp,α(s) = sp logα(1 + s)

Examples

− div (a(x)Du) = µ with 0� a ∈ L∞(Ω)

− div
(
a(x)|Du|p−2Du

)
= µ with 0� a ∈ L∞(Ω)

− div
(
a(x)

G (|Du|)
|Du|2

Du

)
= µ with 0� a ∈ L∞(Ω)
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Theorem

Assume that u is a nonnegative function being A-superharmonic and
finite a.e. in B(x0,RW) b Ω for some RW . Let (Havin-Mazy’a-)Wolff
potential be given by

Wµu
G (x0,R) =

∫ R

0
g−1

(
µu(B(x0, r))

rn−1

)
dr

with µu generated by u and g = G ′.

Then for R ∈ (0,RW/2) we have

CL

(
Wµu

G (x0,R)− R
)
¬ u(x0) ¬ CU

(
inf

B(x0,R)
u(x) +Wµu

G (x0,R) + R

)

with CL,CU > 0 depending only on parameters iG , sG , c
A
1 , c

A
2 , n.

* Similar upper bound was proven by Malý [2003] for A-superminimizer.
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Powerful corollaries
u ­ 0 is A-superharmonic and finite a.e. and µu := −divA(x ,Du) (distrib.)

• The result is sharp as the same potential controls bounds from
above and from below.

• u is continuous in x0 ⇐⇒ Wµu
G (x , r) is small for x ∈ B(x0, r).

• if −divA(x ,Du) = µu = δx0 ; x is close to x0, r = |x − x0|, then

c−1
(∫ 2r

r
g−1

(
s1−n

)
ds − r

)
¬ u(x)

¬ c

(∫ 2r
r

g−1
(
s1−n

)
ds + inf

B2r
u + r

)
.

If additionally G is so fast in infinity that
∫
0 g
−1 (s1−n) ds <∞,

then u ∈ L∞(Br ). This bound is optimal.

12 of 14



Powerful corollaries
u ­ 0 is A-superharmonic and finite a.e. and µu := −divA(x ,Du) (distrib.)

• u ∈ C 0,βloc (Ω) ⇐⇒ µu,θ(B(x , r)) ¬ crn−1g(rθ−1) ' rn−θG (rθ−1)
(Orlicz-Morrey-type condition; * [C., Karppinen, 2019])

• Orlicz version of the fact that Lorentz regularity of the datum
(µ ∈ L(np ,

1
p−1)(Ω)) implies continuity of the solution

• Orlicz version of the fact that Marcinkiewicz regularity of the
datum (µ ∈ L( n

p+θ(p−1) ,∞)(Ω)) implies Hölder continuity of the
solution.

• Orlicz version of Hedberg–Wolff Theorem yielding full
characterization of the natural dual space to W 1,G0 (Ω) by the
means of the Wolff potential

• For more see C., Giannetti, Zatorska–Goldstein, Wolff
potentials and local behaviour of solutions to measure data elliptic
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solution.

• Orlicz version of Hedberg–Wolff Theorem yielding full
characterization of the natural dual space to W 1,G0 (Ω) by the
means of the Wolff potential

• For more see C., Giannetti, Zatorska–Goldstein, Wolff
potentials and local behaviour of solutions to measure data elliptic
problems with Orlicz growth, arXiv:2006.02172

13 of 14



Powerful corollaries
u ­ 0 is A-superharmonic and finite a.e. and µu := −divA(x ,Du) (distrib.)

• u ∈ C 0,βloc (Ω) ⇐⇒ µu,θ(B(x , r)) ¬ crn−1g(rθ−1) ' rn−θG (rθ−1)
(Orlicz-Morrey-type condition; * [C., Karppinen, 2019])

• Orlicz version of the fact that Lorentz regularity of the datum
(µ ∈ L(np ,

1
p−1)(Ω)) implies continuity of the solution

• Orlicz version of the fact that Marcinkiewicz regularity of the
datum (µ ∈ L( n

p+θ(p−1) ,∞)(Ω)) implies Hölder continuity of the
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Thank you for your attention!

see https://www.mimuw.edu.pl/~ichlebicka/publications
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