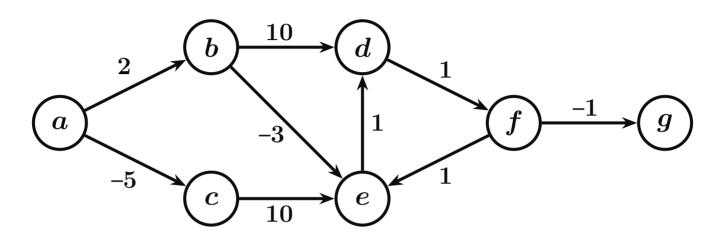
Which Semilinear Target Sets Make Reachability in 1-VASS Easy?

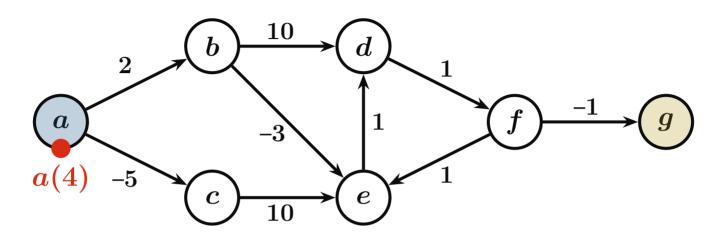
Henry Sinclair-Banks

Based on work with Yousef Shakiba and Georg Zetzsche that was accepted to LICS'25.

1-VASS

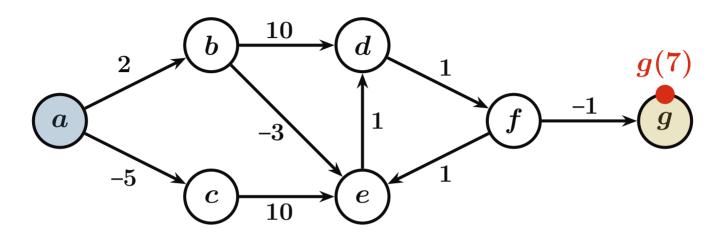


Reachability Problems in 1-VASS



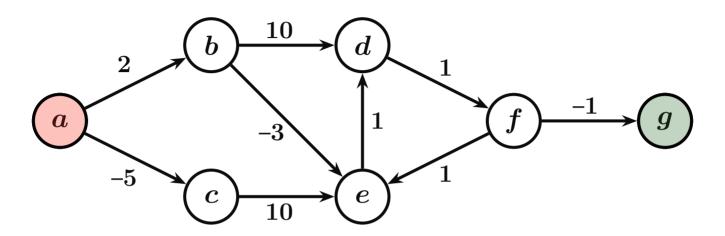
From a with counter value 4, can you reach g with counter value 7?

Reachability Problems in 1-VASS



From a with counter value 4, can you reach g with counter value 7? Yes!

Reachability Problems in 1-VASS



From a with counter value 4, can you reach g with counter value 7?

From a with counter value 4, can you reach g with counter value at least 14? Yes

Motivation

Reachability: In a given 1-VASS, can p(x) reach q(y)?

Theorem. Reachability in (binary encoded) 1-VASS is NP-hard.

Coverability: In a given 1-VASS, can p(x) reach q(y') for some $y' \geq y$?

Theorem. Coverability in (binary encoded) 1-VASS is $NC^2 \subseteq P$.

Motivation

Reachability: In a given 1-VASS, can p(x) reach q(y)?

Theorem. Reachability in (binary encoded) 1-VASS is HARD

Coverability: In a given 1-VASS, can p(x) reach q(y') for some $y' \geq y$?

Theorem. Coverability in (binary encoded) 1-VASS is

EASY

Motivation

Reachability: In a given 1-VASS, can p(x) reach q(y)?

Theorem. Reachability in (binary encoded) 1-VASS is HARI

What makes reachability hard and coverability easy?

Generalising Reachability and Coverability

Reach(S)

Fixed: A parameterised semilinear set $S \subseteq \mathbb{Z}^p \times \mathbb{N}$.

Input: A 1-VASS \mathcal{V} , an initial configuration p(x), and parameter values $\vec{t} \in \mathbb{Z}^p$.

Question: Does there exist a reachable configuation q(y) such that $(\vec{t},y) \in S$?

Generalising Reachability and Coverability

Reach(S)

Fixed: A parameterised semilinear set $S \subseteq \mathbb{Z}^p \times \mathbb{N}$.

Input: A 1-VASS \mathcal{V} , an initial configuration p(x), and parameter values $\vec{t} \in \mathbb{Z}^p$.

Question: Does there exist a reachable configuation q(y) such that $(\vec{t},y) \in S$?

Examples

Reachability: $S = \{(t, y) : y = t\}$

Coverability: $S = \{(t, y) : y \ge t\}$

Cover and avoid: $S = \{(t_1, t_2, y) : y \geq t_1 \, \wedge \, y
eq t_2\}$

Reach an interval: $S = \{(t, y) : t \le y \le 2t\}$

Generalising Reachability and Coverability

$\operatorname{REACH}(S)$

Fixed: A parameterised semilinear set $S \subseteq \mathbb{Z}^p \times \mathbb{N}$.

Input: A 1-VASS \mathcal{V} , an initial configuration p(x), and parameter values $\vec{t} \in \mathbb{Z}^p$.

Question: Does there exist a reachable configuation q(y) such that $(\vec{t},y) \in S$?

Examples

Reachability: $S = \{(t,y): y=t\}$ HARD

Coverability: $S = \{(t,y): y \geq t\}$

Cover and avoid: $S = \{(t_1, t_2, y) : y \geq t_1 \, \land \, y \neq t_2\}$ EASY

Reach an interval: $S = \{(t,y): t \leq y \leq 2t\}$ HARD

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{N}$ be a semilinear set.

- (1) If S is uniformly quasi-upwards closed, then $\operatorname{REACH}(S)$ is
- (2) Otherwise, REACH($oldsymbol{S}$) is HARD

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{N}$ be a semilinear set.

- (1) If S is uniformly quasi-upwards closed, then $\operatorname{REACH}(S)$ is $\operatorname{ textsf{EASY}}$
- (2) Otherwise, REACH(S) is HARD

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{N}$ be a semilinear set.

- (1) If S is uniformly quasi-upwards closed, then $\operatorname{REACH}(S)$ is EASY
- (2) Otherwise, REACH(S) is HARD

Upwards closed: $\{10, 11, 12, 13, \ldots\}$.

 δ -upwards closed: $\{10,15,17,20,22,25,27,\ldots\}$ is 5-upwards closed.

 (δ, M) -upwards closed: $\{10, 17, 20, 22, 27, 30, 32, 35, \ldots\}$ is (5, 2)-upwards closed.

Uniformly quasi-upwards closed

There exists $\delta, M \in \mathbb{N}$ such that, for all $ec{t} \in \mathbb{Z}^p$, $\{y: (ec{t},y) \in S\}$ is (δ,M) -upwards closed.

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{N}$ be a semilinear set.

- (1) If S is uniformly quasi-upwards closed, then $\operatorname{REACH}(S)$ is EASY
- (2) Otherwise, $\operatorname{REACH}(S)$ is HARD

Upwards closed: $\{10, 11, 12, 13, \ldots\}$.

 δ -upwards closed: $\{10,15,17,20,22,25,27,\ldots\}$ is 5-upwards closed.

 (δ,M) -upwards closed: $\{10,17,20,22,27,30,32,35,\ldots\}$ is (5,2)-upwards closed.

Uniformly quasi-upwards closed

There exists $\delta, M \in \mathbb{N}$ such that, for all $ec{t} \in \mathbb{Z}^p$, $\{y: (ec{t},y) \in S\}$ is (δ,M) -upwards closed.

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{N}$ be a semilinear set.

- (1) If S is uniformly quasi-upwards closed, then Reach(S) is in AC^1 .
- (2) Otherwise, Reach(S) is NP-hard.

Upwards closed: $\{10, 11, 12, 13, \ldots\}$.

 δ -upwards closed: $\{10,15,17,20,22,25,27,\ldots\}$ is 5-upwards closed.

 (δ,M) -upwards closed: $\{10,17,20,22,27,30,32,35,\ldots\}$ is (5,2)-upwards closed.

Uniformly quasi-upwards closed

There exists $\delta, M \in \mathbb{N}$ such that, for all $ec{t} \in \mathbb{Z}^p$, $\{y: (ec{t},y) \in S\}$ is (δ,M) -upwards closed.

If S is uniformly quasi-upwards closed, then $\overline{\text{Reach}(S)}$ is in AC^1 .

If S is uniformly quasi-upwards closed, then $\operatorname{REACH}(S)$ is in $\operatorname{\mathsf{AC}^1}$.

If S is uniformly quasi-upwards closed, then $\operatorname{REACH}(S)$ is in $\operatorname{\mathsf{AC}^1}$.

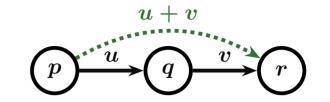
Theorem. Coverability in (binary encoded) 1-VASS is in NC².

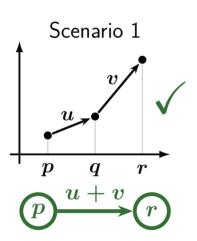
[Almagor, Cohen, Pérez, Shirmohammadi, and Worrell 2020]

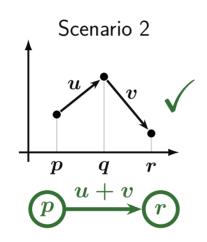
STEP 0: Let \mathcal{V}_0 be the given 1-VASS.

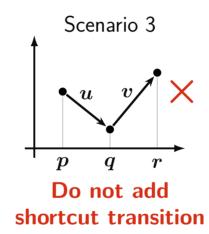
STEP 0: Let \mathcal{V}_0 be the given 1-VASS.

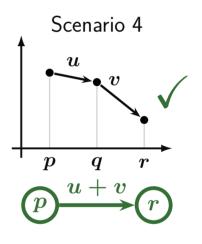
STEP 1: Create \mathcal{V}_1 from \mathcal{V}_0 by adding "shortcut transitions":





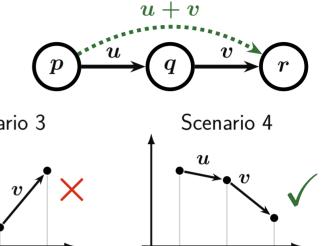


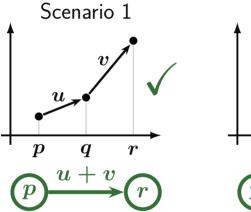


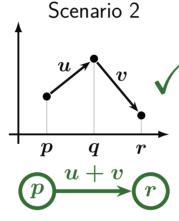


STEP 0: Let \mathcal{V}_0 be the given 1-VASS.

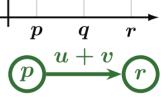
STEP 1: Create \mathcal{V}_1 from \mathcal{V}_0 by adding "shortcut transitions":







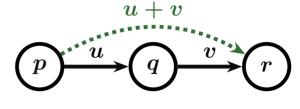


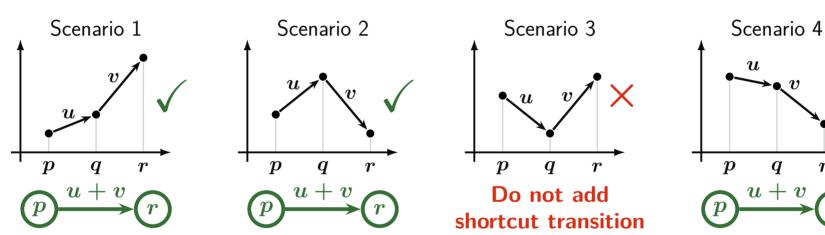


STEP i: Repeat $k=2\lceil \log n \rceil$ many times.

STEP 0: Let \mathcal{V}_0 be the given 1-VASS.

STEP 1: Create \mathcal{V}_1 from \mathcal{V}_0 by adding "shortcut transitions":





STEP i: Repeat $k=2\lceil \log n \rceil$ many times.

Claim. There is a covering run in \mathcal{V}_0 if and only if there is a covering run of length ≤ 2 in \mathcal{V}_k .

Which Semilinear Target Sets Make Reachability in 1-VASS Easy?

Reach(S)

Fixed: A parameterised semilinear set $S \subseteq \mathbb{Z}^p \times \mathbb{N}$.

Input: A 1-VASS \mathcal{V} , an initial configuration p(x), and parameter values $\vec{t} \in \mathbb{Z}^p$.

Question: Does there exist a reachable configuation q(y) such that $(\vec{t},y) \in S$?

Theorem. Let $S \subseteq \mathbb{Z}^p \times \mathbb{N}$ be a semilinear set.

- (1) If S is uniformly quasi-upwards closed, then Reach(S) is in AC^1 .
- (2) Otherwise, REACH(S) is NP-hard.

Thank You!

Presented by Henry Sinclair-Banks, University of Warsaw, Poland

Highlights'25 in Saarland University, Saarbrücken, Germany

Presentation made with BeamerikZ