Infinite Automata 2025/26

Starred Exercises Series 1

Wojciech Czerwiński and Henry Sinclair-Banks

Published: 1200 (CET), 6th November 2025

Deadline: 2359 (CET), 10th December 2025

Submit solutions by emailing them to Henry. Please include "Infinite Automata" in the subject line.

Star Exercise 1.1. Let $V = (\Sigma, Q, T, q_0, F)$ be a letter-labelled 2-VASS with the coverability acceptance condition. Prove or disprove: the Parikh image of the language recognised by V is semilinear. Note: a VASS with the coverability acceptance condition accepts a word w if there is a run that reads w and that ends at an accepting state $q \in F$ with any counter values $\mathbf{v} \geq 0$.

Star Exercise 1.2. Let V = (Q, T) be a d-VASS. We call a configuration (p, \mathbf{u}) pumpable in V if there exists a configuration (p, \mathbf{v}) such that $(p, \mathbf{u}) \stackrel{*}{\to}_{V} (p, \mathbf{v})$, $\mathbf{v} \geq \mathbf{u}$, and $\mathbf{v} \neq \mathbf{u}$. Prove or disprove: if there is a configuration that is pumpable in V, then there is a configuration (p, \mathbf{u}) that is pumpable in V such that $\|\mathbf{u}\|_{\infty} \leq \mathcal{O}(2^{n^C})$ where n is the size of V encoded in binary and $C \in \mathbb{N}$ is some constant.

Star Exercise 1.3. Fix an alphabet Σ . Prove or disprove: for every $d \in \mathbb{N}$, there exists a letter-labelled d-VASS V_d with the coverability acceptance condition such that there does not exist a letter-labelled (d-1)-VASS V' with the coverability acceptance condition that recognises the same language.

Star Exercise 1.4. Show that reachability in binary-encoded 3-VAS is PSPACE-hard. Note: the 3-VAS $V \subseteq \mathbb{Z}^3$, the initial configuration $\mathbf{u} \in \mathbb{N}^3$, and the target configuration $\mathbf{v} \in \mathbb{N}^3$ are all encoded in binary.

Star Exercise 1.5. Show that for every $k \in \mathbb{N}$, there exists a binary 2-VAS V_k , an initial configuration $\mathbf{s}_k \in \mathbb{N}^2$, and a target configuration $\mathbf{t}_k \in \mathbb{N}^2$ such the following conditions hold.

- (i) V_k contains at least k transitions (i.e. $|V_k| \ge k$).
- (ii) There is exactly one run from \mathbf{s}_k to \mathbf{t}_k in V_k .
- (iii) The run from \mathbf{s}_k to \mathbf{t}_k uses every transition in V_k at least once.