

Infinite Automata 2025/26

Lecture Notes 13

Henry Sinclair-Banks

Recall from Lecture 12 that we wish to prove the following theorem.

Theorem 12.7. Reachability (i.e. deciding whether the C -computed set of runs from the initial counter valuation is non-empty) in programs without zero tests with $3k + 2$ counters is F_k -hard.

It remains to show that one can build an $F_k(n)$ -multiplier of size $\text{poly}(n)$; recall the definition of a B -multiplier.

Definition 12.10. A program M (without zero tests) with counter C that z -computes, from the zero valuations $\{\mathbf{0}\}$, the set $\text{Ratio}(B, b, c, d, C)$, for some four of its counters $z, b, c, d \in C$ is called a B -multiplier.

Later, we will use the following 4-multiplier; this program is called `multiplier(4, b, c, d)`.

1. $b += 4$
2. `loop`:
3. $c += 1, d += 4$.

As mentioned in Lecture 12, in order to construct greater multiplies (of a reasonable size), we will use *amplifiers*.

Definition 13.1. Let P be a counter program without zero tests with counters C . Let $b, c, d \in C$ be three distinguished “input counters” and let $b', c', d' \in C$ be three distinguished “output counters”. P is an F -amplifier if, for every $B \in 4\mathbb{N}$, it $\{d\}$ -computes, from $\text{Ratio}(B, b, c, d, C)$, the set $\text{Ratio}(F(B), b', c', d', C)$.

We will now give an example which provides a family of (linear) amplifiers. The following program is called `linear(ℓ, b, c, d, b', c', d')`, for $\ell \in \mathbb{N}$ and six counters b, c, d, b', c', d' .

1. `loop`:
2. `loop`:
3. $c -= 1, c' += 1, d -= 1, d' += \ell$
4. `loop`:
5. $c' -= 1, c += 1, d -= 1, d' += \ell$
6. $b -= 2, b' += 2\ell$
7. `loop`:
8. $c -= 1, c' += 1, d -= 2, d' += 2\ell$
9. $b -= 2, b' += 2\ell$

With $\ell = 1$, `linear(ℓ, b, c, d, b', c', d')` is called the identity-amplifier.

Claim 13.2. The program `linear(ℓ, b, c, d, b', c', d')` is an L_ℓ -amplifier, where $L_\ell : 4\mathbb{N} \rightarrow 4\mathbb{N}$ is defined by $L_\ell(n) = \ell \cdot n$.

Proof sketch. We shall write counter valuations as vectors (b, c, d, b', c', d') in \mathbb{N}^6 . We start at the counter valuation $(B, s, Bs, 0, 0, 0)$. Since we wish to look at runs that get d to 0, we can observe that the outer loop (defined by line 1 to line 6) needs to be executed one less than is maximally possible, and inside each iteration of the outer loop, the two inner loops (defined by lines 2 and 3 as well as lines 4 and 5) must be executed maximally. This leads to reaching the counter valuation $(2, s, 2s, \ell(B - 2), 0, \ell s(B - 2))$ before executing line 7. After, the final loop (defined by lines 7 and 8) is then executed maximally to reach the counter valuation $(0, 0, 0, \ell B, s, \ell s B) \in \text{Ratio}(B, b', c', d', C)$. \square

Recall the definition of the fast growing function (Definition 12.1). Specifically, recall that we defined $F_1(n) = 2n$ (so $F_1 = L_2$), and

$$F_k(n) = \underbrace{F_{k-1} \circ \dots \circ F_{k-1}}_{\frac{n}{4} \text{ times}}(4).$$

In fact, we shall use introduce *amplifier lifting notation*.

$$\tilde{F}(n) = \underbrace{F \circ \dots \circ F}_{\frac{n}{4} \text{ times}}(4).$$

This means that we can define the family of fast growing functions by $F_1(n) = 2n$ and $F_{k+1} = \tilde{F}_k$.

Now, Let P be a program without zero tests with counters C ; let $b_1, c_1, d_1 \in C$ be three distinguished input counters and let $b_2, c_2, d_2 \in C$ be three distinguished output counters. We will now describe the transformation of P into \tilde{P} (which also does not contain zero tests) with the following property. If P is an F -amplifier, then \tilde{P} is an \tilde{F} -amplifier (for some function $F : 4\mathbb{N} \rightarrow 4\mathbb{N}$). The program P uses counters $\tilde{C} = C \cup \{b, c, d\}$; where b, c , and d are three fresh counters only used by \tilde{P} . The three distinguished input counters of \tilde{P} are b, c , and d , and the three distinguished output counters of \tilde{P} are b_2, c_2 , and d_2 .

Roughly speaking, \tilde{P} will implement the computation of \tilde{F} according to its definition; with $2\ell+1$ zero tests it $\{d_1\}$ -computes, from $\{0\} \subseteq \mathbb{N}^C$, the set $\text{Ratio}(F^{(\ell+1)}, b_2, c_2, d_2, C)$. We use the triplet of counters b, c, d to handle these $2\ell+1$ zero tests.

To construct the program \tilde{P} , we will use the identity-amplifier $I = \text{linear}(1, b_2, c_2, d_2, b_1, c_1, d_1)$ and the 4-multiplier $M = \text{multiplier}(4, b_1, c_1, d_1)$ (that was presented on Page 1). The following program is \tilde{P} . We will be using the zero test gadgets on counter d_1 and d_2 to ensure certain computations (like P and I are fully executed); this means that d_1 and d_2 will take on roles like x and y from Lecture 12 when they had their zero tests simulated by a triplet of counters. Here, we will use b, c , and d to handle the zero tests of d_1 and d_2 .

1. M' # M' is obtained from M by using c as an upper bound counter (as seen in Lecture 12)
2. **loop**:
3. P'
4. **zero-test**(d_1)
5. I' # I' is obtained from I by using c as an upper bound counter (as seen in Lecture 12)
6. **zero-test**(d_2)
7. P'
8. **zero-test**(d_1)
9. **flush**(c)

Lemma 13.3. If P is an F -amplifier, then \tilde{P} is an \tilde{F} -amplifier.

Proof sketch. For every $B \in 4\mathbb{N}$, it is true that from $\text{Ratio}(B, b_1, c_1, d_1, C)$, P $\{d_1\}$ -computes the set $\text{Ratio}(F(B), b_2, c_2, d_2, C)$. This computation is simulated by lines 3 and 4 as well as lines 7 and 8 in \tilde{P} . The program $I = \text{linear}(1, b_2, c_2, d_2, b_1, c_1, d_1)$ is just used to shift the value of b_2 to b_1 , the value of c_2 to c_1 , and the value of d_2 to d_1 ; in other words, from $\text{Ratio}(B, b_2, c_2, d_2, C)$, I $\{d_2\}$ -computes the set $\text{Ratio}(B, b_1, c_1, d_1, C)$. This computation is simulated by lines 5 and 6 in \tilde{P} .

We therefore observe that executing the main loop (defined by lines 2 to 6) a total of ℓ times and then executing lines 7 and 8 will lead to the computation of $\text{Ratio}(F^{(\ell+1)}(4), b_2, c_2, d_2, \tilde{C})$. Thus if we set $B = 4(\ell+1) \in 4\mathbb{N}$, we know that by initialising b, c , and d to $b = B, c = s$, and $d = Bs$, then we can simulate these $2\ell+1$ zero tests required to compute $\tilde{F}(B) = F^{(\ell+1)}(4)$. Precisely, from $\text{Ratio}(B, b, c, d, \tilde{C})$, \tilde{P} $\{d\}$ -computes the set $\text{Ratio}(\tilde{F}(B), b_2, c_2, d_2, \tilde{C})$ (which makes \tilde{P} an \tilde{F} -amplifier). \square

We are now finally able to prove Theorem 12.7.

Sketch of proof of Theorem 12.7. We can use Lemma 13.3 multiple times to lift amplifiers to F_k . Let $k \in \mathbb{N}$ and $n \in 4\mathbb{N}$, we compute (in linear with respect to k and n) an F_k -amplifier P_k with $3k + 3$ counters C by applying the amplifier lifting transformation $P \rightarrow \tilde{P}$ (stated just before Lemma 13.3) starting from the F_1 -amplifier $L_2 = \text{linear}(2, b_1, c_1, d_1, b_2, c_2, d_2)$.

Let $b, c, d \in C$ be the three distinguished input counters of P_k . Using Claim 12.11, composing $\text{multiplier}(n, b, c, d)$ with P_k yields an $F_k(n)$ -multiplier which outputs $\text{Ratio}(F_k(n), b_k, c_k, d_k, C)$.

Now we can use this $F_k(n)$ -multiplier to simulate a counter machine which has two zero-testable counters and which uses at most $\frac{F_k(n)-1}{2}$ zero tests. Hence reachability in counter programs without zero tests with $3k + 3$ counters is F_k -hard.

Lastly, we observe that the first counter b used in $\text{multiplier}(n, b, c, d)$ is bounded by n ; b has its value set to n and after never receives an incremental update to its value. This means that we can include the current value b in the control states of the program; this only multiplicatively increases the number of control states by $n + 1$ (a linear factor). Hence the F_k lower bounds holds for $3k + 2$ counters. \square