
Infinite Automata 2025/26
Lecture Notes 13

Henry Sinclair-Banks

Recall from Lecture 12 that we wish to prove the following theorem.

Theorem 12.7. Reachability (i.e. deciding whether the C-computed set of runs from the initial
counter valuation is non-empty) in programs without zero tests with 3k + 2 counters is Fk-hard.

It remains to show that one can build an Fk(n)-multiplier of size poly(n); recall the definition of
a B-multiplier.

Definition 12.10. A program M (without zero tests) with counter C that z-computes, from the
zero valuations {0}, the set Ratio(B, b, c, d,C), for some four of its counters z, b, c, d ∈ C is called a
B-multiplier.

Later, we will use the following 4-multiplier; this program is called multiplier(4, b, c, d).
1. b+= 4
2. loop:
3. c+= 1, d+= 4.

As mentioned in Lecture 12, in order to construct greater multiplies (of a reasonable size), we
will use amplifiers.

Definition 13.1. Let P be a counter program without zero tests with counters C. Let b, c, d ∈ C
be three distinguished “input counters” and let b′, c′, d′ ∈ C be three distinguished “output coun-
ters”. P is an F -amplifier if, for every B ∈ 4N, it {d}-computes, from Ratio(B, b, c, d,C), the set
Ratio(F (B), b′, c′, d′,C).

We will now give an example which provides a family of (linear) amplifiers. The following program
is called linear(ℓ, b, c, d, b′, c′, d′), for ℓ ∈ N and six counters b, c, d, b′, c′, d′.
1. loop:
2. loop:
3. c−= 1, c′ += 1, d−= 1, d′ += ℓ
4. loop:
5. c′ −= 1, c+= 1, d−= 1, d′ += ℓ
6. b−= 2, b′ += 2ℓ
7. loop:
8. c−= 1, c′ += 1, d−= 2, d′ += 2ℓ
9. b−= 2, b′ += 2ℓ

With ℓ = 1, linear(ℓ, b, c, d, b′, c′, d′) is called the identity-amplifier.

Claim 13.2. The program linear(ℓ, b, c, d, b′, c′, d′) is an Lℓ-amplifier, where Lℓ : 4N → 4N is
defined by Lℓ(n) = ℓ · n.

Proof sketch. We shall write counter valuations as vectors (b, c, d, b′, c′, d′) in N6. We start at the
counter valuation (B, s,Bs, 0, 0, 0). Since we wish to look at runs that get d to 0, we can observe that
the outer loop (defined by line 1 to line 6) needs to be executed one less than is maximally possible,
and inside each iteration of the outer loop, the two inner loops (defined by lines 2 and 3 as well as lines
4 and 5) must be executed maximally. This leads to reaching the counter valuation (2, s, 2s, ℓ(B −
2), 0, ℓs(B − 2) before executing line 7. After, the final loop (defined by lines 7 and 8) is then
executed maximally to reach the counter valuation (0, 0, 0, ℓB, s, ℓsB) ∈ Ratio(B, b′, c′, d′,C).

15th Janurary 2025



Recall the definition of the fast growing function (Definition 12.1). Specifically, recall that we
defined F1(n) = 2n (so F1 = L2), and

Fk(n) = Fk−1 ◦ . . . ◦ Fk−1︸ ︷︷ ︸
n
4 times

(4).

In fact, we shall use introduce amplifier lifting notation.

F̃ (n) = F ◦ . . . ◦ F︸ ︷︷ ︸
n
4 times

(4).

This means that we can define the family of fast growing functions by F1(n) = 2n and Fk+1 = F̃k.
Now, Let P be a program without zero tests with counters C; let b1, c1, d1 ∈ C be three distin-

guished input counters and let b2, c2, d2 ∈ C be three distinguished output counters. We will now
describe the transformation of P into P̃ (which also does not contain zero tests) with the following
property. If P is an F -amplifier, then P̃ is an F̃ -amplifier (for some function F : 4N → 4N). The
program P uses counters C̃ = C ∪ {b, c, d}; where b, c, and d are three fresh counters only used by
P̃ . The three distinguished input counters of P̃ are b, c, and d, and the three distinguished output
counters of P̃ are b2, c2, and d2.

Roughly speaking, P̃ will implement the computation of F̃ according to its definition; with 2ℓ+1
zero tests it {d1}-computes, from {0} ⊆ NC, the set Ratio(F (ℓ+1), b2, c2, d2,C). We use the triplet
of counters b, c, d to handle these 2ℓ+ 1 zero tests.

To construct the program P̃ , we will use the identity-amplifier I = linear(1, b2, c2, d2, b1, c1, d1)
and the 4-multiplier M = multiplier(4, b1, c1, d1) (that was presented on Page 1). The following
program is P̃ . We will be using the zero test gadgets on counter d1 and d2 to ensure certain
computations (like P and I are fully executed); this means that d1 and d2 will take on roles like x
and y from Lecture 12 when they had their zero tests simulated by a triplet of counters. Here, we
will use b, c, and d to handle the zero tests of d1 and d2.
1. M ′ # M ′ is obtained from M by using c as an upper bound counter (as seen in Lecture 12)
2. loop:
3. P ′

4. zero-test(d1)
5. I ′ # I ′ is obtained from I by using c as an upper bound counter (as seen in Lecture 12)
6. zero-test(d2)
7. P ′

8. zero-test(d1)
9. flush(c)

Lemma 13.3. If P is an F -amplifier, then P̃ is an F̃ -amplifier.

Proof sketch. For every B ∈ 4N, it is true that from Ratio(B, b1, c1, d1,C), P {d1}-computes the
set Ratio(F (B), b2, c2, d2,C). This computation is simulated by lines 3 and 4 as well as lines 7 and
8 in P̃ . The program I = linear(1, b2, c2, d2, b1, c1, d1) is just used to shift the value of b2 to
b1, the value of c2 to c1, and the value of d2 to d1; in other words, from Ratio(B, b2, c2, d2,C), I
{d2}-computes the set Ratio(B, b1, c1, d1,C). This computation is simulated by lines 5 and 6 in P̃ .

We therefore observe that executing the main loop (defined by lines 2 to 6) a total of ℓ times
and then executing lines 7 and 8 will lead to the computation of Ratio(F (ℓ+1)(4), b2, c2, d2, C̃). Thus
if we set B = 4(ℓ + 1) ∈ 4N, we know that by initialising b, c, and d to b = B, c = s, and
d = Bs, then we can simulate these 2ℓ + 1 zero tests required to compute F̃ (B) = F (ℓ+1)(4).
Precisely, from Ratio(B, b, c, d, C̃), P̃ {d}-computes the set Ratio(F̃ (B), b2, c2, d2, C̃) (which makes
P̃ an F̃ -amplifier).

15th Janurary 2025



We are now finally able to prove Theorem 12.7.

Sketch of proof of Theorem 12.7. We can use Lemma 13.3 multiple times to lift amplifiers to Fk.
Let k ∈ N and n ∈ 4N, we compute (in linear with with respect to k and n) an Fk-amplifier Pk

with 3k + 3 counters C by applying the amplifier lifting transformation P → P̃ (stated just before
Lemma 13.3) starting from the F1-amplifier L2 = linear(2, b1, c1, d1, b2, c2, d2).

Let b, c, d ∈ C be the three distinguished input counters of Pk. Using Claim 12.11, composing
multiplier(n, b, c, d) with Pk yields an Fk(n)-multiplier which outputs Ratio(Fk(n), bk, ck, dk,C).

Now we can use this Fk(n)-multiplier to simulate a counter machine which has two zero-testable
counters and which uses at most Fk(n)−1

2 zero tests. Hence reachability in counter programs without
zero tests with 3k + 3 counters is Fk-hard.

Lastly, we observe that the first counter b used in multiplier(n, b, c, d) is bounded by n; b has
it value set to n and after never receives an incremental update to its value. This means that we can
include the current value b in the control states of the program; this only multiplicatively increases
the number of control states by n+ 1 (a linear factor). Hence the Fk lower bounds holds for 3k + 2
counters.

15th Janurary 2025


