Infinite Automata 2025/20
Lecture Notes 12

Henry Sinclair-Banks

This lecture is based on the paper “Improved Ackermannian Lower Bound for the Petri Nets Reach-
ability Problem” by Stawomir Lasota, 2022.

Definition 12.1. Fast growing functions. The first fast growing function fi : N — N is defined by
f1(n) == 2n, and the k-th fast growing function is defined inductively as

fr(n) = ficro...0 froa(1).
times

For example,

fg(n):flo...ofl(l):2~.‘..«2:2”,
n times n times
and )
fa(n) = fao...0 fo(l) = 22t = Tower(n).
n times N times

We define the Ackermann function as A(n) = F,(n), for all n € N.

It will be convenient to use a slightly different family of fast growing functions defined over the
multiples of 4; F; : N — N are defined by the following. F;(n) = 2n, and

Fk(n) = Fk—l 0...0 Fk_1(4).
—_———

not: <
7 times

These fast growing functions only differ from the “standard” fast growing functions (Definition
12.1) by a linear shift.

Claim 12.2. Fy(4n) =4fi(n) for all k,;n € N.
Proof hint. Prove this claim using induction on k. O

Naturally, we will can fast growing functions to define complexity classes.

Definition 12.3. Higher order complexity classes. The k-th fast growing function complexity class
Fi contains all problems that can be decided in fi(n) time and is closed under reductions computable
in lower-order time f; ,(n) for some fixed m € N. For example, F3 = Tower contains problems that
are decidable in time Tower(2™) because Tower(2") = f3 o fa(n). We also accordingly define the
complexity class Ackermann which contains all problems that can be decided in time A(n) is closed
under primitive recursive reductions.

Our goal is now to prove that reachability in VASS is Ackermann-hard. To achieve this, we will
start with an problem that is known to be Ackermann-hard and reduce VASS reachability to it.

Definition 12.4. Reachability in counter machines with F}, zero tests.

Input. A counter machine with two zero-tested counters M of size n (without loss of generality,
assume that n € 4 - N), an initial state p and a target state gq.

Fy(n)—1
% zero tests?

Question. Does there exist a run from (p, 0) to (g, 0) which uses at most

8th Janurary 2025



Claim 12.5. Reachability in counter machines with F}, zero tests is Fi-hard for all k£ € N.

Proof hint. Reachability in counter machines with Fj, zero tests reduces to the reachability problem
in two-counter machines which asks whether there is a run of length at most Fi(n) from (p,0) to
(¢,0). Suppose M has d counters x;,xa, . .. ,X4. One can use the the Gédel encodingy = 213", ..p¥
with an ancillary (secondary) counter z. Notice that in order to update the counter x;, one needs to

multiply or divide y be some multiple of p; and this requires a constant number of zero tests. O

It will be convenient for us to work with counter programs instead of VASS as state and transition
diagrams. Here is an example program (without zero tests) with counters C = {x,y, z}.

1. loop:
2. x—=1
3. y+=1
4. z4+=2
5. z+=1

At times we will use counter programs with zero tests and other times we will use counter programs
without zero tests; the latter exactly correspond to VASS.

Definition 12.6. A counter valuation is a vector v € N©. Let P be some counter program with
counters C and let X C C be a set of counters. An X-zeroing run from V' C N€ in P is a run from
the first line of P with some counter valuation v € V to the last line of P ending with a counter
valuation w € N© such that w[x] = 0, for every x € X. For example, let V = {(10,0,0)}, there is
only one {x}-zeroing run from (10, 0,0) in the above example counter program; this run ends at the
counter valuation (0, 10,21).

Let X € Cand V' C N€. The set of counter valuations reachable by X-zeroing from V in P is called
the X-computed set (of counter valuations). For example, the set of counter valuations that is {x}-
computed from {(,0,0) : z € N} in the above example counter program is {(0,y,2) : z = 2y + 1}.
We note that if the set that is -computed from V in P consist of the counter valuations that can be
reached by complete runs (executes the final line of P) that need not have any counters equal zero.

Our goal is to prove the following theorem, which implies that reachability in VASS is Ackermann-
hard.

Theorem 12.7. Reachability (i.e. deciding whether the C-computed set of runs from the initial
counter valuation is non-empty) in programs without zero tests with 3k + 2 counters is Fy-hard.

We shall now explain the technique of using triples to simulate zero tests (see also Exercises 12.1
and 12.2).

Definition 12.8. Let B € N and C be a set of counters, and let b,c,d € C be some distinguished
triplet of counters. Ratio(B,b,c,d,C) := {v € N®:v[b] = B,v[c] = c € N, and v[d] = Bc}.

Suppose that P is some counter program with zero tests. We can introduce three new counter b,
¢, and d which will be initialised so that b = B, ¢ = ¢, and d = Bec. These counters will be used by
a certain gadget that will replace the zero tests in P in such a way that b will control the number of
zero tests performed, ¢ will aid in the simulation of zero tests, and d will only be able to reach 0 (at
the end of the program) if the specified number of zero tests were all faithfully performed. There
will be three modifications: first P is transformed into P’, then into P”, and finally in P"’. For
simplicity, we shall assume that P only zero-tests two counters: x and y.

The first modification is to introduce the three new counters b, ¢, and d, which are not used in
P. The role of ¢ will be to maintain the invariant

C+X+y=s3s, (1)

where s € N is some constant. Specifically, s is chosen to be at least the greatest sum of x and y and
whenever x or y are updated in P, we are sure to match this with opposing updates to c in P’.

8th Janurary 2025



Original update in P ‘ Replaced by in P’

x+=1 x+=1,c—=

x—=1 x—=1,c+=1
y+=1 y+=1,c—=1
y—=1 y—=1,c+=1

The second modification is to replace the zero tests of x and y with gadgets that use counters b,

¢, and d. The following gadget is called zero-test (x).
1. loop:

2. y—=1,x+=1,d—=1

3. loop:

4. c—=1Ly+=1,d—=1

5. loop:

6. y—=1c+=1,d—=1

7. loop:

8. x—=1,y+=1,d—=1

9. b—=2

We also define the gadget zero-test(y) which is the same as zero-test(x) with counters x
and y swapped. The program P” is obtained by replacing, in P’, all occurrences of x=70 and x=70
with zero-test(x) and zero-test(y), respectively. There are two crucial observations about the
zero-test gadgets, the first is that any time this gadget is taken b decreases by 2, this means that
if b = 2m originally, then at most m zero tests can be simulated in P”. The second is that when
the zero-test(x) gadget is taken once, then d decreases by at most 2s. In fact, observe that the
only way for d to decrease by 2s is if the four loops are all executed maximally and if x = 0 to begin
with. Therefore, if initially d = b - ¢, then the only way to maintain this invariant after a zero-test
gadget is used is if (i) the four loops are iterated maximally, and (ii) the counter was actually zero
at the start of the gadget. If a zero-test gadget is incorrectly used (i.e. the counter in question was
not zero to begin with or if the loops are not all iterated maximally), then d > b - c and the equality
d = b - c is unrecoverable because we know that b is always decreased by 2 and the greatest possible
decrease of d is 2s; this means that d = 0 cannot be achieved at the end of the run if any of the zero
tests are not faithfully simulated.

The third modification is to add a final gadget at the end of the run to flush the value of c to 0.
Let zero-test(c) be the zero-test gadget that is obtained by swapping x and c in zero-test(x).
The following gadget is called flush(c).

1. loop:
2. c—=1,d—=2
3. zero-test(c)

By appending flush(c) to the end of P”, one obtains the final program P’”’. Please note the
following two observations. The first is that flush(c) uses one zero test (gadget) to get the value of
¢ down to zero; so if to begin with b = B, then at most % zero tests of x and y can be simulated
(one zero test is saved for c at the end). The second is that the invariant x +y + ¢ = s (Equation
is violated by flush(c), but this is not an issue because this gadget is only taken at the every end
of the run after all zero tests on x and y have been simulated.

Altogether, the modifications and their justifications can be used to prove the following statement
of correctness. In the following lemma, we use C' = CU {b, c,d} to denote the set of counters used
P’ (which is also the counters used by P’ and P”).

Lemma 12.9. Let V C N¢ be the set of counter valuations that are (-computed by P from {0}
using m zero tests. The following two set are equal.

(1) The extension of V to N¢ with b =c =d = 0, that is {(v,0,0,0) € N¢ x Ntb<dh .y c v},
(2) The set {d}-computed by P"”’ from Ratio(2(m + 1),b,c,d,C’).

Given that reachability in counter machines with F}, zero tests is Fy-hard for all k € N, if we are
able to construct a program with counters C that computes, from 0, the set Ratio(Fy(n),b,c,d, C),

8th Janurary 2025



then we deduce that reachability in counter machines is Fi-hard for all £ € N. Such a gadget is
called a multiplier.

Definition 12.10. A program M (without zero tests) with counter C that z-computes, from the
zero valuations {0}, the set Ratio(B,b,c,d,C), for some four of its counters z,b,c,d € C is called a
B-multiplier.

The following program is a B-multiplier.
1. b+=10B
2. loop:
3. c+=1,d+=B.
Unfortunately, the size of this B-multiplier is O(B). This means that it cannot be used to prove
Fir-hardness of reachability. Instead, we need to construct Fy(n)-multipliers of size poly(n); for
this we will introduce amplifiers in the next lecture. We shall conclude this lecture by stating the
correctness statement that can be used to show that multipliers, together with programs that use
triples to simulate zero test can be composed.

Claim 12.11. Let M be a B-multiplier with counters C (including z € C). Let P be a program

with counters C\ {z} and let Y C C\ z. The set Y-computed by P from Ratio(B,b,c,d,C) is equal
to the set ({z} UY)-computed by the composed program M P from {0}.

8th Janurary 2025



