

Infinite Automata 2025/26

Exercise Sheet 11

Wojciech Czerwiński and Henry Sinclair-Banks

Exercise 11.1. Prove that the minimal length runs witnessing reachability in unary-encoded 3-VASS can have exponential length.

Hint. Use the following lemma to perform repeated multiplication operations on the counter values.

Lemma. Controlling Counter Technique. Let Z be a d -VASS with zero test and $(s, \mathbf{x}), (t, \mathbf{y})$ be two configurations. Suppose Z has the property that on any run from (s, \mathbf{x}) to (t, \mathbf{y}) , at most m zero tests are performed on each counter. Then there exist a $(d+1)$ -VASS V and two configurations $(s', \mathbf{0}), (t', (\mathbf{y}, 0))$ such that

- (1) $(s, \mathbf{x}) \xrightarrow{*} (t, \mathbf{y})$ if and only if $(s', \mathbf{0}) \xrightarrow{*} (t', (\mathbf{y}, 0))$, and
- (2) V can be constructed in $\mathcal{O}(\|Z\| + \|\mathbf{x}\|) \cdot m^d$ time.

Exercise 11.2. Prove that there exists a $d \in \mathbb{N}$ such that reachability in unary-encoded d -VASS is NP-hard.

Hint 1. Consider the following encoding of an instance of 3-SAT with k variables x_1, \dots, x_k and ℓ clauses. Let $p_1, n_1, \dots, p_k, n_k$ be the first $2k$ primes. An assignment of x_1, \dots, x_k will correspond to a natural number $N \in \mathbb{N}$ that is equal to the product of k primes. Specifically, $N = q_1 \cdot \dots \cdot q_k$ where $q_i \in \{p_i, n_i\}$; here selecting $q_i = p_i$ corresponds to setting $x_i = \text{True}$ and selecting $q_i = n_i$ corresponds to setting $x_i = \text{False}$.

Hint 2. Create a VASS gadget (using zero tests) that starting with counters values $(v, 0)$ and can end with one of two possible counter value vectors: $(v \cdot p_i, 0)$ or $(v \cdot n_i, 0)$.

Hint 3. Consider a clause $(x_1 \vee \overline{x_2} \vee x_3)$. Checking whether $N = q_1 \cdot \dots \cdot q_k$ satisfies this clause corresponds to checking whether $p_1|N$ or $n_2|N$ or $p_3|N$.

Exercise 11.3. Prove that reachability in unary-encoded 3-dimensional linear path schemes is NP-hard.

Hint 1. Consider an alternative encoding of an instance of 3-SAT with k variables x_1, \dots, x_k and ℓ clauses. Let p_1, \dots, p_k be the first k primes. An assignment of x_1, \dots, x_k will correspond to a natural number $N \in \mathbb{N}$ where $N \equiv 0 \pmod{p_i}$ if $x_i = \text{False}$ and $N \equiv 1 \pmod{p_1}$ if $x_i = \text{True}$.

Hint 2. Use non-divisibility tests to assert that (i) N is a valid assignment and (ii) N corresponds to a satisfying assignment.