Infinite Automata 2025/26

Exercise Sheet 6

Wojciech Czerwiński and Henry Sinclair-Banks

Exercise 6.1. Show that reachability in d-VASS can be reduced (in logarithmic space) to reachability in (d+4)-VAS.

Solution. Let V be the given d-VASS with n states. We encode a state $i \in \{1, ..., n\}$ as a quadruplet (i, n-i, 0, 0). A transition (i, \mathbf{x}, j) in V is simulated by a transition $(\mathbf{x}, -i, -(n-i), +j, +(n-j))$ in the (d+4)-VAS. There are additional transitions $(\mathbf{0}, +i, +(n-i), -i, -(n-i))$ for all $i \in \{1, ..., n\}$ to restore the encoding.

Exercise 6.2. Show that reachability in d-VASS can be reduced (in logarithmic space) to reachability in (d+3)-VAS.

Solution idea. Let V be the given d-VASS with n-1 states. We encode a state $i \in \{1, ..., n\}$ as a triplet (i, n(n-i), 0). A transition (i, \mathbf{x}, j) in V is simulated by three transitions in the (d+3)-VAS. Roughly speaking, the three transitions cycle through the following three configurations on the additional three counters in the VAS: $(i, n(n-i), 0) \rightarrow (0, j, n(n-j)) \rightarrow (n(n-j), 0, j) \rightarrow (j, n(n-j), 0)$. At any point, the update \mathbf{x} to the primary d counters can be added. This idea comes from a paper by Hopcroft and Pansiot (1979).

Exercise 6.3. Show that the following sets are not semilinear.

- (1) $\{2^n : n \in \mathbb{N}\}.$
- (2) $\{2n+1: n \in \mathbb{N}\} \cup \{2^n: n \in \mathbb{N}\}.$
- (3) $\{(n, 2^n) : n \in \mathbb{N}\}.$
- (4) $\{(n,m): n \in \mathbb{N}, m \le 2^n\}.$

Exercise 6.4. Show that semilinear sets are closed under

- (1) union,
- (2) projection, and
- (3) shift by a vector and then intersecting with \mathbb{N}^d .

Exercise 6.5. Show an example of a 3-VASS with semilinear reachability set that is not semilinear. Note: for the reachability sets of any 2-VASS is semilinear, and even its reachability relation is semilinear.

Exercise 6.6. Show that the set of solutions to a system of integer linear equations (over \mathbb{N}) with integer coefficients is semilinear.