Infinite Automata 2025/26

Exercise Sheet 4

Wojciech Czerwiński and Henry Sinclair-Banks

Exercise 4.1. Let T be a tree. Prove or disprove: if all paths in T have finite length, then T is finite.

Exercise 4.2. König's Lemma, specialised to trees. Let T be a tree. Prove that if T has finite branching (is locally finite) and if all paths in T have finite length, then T itself is finite.

Exercise 4.3. Let X and Y be finite sets and let \preceq_X and \preceq_Y be reflexive and transitive relations over X and Y, respectively, such that (X, \preceq_X) and (Y, \preceq_Y) are well-quasi orders. Let \preceq be a relation over the cartesian product $X \times Y$ such that $(x, y) \preceq (x', y')$ if and only if $x \preceq_X x'$ and $y \preceq_Y y'$. Prove that $(X \times Y, \preceq)$ is a well-quasi order.

Exercise 4.4. Dickson's Lemma, specialised to the naturals. Show that (\mathbb{N}^d, \leq) is a well-quasi order where $\mathbf{u} \leq \mathbf{v}$ if and only if $\mathbf{u}[i] \leq \mathbf{v}[i]$, for every $i \in \{1, \dots, d\}$.

Exercise 4.5. The lexicographic order \leq_{lex} is defined by $\mathbf{u} \leq_{\text{lex}} \mathbf{v}$ if there exists i such that $\mathbf{u}[i] < \mathbf{v}[i]$ and, for all $j \in \{1, \dots, i-1\}$, $\mathbf{u}[j] = \mathbf{v}[j]$. The set \mathbb{N}^{ω} is the set of natural valued vectors of infinite length. Prove or disprove that the following are well-quasi orders.

- (1) $(\mathbb{N}^2, \leq_{\text{lex}}).$
- (2) $(\mathbb{N}^d, \preceq_{\text{lex}}).$
- (3) $(\mathbb{N}^{\omega}, \leq)$.
- (4) $(\mathbb{N}^{\omega}, \leq_{\text{lex}}).$
- (5) $(\{a,b\}^*, \leq_{\text{lex}}).$
- (6) \mathbb{N} with divisibility.
- (7) Graphs with induced subgraph order.
- (8) Trees with induced subgraph order.

Exercise 4.6. Higman's Lemma, specialised to finite alphabets. Let Σ be a finite alphabet. Prove that (Σ^*, \preceq) is a well-quasi order where \preceq is the subsequence order.

Hint. Consider the smallest counterexample. Then consider the subsequence of words with the same first letter and using this subsequence construct a smaller counterexample. This is a contradiction with the assumption that one selected the smallest counter example.

Exercise 4.7. Higman's Lemma. Let X be a not necessarily finite set. Prove that (X^*, \preceq) is a well-quasi order where \preceq is the subsequence order.

Hint. Consider the same proof strategy as Exercise 4.6 but take a subsequence of words such that the first letters form an infinite increasing sequence (Condition (3) of well-quasi orders).