Fano-Mori contractions of high length

Luca Tasin (joint work with M. Andreatta) luca.tasin@unitn.it

UNIVERSITY OF TRENTO - Italy

Notation

Let X be an *n*-dimensional projective variety over \mathbb{C} with mild singularities (all over the poster we will assume that *X* is terminal and Q-factorial).

Let $N_1(X)$ be the real vector space of 1-cycles modulo the equivalence relation induced by the intersection of cycles.

We denote by NE(X) the convex cone in $N_1(X)$ generated by effective 1-cycles and by NE(X) its closure.

A Fano-Mori contraction associated to an extremal ray $R \subset NE(X)$ is a morphism φ_R :

Our tools

Under appropriate conditions, the strategy of Adjunction Theory is feasible thanks to the following key results.

Theorem 1 ([1]). Let $\varphi : X \to Z$ be a contraction supported by $K_X + \tau L$, such that Z is affine. If φ is birational and dim $F \leq \tau + 1$ for any fibre F, then L is φ -base point free.

Lemma 2 (Horizontal slicing). Let $\varphi : X \to Z$ be a birational contraction supported by $K_X + \tau L$, such that Z is affine and $\tau \ge 1$. Let $X' \in |L|$ be a general divisor and let $\varphi' = \varphi_{|X'} : X' \to Z'$. If X' is normal, then φ' is a contraction supported by $K_{X'} + (\tau - 1)L_{|X'}$.

Weighted blow-ups

 $X \rightarrow Z$ such that φ has connected fibres, Z is a normal variety and any curve $C \subset X$ is contracted by φ_R if and only if $[C] \in R$ and $K_X.C < 0.$

If dim $X = \dim Z$ then φ is birational, otherwise is said to be of fibre type. The set

 $E = \{x \in X : \varphi \text{ is not an isomorphism at } x\}$

is called the exceptional locus of φ .

MMP

The goal of the Minimal Model Program is to associate to a variety X a minimal model (or a Mori fibre space) Y, which preserves most of the birational properties of *X*, but it is simpler to study.

This process is achieved by a sequence of Fano-Mori contractions (or flips associated to them). That is why these maps are crucial in the birational classification of projective varieties.

Let $\sigma = (a_1, ..., a_k, 0, ..., 0) \in \mathbb{N}^n$ such that $a_i > 0$ and $gcd(a_1, ..., a_k) = 1$. Let $M = lcm(a_1, ..., a_k)$. We denote by $\mathbb{P}(a_1, \ldots, a_k)$ the weighted projective space with weight (a_1, \ldots, a_k) .

Definition 3. Let $X = \mathbb{A}^n = \operatorname{Spec} \mathbb{C}[x_1, \ldots, x_n]$ and $Z = \{x_1 = \ldots = x_k = 0\} \subset X$. Consider the rational map

$$\varphi: \mathbb{A}^n \to \mathbb{P}(a_1, \dots, a_k)$$

given by $(x_1, \ldots, x_n) \mapsto (x_1^{a_1} : \ldots : x_k^{a_k})$. The weighted blow-up of X along Z with weight σ is defined as the closure \overline{X} in $\mathbb{A}^n \times \mathbb{P}(a_1, \ldots, a_k)$ of the graph of φ , together with the morphism $\pi: \overline{X} \to X$ given by the projection on the first factor.

The map π is birational and contracts an exceptional irreducible divisor E to Z. Moreover for any point $z \in Z$ we have $\pi^{-1}(z) = \mathbb{P}(a_1, \ldots, a_k)$.

Definition 4. Let X be a smooth variety and Z a smooth subvariety of codimension k. Let $\mathcal{I}_{\sigma,d}$ be ideal sheaves on X such that there is a covering $\{U_i \cong \mathbb{C}^n\}_{i\in I}$ on X so that for any $i \in I$ there are local coordinates x_1, \ldots, x_n on U_i for which $Z \cap U_i = \{x_1 = \ldots = x_k = 0\}$ and

$$\Gamma(U,\mathcal{I}_{\sigma,d}) = (x_1^{s_1} \cdots x_n^{s_n} : \sum_{j=1}^k s_j a_j \ge d).$$

A weighted blow-up of X along Z with weight σ is the projectivization

The problem

Let φ : $X \rightarrow Z$ be a Fano-Mori contraction. Then there are an ample line bundle L and a positive rational number τ such that φ is supported by $K_X + \tau L$, that is φ is given by the linear system $|M(K_X + \tau L)|$ for $M \gg 0$. Our aim is to study φ according to r.

Adjunction Theory

Classical Adjunction Theory studies polarized varieties, that is pair (X, L), where L is an ample line bundle on X. The origin of this theory goes back to the past century, when Castelnuovo and Enriques were studying projective surfaces by relating the geometry of a surface Sto the geometry of its hyperplane sections.

$$\pi: \overline{X} = \operatorname{Proj} \bigoplus_{d \ge 0} \mathcal{I}_{\sigma, d} \to X.$$

We call $\mathcal{I}_{\sigma,d}$ a σ -weighted ideal sheaf of degree d for Z in X.

The main results (see [2])

Theorem 5. Let X be an n-dimensional projective variety with terminal singularities and let L be an ample Cartier divisor on X. Let $\varphi : X \to Z$ be a Fano-Mori contraction supported by $K_X + \tau L$. Assume that $\tau > n-2$ and that f is birational. Then f is a weighted blow-up of a smooth point with weight $\sigma = (1, 1, b, \dots, b)$, where b is a positive integer.

Idea of proof for n = 3.

Let $X' \in |L|$ be general. By Theorem 1, X' is a smooth surface and $f' = f_{|X'} : X' \to Z'$ is a F-M contraction supported by $K_{X'} + (\tau - 1)L_{|X'}$. By Castelnuovo Theorem f' is a smooth blow-up and we have $f^*f_*(L) = L + bE$ for a positive integer *b*. Applying Kawamata-Viehweg Vanishing we get the exact sequence

 $0 \to f_*\mathcal{O}_X(-(d-1)bE) \xrightarrow{\cdot x_n} f_*\mathcal{O}_X(-dbE) \to f_*\mathcal{O}_{X'}(-dbE) \to 0$

(0.0.1)

from which we can then prove that

The basic idea is to apply induction on a suitable element of $X' \in |L|$. By adjunction

 $(K_X + \tau L)_{|X'|} = K_{X'} + (\tau - 1)L_{|X'|}$

and we would like to have a Fano-Mori contraction in one dimension less and then lift properties of (X', L') to (X, L).

References

- [1] M. Andreatta and J. A. Wiśniewski. A note on nonvanishing and applications. *Duke Math. J.*, volume 72 n. 3, 1993, 739–755.
- [2] M. Andreatta and L. Tasin. Fano-Mori contractions of high length on projective varieties with terminal singularities. Preprint, arXiv:1212.5075.

$$f_*\mathcal{O}_X(-dbE) = I_{\sigma,d} = (x_1^{s_1} x_2^{s_3} x_n^{s_3} : s_1 + s_2 + bs_3 \ge db).$$

Since $X = \operatorname{Proj} \bigoplus_{d \ge 0} f_* \mathcal{O}_X(-dbE)$, we are done.

Theorem 6. Let X be a normal projective variety with terminal singularities and let L be an ample Cartier divisor on X. Let $f: X \to Z$ be a Fano-Mori contraction supported by $K_X + \tau L$. Assume that dim E = n-1and that all fibres have dimension less or equal to r + 1. Set $C := f(E) \subset Z$.

1. Then $\operatorname{codim}_{Z'} C = r + 2$, there is a closed subset $S \subset Z$ of codimension al least 3 such that $Z' = Z \setminus S$ and $C' = C \setminus S$ are smooth, and $f' : X' = X \setminus f^{-1}(S) \to Z'$ is a weighted blow-up along C' with weight $\sigma = (1, 1, b \dots, b, 0, \dots, 0)$, where the number of b's is r.

2. Let \mathcal{I}' be a σ -weighted ideal sheaf of degree b for $Z' \subset X'$ and let $i : Z' \to Z$ be the inclusion; let also $\mathcal{I} := i_*(\mathcal{I}')$ and $\mathcal{I}^{(m)}$ be the *m*-th symbolic power of \mathcal{I} . Then $X = \operatorname{Proj} \bigoplus_{m \geq 0} \mathcal{I}^{(m)}$.