Zeta function of a dg-category

Evgeny Shinder

Institut für Mathematik
Johannes Gutenberg-Universität Mainz
joint work with Sergey Galkin

Grothendieck ring of varieties and the motivic zeta function

Let F be a field. $K_{0}(\operatorname{Var} / F)$ is generated by symbols $[X]$ where X / F is an algebraic variety with relations

$$
[X]=[X \backslash Z]+[Z]
$$

for $Z \subset X . K_{0}(\operatorname{Var} / F)$ has a ring structure with a product given by $[X] \cdot[Y]=[X \times Y]$.
Let $\operatorname{Sym}^{n}(X)$ be a (usually singular) variety X^{n} / Σ_{n}. These operations define a λ-structure on $K_{0}(\operatorname{Var} / F)$:

$$
\begin{equation*}
\operatorname{Sym}^{n}(X)=\sum_{j=0}^{n} \operatorname{Sym}^{j}(X \backslash Z) \cdot \operatorname{Sym}^{n-j}(Z) \tag{1}
\end{equation*}
$$

The motivic zeta-function is defined by Kapranov as:

$$
Z_{m o t}(X, t)=\sum_{n=0}^{\infty}\left[\operatorname{Sym}^{n}(X)\right] t^{n} \in K_{0}(\operatorname{Var} / F)[[t]]
$$

(1) is equivalent to

$$
Z_{m o t}(X, t)=Z_{m o t}(Z, t) \cdot Z_{m o t}(X \backslash Z, t)
$$

$Z_{\text {mot }}(X, t)$ captures invariants such as the number of points over finite fields and the Euler characteristic.

Grothendieck ring of dg-categories and the categorical zeta function

Assume $\operatorname{char}(F)=0 . \quad K_{0}(d g-c a t / F)$ is generated by symbols $[\mathcal{C}]$ where \mathcal{C} is a smooth proper pretriangulated dg-category of finite type over F and relations

$$
[\mathcal{C}]=[\mathcal{A}]+[\mathcal{B}]
$$

for semiorthogonal decompositions $\mathcal{C}=\langle\mathcal{A}, \mathcal{B}\rangle$.
$K_{0}(d g-c a t / F)$ is a ring with product (roughly speaking) given by $[\mathcal{C}] \cdot[\mathcal{D}]=[\mathcal{C} \otimes \mathcal{D}] . \operatorname{Sym}^{n}(\mathcal{C})$ is defined as $\left(\mathcal{C}^{\otimes n}\right)^{\Sigma_{n}}$ (Kapranov-Ganter).
For example, if $\mathcal{C}=D^{b}(X)$, then $\operatorname{Sym}^{n}(\mathcal{C})$ is the derived category of the n-th symmetric stack power of X.
One proves that $S y m^{n}$ define a λ-structure on $K_{0}(d g-$ $c a t / F)$ and thus the categorical zeta-function

$$
Z_{c a t}(\mathcal{C}, t)=\sum_{n=0}^{\infty}\left[\operatorname{Sym}^{n}(\mathcal{C})\right] t^{n} \in K_{0}(d g-c a t / F)[[t]]
$$

is multiplicative for semi-orthogonal decompositions. If X is a smooth projective variety, we write $Z_{c a t}(X, t)=$ $Z_{\text {cat }}\left(D^{b}(X), t\right)$.

The relation between zeta-functions

According to Bondal-Larsen-Lunts and Bittner-Looijenga there exists a well-defined ring homomorphism

$$
\mu_{d g}: K_{0}(V a r / F) \rightarrow K_{0}(d g-c a t / F)
$$

which maps a smooth projective variety $[X]$ to its derived category $D^{b}(X)$. We expect the following formula to hold:

$$
\begin{equation*}
Z_{c a t}(X, t)=? \prod_{k \geq 1} \mu_{d g}\left(Z_{m o t}\left(X, t^{k}\right)\right) \in K_{0}(d g-c a t / F) \tag{2}
\end{equation*}
$$

Example: Varieties with full exceptional collections

If X admits a full exceptional collection of r objects, then $\left[D^{b}(X)\right]=r \in K_{0}(d g-c a t / F)$, so that

$$
Z_{c a t}(X, t)=Z_{c a t}(p t, t)^{r}
$$

thus we may assume $X=p t:=\operatorname{Spec}(F)$. In this case

$$
Z_{c a t}(p t, t)=\sum_{n \geq 0}\left[D^{b}\left(p t / \Sigma_{n}\right)\right] t^{n}
$$

$D^{b}\left(p t / \Sigma_{n}\right)$ is the derived category of representations of Σ_{n}. Let p_{k} be the number of irreducible representations. We have

$$
Z_{c a t}(p t, t)=\sum_{n=0}^{\infty} p_{n} t^{n}=\prod_{k \geq 1} \frac{1}{1-t^{k}}
$$

is the so-called partition function. We see that (2) indeed holds in this case since $Z_{\text {mot }}(p t, t)=\frac{1}{1-t}=1+t+t^{2}+\ldots$.

Example: Götsche's formula

Let X / F be a smooth projective surface. By the McKay correspondence of Bridgeland-King-Reid and Hainman we have $\operatorname{Sym}^{n}\left(D^{b}(X)\right) \simeq D^{b}\left(\operatorname{Hilb}_{n}(X)\right.$, so that

$$
Z_{c a t}(X, t)=\sum_{n=0}^{\infty}\left[D^{b}\left(H i l b_{n}(X)\right)\right] t^{n}
$$

We use a formula of Götsche:

$$
\sum_{n=0}^{\infty}\left[\operatorname{Hilb}_{n}(X)\right] t^{n}=\prod_{k \geq 1} Z_{m o t}\left(X, \mathbb{A}^{k-1} t^{k}\right)
$$

and apply $\mu_{d g}$:

$$
Z_{c a t}(X, t)=\sum_{n=0}^{\infty}\left[D^{b}\left(\operatorname{Hilb}_{n}(X)\right)\right] t^{n}=\prod_{k \geq 1} \mu_{d g}\left(Z_{m o t}\left(X, t^{k}\right)\right)
$$

and see that (2) holds here.

Possible applications

- Obstructions to existence of full exceptional collections
- Relation to motives, in particular Kimura finitedimensionality

