An effective criterion for algebraic contractibility of rational curves

Background

Let \mathbf{E} be a (possibly reducible) curve on a non-singular complex algebraic surface \mathbf{X}.
Castelnuovo-Enriques (1901): \mathbf{E} rational and $(\mathbf{E}, \mathbf{E})=-\mathbf{1}$ iff \mathbf{E} contracts to a nonsingular (algebraic) surface \mathbf{X}^{\prime} Grauert (1962): intersection matrix of \mathbf{E} negative definite iff \mathbf{E} can be contracted to an analytic surface \mathbf{X}^{\prime}. Question: How to determine if \mathbf{X}^{\prime} is algebraic
Artin (1962): \mathbf{X}^{\prime} has rational singularity $\Rightarrow \mathbf{X}^{\prime}$ is algebraic. (Only previously known criterion which is computable.) Other criteria: Morrow-Rossi(1975), Brenton(1977), Franco-Lascu(1999), Schröer(2000), Bădescu(2001), Palka(2012).

Main result (2013)

Question: When is \mathbf{X}^{\prime} algebraic?
Geometric answer: Iff there exists \mathbf{C} as above.
Algebraic (effective) answer: Iff all the key forms of E^{*} are polynomials.

Applications

Identifying $\mathrm{X}^{\prime} \backslash \pi\left(\mathrm{E}^{*}\right)$ with \mathbb{C}^{2} gives a new correspondence
normal algebraic compactifications of $\mathbb{C}^{2} \longleftrightarrow$ algebraic curves in \mathbb{C}^{2} with one (irreducible) curve at infinity with one place at infinity
How deep is the correspondence? If the curve is rational, does it imply the surface has rational singularities?
Results about normal analytic compactifications of \mathbb{C}^{2} with one irreducible curve at infinity:

- Singularities of the surface and the curve at infinity: geometric genus, multiplicity, etc.
- Construction of non-algebraic normal Moishezon surfaces with simplest possible singularities
- Groups of automorphisms and moduli spaces.
- Explicit equations of algebraic compactifications.

New examples of divisors with non-finitely generated graded rings.

- Algorithm to determine if a valuation is negative or non-positive on $\mathbb{C}[\mathrm{x}, \mathrm{y}] \backslash\{0\}$

Key forms

- Global analogue of MacLane's (1936) key polynomials of valuations.
- Encode 'cancellations' of the order of vanishing along a divisor.
- May fail to be polynomials.

Examples of key forms

σ_{i}	Exceptional divisor	key pols in (\mathbf{u}, \mathbf{v})-coordinates and orders of vanishing along E_{i}	key forms in (x, y)-coordinates and orders of pole along $\mathrm{E}_{\boldsymbol{i}}$
Blow-up of \mathbf{O}	$\begin{aligned} & \dot{\mathrm{O}}_{1}:=\left(\frac{\mathrm{u}}{v}=0, v=0\right) \\ & \\ & \mathrm{E}_{1} \end{aligned}$	$\mathbf{u} \mapsto 1, \mathrm{v} \mapsto 1$	$\mathbf{x} \mapsto \mathbf{1 , y}$, $\mathbf{0}$.
Blow-up of \mathbf{O}_{1}	$\begin{aligned} & -\mathrm{O}_{2}:=\left(\frac{u}{v^{2}}=1, v=0\right) \\ & E_{2} \\ & E_{1} \end{aligned}$	$\mathrm{u} \mapsto 2, \mathrm{v} \mapsto 1$	$\mathrm{x} \mapsto \mathrm{2}, \mathrm{y} \mapsto 1 \mathrm{l}$
Blow-up of \mathbf{O}_{2}	E_{2}	$\mathrm{u} \mapsto 2, \mathrm{v} \mapsto 1, \mathrm{u}-\mathrm{v}^{2} \mapsto 3$	$\mathrm{x} \mapsto 2, \mathrm{y} \mapsto 1, \mathrm{x}-\mathrm{y}^{2} \mapsto 1$.

Idea of the proof (of the main result)

Identify $\mathbf{X}^{\prime} \backslash \pi\left(\mathbf{E}^{*}\right)$ with \mathbb{C}^{2}. Let $\mathbf{g}_{1}, \ldots, \mathbf{g}_{\mathrm{n}}$ be the key forms of the order of pole δ along \mathbf{E}^{*}

- Easy part: if all g_{i} 's are polynomials, then $\mathrm{g}:=\left(1, \mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}}\right): \mathbb{C}^{2} \hookrightarrow \mathbf{W} \mathbb{P}$ induces an embedding of \mathbf{X}^{\prime} into $\mathbf{W} \mathbb{P}$, where $\mathbb{W P}:=\mathbb{P}^{\mathrm{n}}\left(1, \delta\left(\mathrm{~g}_{1}\right), \ldots, \delta\left(\mathrm{g}_{\mathrm{n}}\right)\right)$
-Hard part: if one of the $\mathbf{g} \mathbf{j}^{\prime}$'s is not a polynomial, then \mathbf{X}^{\prime} cannot be algebraic. Uses the fact that if \mathbf{X}^{\prime} is algebraic then there would be an algebraic curve $\mathbf{C}^{\prime} \subset \mathbf{X}^{\prime}$ such that \mathbf{C}^{\prime} does not intersect $\pi\left(\mathbf{E}^{\prime}\right)$. The proof follows from a careful comparison of degree-wise Puiseux factorization of \mathbf{g}_{j} 's with that of the defining polynomial of \mathbf{C}^{\prime}.

Remark: $\boldsymbol{\delta}$ is a degree-like function, and the proof is motivated by the theory of compactifications of affine varieties determined by degree-like functions.

Example

Choose affine coordinates (\mathbf{u}, \mathbf{v}) on $\mathbb{C P}^{2}$ such that $\mathbf{L}=\{\mathbf{u}=\mathbf{0}\}$
Let $C_{j}:=\left\{f_{j}=0\right\}$ for $\mathbf{j}=1,2$, where $f_{1}:=\mathbf{v}^{5}-\mathbf{u}^{3}$ and $f_{2}:=\left(\mathbf{v}-\mathbf{u}^{2}\right)^{5}-\mathbf{u}^{3}$
Let $\mathbf{X}_{\mathbf{j}}, \mathbf{j}=\mathbf{1}, \mathbf{2}$, be the surface obtained by resolving the singularity of C_{j} at $(\mathbf{0}, \mathbf{0})$ and then successively blowing up 8 times the point of intersection of (strict transform of) \mathbf{C}_{j} with the exceptional divisor.

Let $\mathbf{E}_{\mathbf{j}}^{*}, \mathbf{j}=\mathbf{1}, \mathbf{2}$, be the last exceptional curve on $\mathbf{X}_{\mathbf{j}}$.
C_{1} and C_{2} are equisingular $\Rightarrow \mathrm{X}_{1}$ and X_{2} are
diffeomorphic.

\mathbf{X}_{1}^{\prime} and \mathbf{X}_{2}^{\prime} have a unique singular point with the same dual graph of resolution.
W.r.t. coordinates $(x, y):=(1 / u, v / u)$ (of the complement $\left.\mathbb{C P}^{2} \backslash \mathbf{L}\right)$ the key forms of \mathbf{E}_{1}^{*} are $\mathrm{x}, \mathrm{y}, \mathrm{y}^{2}-\mathrm{x}^{5}$, and the key forms of E_{2}^{*} are $x, y, y^{2}-x^{5}, y^{2}-x^{5}-4 x^{-1} y^{4}$.
It follows that \mathbf{X}_{1}^{\prime} is algebraic, whereas \mathbf{X}_{2}^{\prime} is not.

