Question: How to determine if **X'** is algebraic?

An effective criterion for algebraic contractibility of rational curves

Pinaki Mondal, Weizmann Institute of Sciences

Key forms

Global analogue of MacLane's (1936) key polynomials of valuations. Encode 'cancellations' of the order of vanishing along a divisor. ► May fail to be polynomials.

Examples of key forms

$$\mathbb{C}^2 := \{ [\mathsf{x} : \mathsf{y} : 1] \} \subseteq \mathbb{CP}^2, \ \mathsf{O} := [1 : \mathsf{O} : \mathsf{O}] \in \mathsf{L}_\infty, \ (\mathsf{u},\mathsf{v}) := 1 \}$$

Exceptional divisor
-up of O

$$\begin{array}{c}
E_{1}\\
O_{1} := (\frac{u}{v} = 0, v = 0)\\
\hline
U \mapsto 1, v \mapsto 1\\
\hline
U \mapsto 1, v \mapsto 1\\
\hline
U \mapsto 2, v \mapsto 1\\
\hline
E_{2}\\
\hline
U \mapsto 2, v \mapsto 1, u - v
\end{array}$$
-up of O₂

$$\begin{array}{c}
E_{1}\\
\hline
E_{2}\\
\hline
E_{3}\\
\hline
\end{array}$$

Idea of the proof (of the main result)

Identify $X' \setminus \pi(E^*)$ with \mathbb{C}^2 . Let g_1, \ldots, g_n be the key forms of the order of pole δ along E^* . • Easy part: if all g_i 's are polynomials, then $g := (1, g_1, \dots, g_n) : \mathbb{C}^2 \hookrightarrow W\mathbb{P}$ induces an embedding of X' into $W\mathbb{P}$, where $W\mathbb{P} := \mathbb{P}^n(1, \delta(g_1), \ldots, \delta(g_n))$.

 \blacktriangleright Hard part: if one of the \mathbf{g}_{i} 's is not a polynomial, then \mathbf{X}' cannot be algebraic. Uses the fact that if \mathbf{X}' is algebraic, then there would be an algebraic curve $C' \subseteq X'$ such that C' does not intersect $\pi(E')$. The proof follows from a careful comparison of *degree-wise Puiseux* factorization of \mathbf{g}_i 's with that of the defining polynomial of \mathbf{C}' .

Remark: δ is a *degree-like function*, and the proof is motivated by the theory of compactifications of affine varieties determined by degree-like functions.

Example

Choose affine coordinates (u, v) on \mathbb{CP}^2 such that $L = \{u = 0\}$.

Let $C_i := \{f_i = 0\}$ for j = 1, 2, where $f_1 := v^5 - u^3$ and $f_2 := (v - u^3)$ Let X_i , j = 1, 2, be the surface obtained by resolving the singularity of C_i at (0, 0) and then successively blowing up **8** times the point of intersection of (strict transform of) C_i with the exceptional divisor.

Let \mathbf{E}_{i}^{*} , $\mathbf{j} = \mathbf{1}, \mathbf{2}$, be the last exceptional curve on \mathbf{X}_{j} .

 C_1 and C_2 are equisingular $\Rightarrow X_1$ and X_2 are diffeomorphic.

 X'_1 and X'_2 have a unique singular point with the same dual graph of resolution. W.r.t. coordinates (x, y) := (1/u, v/u) (of the complement $\mathbb{CP}^2 \setminus L$) the key forms of E_1^* are $x, y, y^2 - x^5$, and the key forms of \mathbf{E}_2^* are $\mathbf{x}, \mathbf{y}, \mathbf{y}^2 - \mathbf{x}^5, \mathbf{y}^2 - \mathbf{x}^5 - 4\mathbf{x}^{-1}\mathbf{y}^4$.

It follows that X'_1 is algebraic, whereas X'_2 is not.

(1/x, y/x) coordinates near O.	
ordinates along <mark>E</mark> i	key forms in (x, y) -coordinates and orders of pole along <mark>E</mark> i
	$x\mapsto 1$, $y\mapsto 0$.
	$x\mapsto 2,\ y\mapsto 1.$
$r^2 \mapsto 3$	$x\mapsto 2,y\mapsto 1,x-y^{2}\mapsto 1.$

$$-u^{2})^{5}-u^{3}$$
.