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Background

Let E be a (possibly reducible) curve on a non-singular complex algebraic surface X.

Castelnuovo-Enriques (1901): E rational and (E,E) = −1 iff E contracts to a nonsingular (algebraic) surface X′.

Grauert (1962): intersection matrix of E negative definite iff E can be contracted to an analytic surface X′.

Question: How to determine if X′ is algebraic?

Artin (1962): X′ has rational singularity⇒ X′ is algebraic. (Only previously known criterion which is computable.)

Other criteria: Morrow-Rossi(1975), Brenton(1977), Franco-Lascu(1999), Schröer(2000), Bădescu(2001), Palka(2012).

Main result (2013)
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Question: When is X′ algebraic?
Geometric answer: Iff there exists C as above.
Algebraic (effective) answer: Iff all the key forms of E∗ are polynomials.

Applications

I Identifying X′ \ π(E∗) with C2 gives a new correspondence:

normal algebraic compactifications of C2

with one (irreducible) curve at infinity
←→ algebraic curves in C2

with one place at infinity

How deep is the correspondence? If the curve is rational, does it imply the surface has rational singularities?

I Results about normal analytic compactifications of C2 with one irreducible curve at infinity:
I Singularities of the surface and the curve at infinity: geometric genus, multiplicity, etc.
I Construction of non-algebraic normal Moishezon surfaces with simplest possible singularities.
I Groups of automorphisms and moduli spaces.
I Explicit equations of algebraic compactifications.

I New examples of divisors with non-finitely generated graded rings.

I Algorithm to determine if a valuation is negative or non-positive on C[x, y] \ {0}.

Key forms

I Global analogue of MacLane’s (1936) key polynomials of valuations.

I Encode ‘cancellations’ of the order of vanishing along a divisor.

I May fail to be polynomials.

Examples of key forms

Let C2 := {[x : y : 1]} ⊆ CP2, O := [1 : 0 : 0] ∈ L∞, (u, v) := (1/x, y/x) coordinates near O.

σi Exceptional divisor
key pols in (u, v)-coordinates
and orders of vanishing along Ei

key forms in (x, y)-coordinates
and orders of pole along Ei

Blow-up of O
E1

O1 := (u
v

= 0, v = 0) u 7→ 1, v 7→ 1 x 7→ 1, y 7→ 0.

Blow-up of O1

E1

E2

O2 := ( u
v2 = 1, v = 0) u 7→ 2, v 7→ 1 x 7→ 2, y 7→ 1.

Blow-up of O2

E1

E2

E3

u 7→ 2, v 7→ 1, u− v2 7→ 3 x 7→ 2, y 7→ 1, x− y2 7→ 1.

Idea of the proof (of the main result)

I Identify X′ \ π(E∗) with C2. Let g1, . . . , gn be the key forms of the order of pole δ along E∗.

I Easy part: if all gj’s are polynomials, then g := (1, g1, . . . , gn) : C2 ↪→ WP induces an embedding of X′ into WP,
where WP := Pn(1, δ(g1), . . . , δ(gn)).

I Hard part: if one of the gj’s is not a polynomial, then X′ cannot be algebraic. Uses the fact that if X′ is algebraic,
then there would be an algebraic curve C′ ⊆ X′ such that C′ does not intersect π(E′). The proof follows from a
careful comparison of degree-wise Puiseux factorization of gj’s with that of the defining polynomial of C′.

Remark: δ is a degree-like function, and the proof is motivated by the theory of compactifications of affine varieties
determined by degree-like functions.

Example

Choose affine coordinates (u, v) on CP2 such that L = {u = 0}.

Let Cj := {fj = 0} for j = 1, 2, where f1 := v5 − u3 and f2 := (v − u2)5 − u3.

Let Xj, j = 1, 2, be the surface obtained by resolving the singularity of Cj at (0, 0) and then successively blowing up
8 times the point of intersection of (strict transform of) Cj with the exceptional divisor.

Let E∗j , j = 1, 2, be the last exceptional curve on Xj.

C1 and C2 are equisingular⇒ X1 and X2 are
diffeomorphic.
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X′1 and X′2 have a unique singular point with the same dual graph of resolution.

W.r.t. coordinates (x, y) := (1/u, v/u) (of the complement CP2 \ L) the key forms of E∗1 are x, y, y2 − x5, and
the key forms of E∗2 are x, y, y2 − x5, y2 − x5 − 4x−1y4.

It follows that X′1 is algebraic, whereas X′2 is not.


