Imperial College London

INTRODUCTION

In [1], Paolo Cascini and De-Qi Zhang provide a bound for the singularities of a threefold X depending only on the topology of its resolution, in particular depending on the Picard number $\rho(X)$.

Proposition 0.1. Let X be a smooth projective threefold and assume that

$$
X=X_{0} \rightarrow \ldots \rightarrow X_{k}=Y
$$

is a sequence of steps for the $K_{X^{-}}$ minimal model program of X. Then,

$$
\Xi(Y) \leq 2 \rho(X) .
$$

Question

Is it possible to find a bound for the number of minimal models of a threefold X depending only on the topology of X ?

References

[1] P. Cascini, D. Q. Zhang (2012) Effective finite generation for adjoint rings, arXiv:1203.5204

Topological Bounds for Minimal Threefolds

Diletta Martinelli Supervisor: Prof. Paolo Cascini

BOUNDING THE NUMBER OF DIVISORIAL CONTRACTIONS

The strategy is to bound the number of steps, \mathcal{S}, and then bound the number of operations at each step, $\mathcal{B}_{\mathcal{S}}$.

Number of Minimal Models =

$$
\left(\mathcal{B}_{\mathcal{S}}\right)^{\mathcal{S}}
$$

The number of possible steps is given by the sum of the possible divisorial and small contractions. The number of divisorial contractions is clearly bounded by $\rho(X)$. By results in [1] the total number of flips is bounded by the total number of
divisorial contractions. The number of steps, therefore, is bounded by $2 \rho(X)$.
Given a divisor E, this can be contracted to a point or to a curves. In the first case an obvious bound is given by the Picard number of X . In the second case $\rho(X)$ controls the number of divisors but each of them can be contracted in two different ways. Let us assume that E is a divisor contracted to a curve C

$$
\begin{equation*}
\pi: E \longrightarrow C \tag{1}
\end{equation*}
$$

π is a \mathbb{P}^{1} - bundle over C. Since the Picard number of a curve is always 1 and $\rho(E)$ can drops only by 1 through π, we conclude that $\rho(E)=2$. Thus the cone of curves is 2 dimensional and there are only two extremal rays. Thus there are only two possible rulings. The number of divisorial contractions to a curve is, therefore, $2 \rho(X)$.

Thus, in the worst case there are at most $3 \rho(X)$ divisorial contractions.

BOUNDING THE NUMBER OF FLIPS

To count the number of flips, we can fix a singular point and look at the local picture. How many are the flipping curves passing through one fixed singular point P ?

This is the toric flip diagram $\left(a_{1}, a_{2},-b_{1},-b_{2}\right)$. These kind of diagram are classified by Danilov: the only ones that can occur are of the form $\left(a, 1,-b_{1},-b_{2}\right)$ where $a>b_{1}$, $h c f\left(a, b_{1}\right)=1$ and either $b_{2}=1$ or $a=b_{1}+b_{2}$.

Fixing the singularity: only one flipping curve.

Conjecture: The hope is that the singular points of the variety de-
termine, at least analytically, the curves that can be flipped. Studying the analytic expression of the singularities and the action that produces that singular point it is possible to find a finite number of preferential directions for the tangent line of the flipping curve. After we fix a tanget direction we conjecture that there is only one flipping curve passing through the singular point with that direction.

