On the Chevalley's Conjecture

Michał Farnik Jagiellonian University Faculty of Mathematics and Computer Science

Introduction

Our work is motivated by the conjecture set by Chevalley a few years before 1957:

Conjecture (Chevalley). If *X* is a normal complete algebraic variety such that for every finite set $S \subset X$, there is an affine open subset $U \subset X$ such that $S \subset U$ then *X* is projective.

For an algebraic variety X we will use the following notions:

Definitions.

 $a(X) := \sup\{n \mid \text{every set of } n \text{ points in } X \text{ is contained in some open affine subset of } X\}$

mqos(X) denotes the cardinality of MQOS(X), the set of maximal quasiprojective open subsets of X

 $\operatorname{CaDiv}(X)$ is the group of Cartier divisors, $F_1(X)$ the group of 1-cycles. By $\operatorname{CaDiv}(X)^{\tau}$ and $F_1(X)^{\tau}$ we denote the subgroups of numerically trivial Cartier divisors and 1-cycles. The intersection form gives us a perfect pairing between the spaces $N^1(X) := \operatorname{CaDiv}(X)/\operatorname{CaDiv}^{\tau}(X) \otimes_{\mathbb{Z}}$ \mathbb{R} and $N_1(X) := F_1(X)/F_1^{\tau}(X) \otimes_{\mathbb{Z}} \mathbb{R}$.

 $\rho(X)$ – the Picard number of X, i.e. the dimension of $N^1(X)$ and $N_1(X)$.

The first result concerning Chevalley's conjecture was given in 1966 by Kleiman in [4]:

Theorem (Kleiman). If *X* is a \mathbb{Q} -factorial complete algebraic variety and $a(X) \ge 2\rho(X)$ then *X* is projective.

Kleiman's method was improved in 1996 by Kollár who exhibited in [5] a simple way of showing that it is enough to assume $a(X) \ge \rho(X) + 1$.

In 1999 Włodarczyk [6] introduced a new method of approaching the problem. He noticed that if an algebraic variety X satisfies $a(X) \ge mqos(X)$ then X must be quasiprojective (and thus $a(X) = \infty$ and mqos(X) = 1). Then he showed that if X is a complete algebraic variety satisfying some technical condition (satisfied by \mathbb{Q} -factorial varieties and toric varieties) then MQOS(X) is finite, thus if X additionally satisfies $a(X) = \infty$ then X is projective.

Recently Benoist, [1], has shown that MQOS(X) is finite for every normal algebraic variety thus proving:

Theorem (Benoist-Włodarczyk). If *X* is a normal algebraic variety satisfying $a(X) = \infty$ then *X* is quasiprojective.

Our results

In [2] we have shown that normality is essential:

Theorem. For every $n \ge 2$ there exists an *n*-dimensional nonprojective variety satisfying $a(X) = \infty$ (and thus also $mqos(X) = \infty$).

We have used Włodarczyk's result to enhance Kleiman's proof obtaining:

Theorem. If *X* is a \mathbb{Q} -factorial complete algebraic variety and $a(X) \ge \rho(X)$ then *X* is projective.

On the other hand, in [3] we have obtained a result, which shows that the theorem above is almost sharp:

Theorem. For every integer $n \ge 2$ there exists a smooth complete threefold X with $\rho(X) = n+1$ and a(X) = n-1.

In [3] we established the result which shows that for normal varieties one cannot obtain a projectivity criterion based on a(X) and $\rho(X)$.

Theorem. For every $t \ge 5$ there exists a complete normal toric threefold X with a(X) = t and $\rho(X) = 0$.

Further research

Despite the recent breakthroughs there are still some open questions:

Question. Let *X* be a variety smooth in codimension 2. Does MQOS(X) need to be finite? If additionally $a(X) = \infty$ does *X* need to be projective?

Question. Does there exist a \mathbb{Q} -factorial complete variety with $a(X) = \rho(X) - 1$?

References

[1] O. Benoist, *Quasi-projectivity of normal varieties*, preprint, arXiv:1112.0975v3 [math.AG].

- [2] M. Farnik, Z. Jelonek, A complete variety with infinitely many maximal quasiprojective open subsets, **Demonstra**tio Math., 43 (2010), no 2, 277-284.
- [3] M. Farnik, On strengthening of the Kleiman-Chevalley projectivity criterion, Proc. Amer. Math. Soc., accepted.
 [4] S. Kleiman, Toward a numerical theory of ampleness, Annals of Math. 84, 1966, 293-344.
 [5] J. Kollár, Rational curves on algebraic varieties, Springer-Verlag, Berlin, Heidelberg 1996.
 [6] J. Włodarczyk, Maximal quasiprojective subsets and the Kleiman-Chevalley quasiprojectivity criterion, J. Math. Sci. Univ. Tokyo 6, 1999, 41-47.