Problem

Take R henselian DVR, Frac R = K, residue field k with $\overline{k} = k$, X variety over K. When is $X(K) \neq \emptyset$?

Invariants

Index i(X): gcd of degree of closed points ν -invariant $\nu(X)$: minimum of degrees of closed points Properties:

- $i(X) \mid \nu(X)$
- $X(K) \neq \emptyset \Leftrightarrow \nu(X) = 1$
- $\nu(X)$ harder to compute then i(X)!

Known results

Theorem (Graber, Harris, Starr). Every rationally connected variety over the function field of a curve over \mathbb{C} has a rational point.

Theorem (Colliot-Thélène & Voisin, Esnault & Wittenberg, Nicaise). Let X/K be proper, smooth and geometrically connected, char k = 0. If $H^i(X, \mathcal{O}_X) = 0 \ \forall i > 0$, then i(X) = 1.

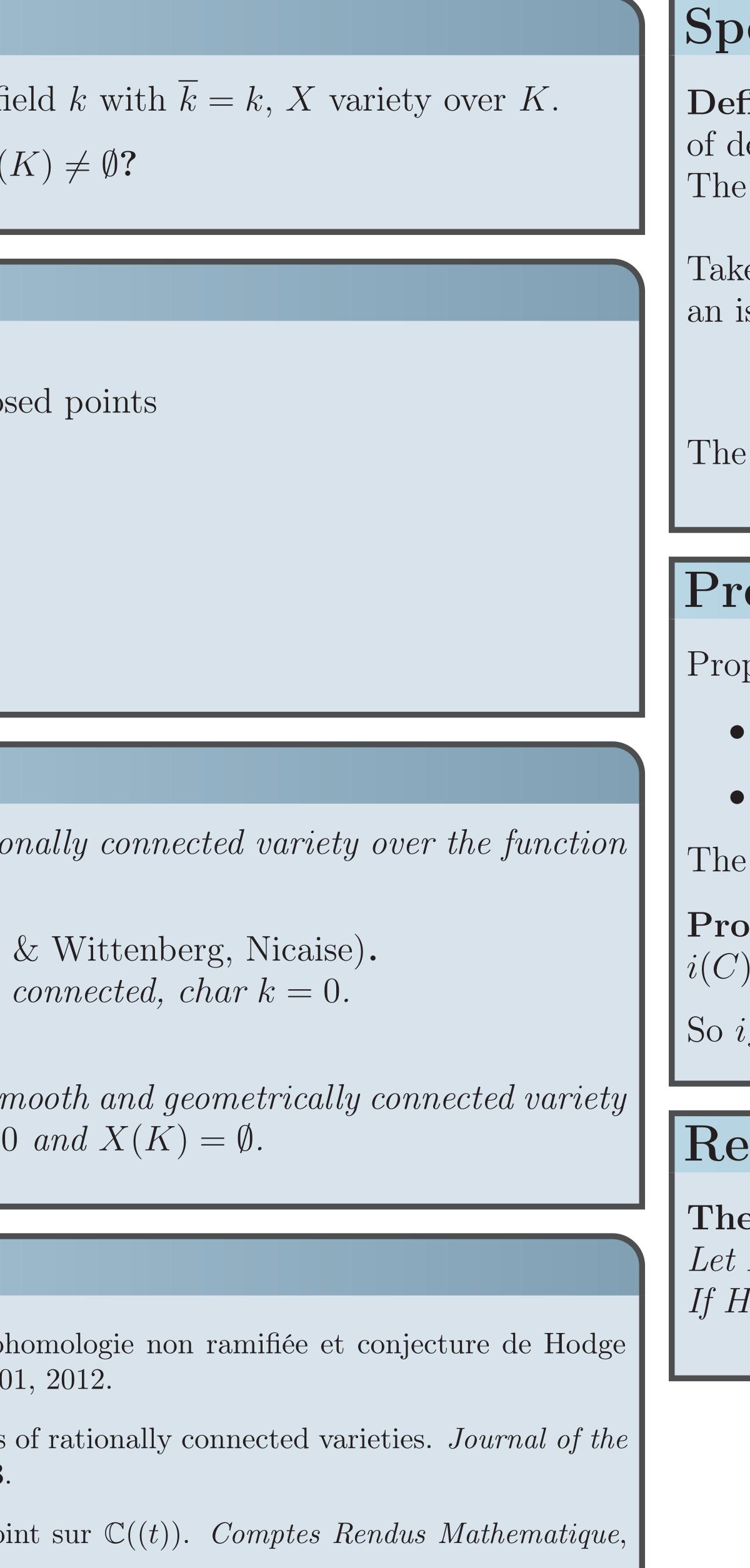
Proposition (Lafon). There exists a proper, smooth and geometrically connected variety X over $\mathbb{C}((t))$ such that $H^i(X, \mathcal{O}_X) = 0 \ \forall i > 0 \ and \ X(K) = \emptyset$.

References

- [1] Jean-Louis Colliot-Thélene and Claire Voisin. Cohomologie non ramifiée et conjecture de Hodge entiere. Duke Mathematical Journal, 161(5):735–801, 2012.
- [2] Tom Graber, Joe Harris, and Jason Starr. Families of rationally connected varieties. Journal of the American Mathematical Society, 16(1):57–67, 2003.
- [3] Guillaume Lafon. Une surface d'Enriques sans point sur $\mathbb{C}((t))$. Comptes Rendus Mathematique, 338(1):51-54, 2004.

The specialization index

Lore Kesteloot Advisor: Prof. Johannes Nicaise



Specialization index

Definition. Take \mathcal{X}/R proper, then $\mathcal{D}_{\mathcal{X}}$ is the set of integers d > 0 s.t. \exists zero devisor of degree d on \mathcal{X}_K with support in $\operatorname{sp}_{\mathcal{X}}^{-1}(x)$ for some $x \in \mathcal{X}(k)$. The specialization index $i_{sp}(\mathcal{X})$ is the minimum of $\mathcal{D}_{\mathcal{X}}$.

Take X/K proper. A model for X is a proper and flat scheme \mathcal{X} over R with an isomorphism $\mathcal{X}_K \to X$. We set

 $\mathcal{D}_X = \bigcap \{ \mathcal{D}_{\mathcal{X}} \mid \mathcal{X} \text{ is an } R \text{-model for } X \}.$

The specialization index $i_{sp}(X)$ is the minimum of \mathcal{D}_X .

Properties

Properties:

- $i(X) \mid i_{sp}(X)$
- $i_{sp}(X) \leq \nu(X)$

The specialization index is a stronger invariant then the index:

Proposition. There exists a smooth, proper, geometrically connected K-curve C with $i(C) = 1 \text{ and } i_{sp}(C) > 1.$

So $i_{sp}(X)$ is intermediate between i(X) and the existence of a rational point.

Result

Theorem.

Let X/K be smooth, proper and geometrically connected with char k = 0. If $H^i(X, \mathcal{O}_X) = 0 \ \forall i > 0$, then $i_{sp}(X) = 1$.

GAeL XXI, Stockholm, 2013