Tropiral points of multiplirity \mathfrak{m}

Nikita Kalinin, "Newton polygon of a planar singular curve", arXiv:1306.4688 Advisor: Grisha Mikhalkin

UNIVERSITÉ DE GENĖVE

Tropiral sptup

TRPsults

Tropical semi-ring: $\mathbb{T}=\mathbb{R} \cup\{-\infty\}$.
Field of Puiseux series: $\mathbb{K}=\left\{\sum_{\alpha \in I} c_{\alpha} t^{\alpha} \mid c_{\alpha} \in\left(\mathbb{C}^{*}\right), I \subset \mathbb{R}\right\}$, where t is a formal variable and I is a well-ordered set, i.e. each of its nonempty subsets has a least element
Valuation map val : $\mathbb{K} \rightarrow \mathbb{T}$ is defined as $\operatorname{val}\left(\sum_{\alpha \in I} c_{\alpha} t^{\alpha}\right):=-\min _{\alpha \in I} \alpha$ and $\operatorname{val}(0):=-\infty$.
Tropicalization $\operatorname{Trop}(V) \subset \mathbb{T}^{n}$ of an algebraic variety $V \subset \mathbb{K}^{n}$ is the image of V under the map val applied coordinate-wise

Throughout the poster we consider a finite set $\mathcal{A} \subset \mathbb{Z}^{2}$ and a curve C given by the equation

$$
F(x, y)=\sum_{(i, j) \in \mathcal{A}} a_{i j} x^{i} y^{j}=0, a_{i j} \in \mathbb{K}
$$

A point p is of multiplicity m for C if $\frac{\partial^{i+j}}{\partial^{\prime} x \partial^{j} y} F(x, y)_{\left.\right|_{p}}=0$ for each $0 \leq i, j ; i+j \leq m-1$.
The Newton polygon of C is the set of all integer points in the convex hull of \mathcal{A} in \mathbb{R}^{2}. The extended Newton polygon $\widetilde{\mathcal{A}}$ of C is the convex hull of the set $\{((i, j), s) \in$ $\left.\mathbb{R}^{2} \times \mathbb{R} \mid(i, j) \in \mathcal{A}, s \leq \operatorname{val}\left(a_{i j}\right)\right\}$. The projection $\mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}^{2}$ defines a subdivision of the Newton polygon by images of the faces of $\widetilde{\mathcal{A}}$. Look at Figures 1,2 which illustrate the example below.

This subdivision is dual to $\operatorname{Trop}(C)$: each vertex V of $\operatorname{Trop}(C)$ corresponds to a face $d(\boldsymbol{V})$ of the subdivision; each edge E of $\operatorname{Trop}(C)$ corresponds to an edge $d(\boldsymbol{E})$ in the subdivision, the direction of the edge $d(E)$ is perpendicular to the direction of E.

The tropical curve $\operatorname{Trop}(C)$ equals to the set of non-smooth points of the piece-wise linear function $\operatorname{Trop}(F)=\max _{(i, j \in A}\left(i x+j y+\operatorname{val}\left(a_{i j}\right)\right)$, i.e. to the set of points $(x, y) \in \mathbb{T}^{2}$ where the maximum is attained at least twice.

For a point $A \in \operatorname{Trop}(C)$ denote by $\operatorname{dep}(A)$ the all vertices B of a tropical curve, such that B lies on a long edge passing through A.

Example. Consider a curve C defined by the equation $F(x, y)=t^{-3} x y^{3}-\left(3 t^{-3}+t^{-2}\right) x y^{2}+\left(3 t^{-3}\right.$ $\left.2 t^{-2}-2 t^{-1}\right) x y-\left(t^{-3}+t^{-2}-2 t^{-1}-3\right) x++t^{-2} x^{2} y^{2}-\left(2 t^{-2}-t^{-1}\right) x^{2} y+\left(t^{-2}-t^{-1}-3\right) x^{2}+t^{-1} y-\left(t^{-1}+1\right)+x^{3}=$ The point $(1,1)$ is of multiplicity 3 for C, the point $(0,0)$ is of multiplicity 3 for the curve $\operatorname{Trop}(C)$ (Figure 2) defined as the set of all non-smooth points of the function $\operatorname{Trop}(F(x, y))=$
$\max (3+x+3 y, 3+x+2 y, 3+x+y, 3+x, 2+2 x+2 y, 2+2 x+y, 2+2 x, y+1,1,3 x)$ The vertices of the tropical curve C have coordinates $(-2,0),(1,0),(2,0)$.

Figure 1: The extended Newton polygon

Figure 2: Subdivision of the Newton polygon, the tropical curve $\operatorname{Trop}(\mathrm{C})$, the function $\operatorname{Trop}(\mathrm{F})$

fiffy nationz and ideaz of proafz

Let $B \subset \mathbb{Z}^{2}$ be a non-empty finite set. Lattice width of B in a direction $u \in \mathbb{Z}^{2}$ is the number $\omega_{u}(B)=\max _{x, y \in B} u \cdot(x-y)$. The minimal lattice width $\omega(B)$ is $\min _{u \in \mathbb{Z}^{2}} \omega_{u}(B)$.
Theorem. Suppose $\omega(B)>0$. Then the area $S(B)$ of the polygon B satisfies the following inequality

$$
S(B) \geq \frac{3}{8} \omega(B)^{2}
$$

A finite set $B \subset \mathbb{Z}^{2}$ is called m-coverable if there is no set $\left\{l_{i}\right\}_{i=1 . . m-1}$ of lines such that cardinality $\left|B \backslash \bigcup l_{i}\right|=1$.
Example. Two integer points give us a 1 -coverable set while one point does not. The empty set is m-coverable for any m.
For $\mu \in \mathbb{R}$ denote by \mathcal{A}_{μ} the set $\left\{(i, j) \in \mathcal{A} \mid \operatorname{val}\left(a_{i j}\right) \geq \mu\right\}$.
Theorem. For each real number μ the set \mathcal{A}_{μ} is m-coverable.
Define the function $\hat{g}(x)$ to be the length of interval excised out of the line $z=g(x)$ by the graph of g.
Lemma. The length m_{i} of the edge $d\left(A_{i} A_{i+1}\right)$ is not less than $m-\hat{g}\left(x_{i}\right)$.

Figure 4: Dual picture, A is a vertex

Consider the set L of curves with given support \mathcal{A} and such that the point $(1,1)$ of multiplicity m. It is clear that L is a linear space. This space L defines a matroid and we can construct the Bergman fan $T(m, \mathcal{A})$ of it.
M-coverability Theorem (in terms of Bergman fans). Each flag of flats $\varnothing \varsubsetneqq$ $F_{1} \nsubseteq F_{2} \nsubseteq \cdots \nsubseteq \mathcal{A}$ corresponding to a vector in the fan $T(m, \mathcal{A})$ has the following property: for each $l \in \mathbb{N}$ the set $\mathcal{A} \backslash F_{l}$ is m-coverable.

概hat is essentially new?

I found new necessary conditions for a point to be realized as the tropicalization of a point of multiplicity m. These conditions are easily formulated in terms of Newton polygon subdivisions. Moreover, if one draws a curve through generic points with prescribed multiplicities then each face in the subdivision is under governorship of at most two singular points (Figure 5).
So, one can convert these results into a more precise definition of a tropical point of multiplicity m. Nevertheless an ambiguity is remained: if a singular point lies on the edge E then it is impossible to locate it unless $\omega_{E}(\quad \bigcup \quad d(B))=m$.
$B \in \operatorname{dep}(A)$

㑑irtures

Lemma. Suppose g is convex on the interval $[a, b]$ and $g(a)=g(b)$. Then

$$
\int_{a}^{b} \hat{g}(x) d x=(b-a)^{2} / 2
$$

Figure 5: Governorships of singular points.

