
Irreducible symplectic manifolds and orthogonal modular forms

1 Irreducible Symplectic Manifolds

Definition 1.1 A complex manifold X is called an irreducible symplectic manifold (hyperkähler manifold) if:

1. X is a compact Kähler manifold;

2. X is simply-connected;

3. H0(X,⌦2
X) ⇠= C! where ! is an everywhere non-degenerate holomorphic 2-form

There are many reasons to be interested in irreducible symplectic manifolds:

• Irreducible symplectic manifolds are a generalisation of the K3 surfaces (the other natural generalisation being the
Calabi-Yau varieties).

• An important class of Ricci-flat manifolds are the compact Kähler manifolds with vanishing first chern class. By a
theorem of Bogomolov, these decompose into a product of complex tori, Calabi-Yau varieties and irreducible symplectic
manifolds.

• The moduli of Hyperkähler manifolds are significant in Quantum field theory.

Four classes of irreducible symplectic manifold have been discovered but it is not known if there are any more. The four
classes are:

• (irreducible symplectic manifolds of deformation K3[n]-type) The length-n Hilbert scheme S[n] = Hilbn(S) for a K3
surface S or its deformations.

• (generalised Kummer varieties) Let A be a complex torus of dimension 2 and let A[n+1] = Hilbn+1(A) with the
morphism p : A[n+1] ! A given by addition. Then X := p�1(0) is an irreducible symplectic manifold.

• (O’Grady’s 6-dimensional example) A 6-parameter deformation of moduli spaces of sheaves on an abelian surface [8].

• (O’Grady’s 10-dimensional example) A 22-parameter deformation of moduli spaces of sheaves on a K3 surface [7].

For every irreducible symplectic manifold X, it is possible to endow H2(X,Z) with a lattice structure (the Beauville-
Bogomolov lattice). The Beauville-Bogomolov lattices of the known examples of irreducible symplectic manifolds are as
follows:

• Deformation K3[n]-type: 3U � 2E8(�1)� h�2(n� 1)i

• Generalised Kummer varieties: 3U � h�2(n+ 1)i

• O’Grady’s 6-dimensional example: 3U � h�2i � h�2i

• O’Grady’s 10-dimensional example: 3U � 2E8(�1)�A2(�1)

2 Moduli of polarised irreducible symplectic manifolds

It is natural to consider the moduli of polarised irreducible symplectic manifolds. A polarisation on an irreducible symplectic
manifold X is a choice of ample line bundle on X. An ample line bundle L on X can be identified with its first Chern class
c1(L) 2 L and then with some h 2 L. We will assume that the polarisation is primitive (i.e. h is primitive in L). In order
to construct a moduli space, we fix some discrete data: the dimension 2n, a choice of Beauville-Bogomolov lattice L and an
orbit of primitive h in the orthogonal group O(L) (a polarisation type). These choices define the numerical type N of the
irreducible symplectic manifold. One can use the results of Viehweg to construct a moduli space Mn,N,h that parametrises
the polarised irreducible symplectic manifolds (X,L) with dimension 2n and Beauville-Bogomolov lattice L. The moduli
space is quasi-projective and exists as a GIT quotient.

2.1 Moduli and quotients of hermitian symmetric domains of type IV by an arithmetic

group

One can relate the moduli space Mn,N,h to an orthogonal modular variety. Given a Beauville-Bogomolov lattice L, one can
define the period domain ⌦L where ⌦L = {[x] 2 P(L)|(x, x) = 0, (x, x) > 0} (which is a hermitian symmetric domain of type
IV) and an orthogonal group O(L). The period domain ⌦L has two connected components, we pick one and call it DL and
and let O+(L) be its stabilser. Given a primitive h 2 L, define O+(L, h) to be the stabiliser of h in O+(L). If Lh = (h)?L ,
then one can consider O+(L, h) < O+(Lh) and form the quotient O+(L, h)\DLh . We refer to such varieties as orthogonal
modular varieties.

We have the following theorem:
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Theorem 3.4 [4] Let L ,! II2,26 be a non-degenerate sublattice of signature (2, n) with n � 3 where II2,26 is the unique even
unimodular lattice of signature (2, 26) and let DL ,! DII2,26 be the corresponding embedding of the homogeneous domains. Let
�12 be the Kac-Weyl-Borcherds modular form associated with the orthogonal group O+(II2,26) and determinant character.
Then the set of (�2)-roots

R�2(L
?) = {r 2 II2,26 | r2 = �2, (r, L) = 0}

in the orthogonal complement is finite. Then the function

�|L =
�12(Z)Q

r2R�2(L?)/±1(Z, r)
|DL

lies in M12+N(L?(Õ(L), det) (where, in the product over r, we fix a finite set of representatives in R�2(L?)/ ± 1). The
modular form �|L vanishes only on rational quadratic divisors of type Dv(L) where v 2 L_ is the orthogonal projection of a
(�2)-root r 2 II2,26 on L_ where L_ is the dual lattice of L.

If the set of roots is non-empty, we refer to the modular form �|L as the quasi-pullback of �12.

Theorem 3.5 [2] Let L ,! II2,26 be a non-degenerate sublattice of signature (2, n). If the set of roots R�2(L?) is finite
then the quasi-pullback �|L of the Borcherds form is a cusp form �12.

One may show that these conditions are satisfied for the K3 lattice and that the cusp form satisfies the other necessary
conditions in the statement of the low weight cusp form trick.

The low weight cusp form trick uses forms of low weight (k < n) and large divisor (divF � Bdiv(⇡�)) but forms of high
weight (k � n) and small divisor (divF � Bdiv(⇡�)) are also useful.

Theorem 3.6 [5] Suppose L is a lattice of signature (2, n), with n � 3. Let Fk 2 Mk(�,�) be a strongly reflective modular
form of weight k and character � for a subgroup � < O+(L) of finite index. Then,

(FL(�)) = �1

if k > n or if k = n and Fk is not a cusp form. If k and Fn is a cusp form whose order of vanishing at infinity is at least 1
then

(��\DL) = 0 ,

where �� = ker(�.det) is a subgroup of �.

As a consequence of this theorem, one can find examples of lattice polarised K3 surfaces with  = �1 or  = 0.

4 My interests

• Understanding the moduli of the generalised Kummer varieties

• General interest in modular forms for O(2, n) and, in particular, the existence of Borcherds-type products.
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Theorem 2.1 [3] For every component M0
n,N,h of Mn,N,h, there exists a finite-to-one dominant morphism from

Mn,N,h to O+(L, h)\DLh .

This is su�cient to prove results about the birational geometry of the moduli space: in particular, one can determine the
Kodaira dimension.

An orthogonal modular variety FL (i.e. the quotient of a connected component of some period domain ⌦L by an arithmetic
subgroup � of an orthogonal group O(L) where L is a lattice of signature (2, n)) is quasi-projective (by the results of Baily
and Borel) and it is also a locally symmetric variety. For our applications, it is necessary to work with smooth (or ‘nearly
smooth’) models. One may prove existence of such models by applying Mumford’s theory of toroidal compactifications [1]
and, in doing so, one obtains theorems of the following kind:

Theorem 2.2 If n � 7 then FL has canonical singularities.

3 Modular forms and Kodaira dimension

Definition 3.1 If Y is a connected smooth projective variety of dimension n, The Kodaira dimension (Y ) of Y is defined
by

(Y ) = tr.deg(
M

k�0

H0(Y, kKY ))� 1

(Y ) can take values in �1, 0, 1, . . . , n = dim(Y ) and Y is said to be of general type if (Y ) = dim(Y ). The Kodaira
dimension is a bimeromorphic invariant and, for an arbitrary quasi-projective variety Z, one defines the Kodaira dimension
of Z as the Kodaira dimension of a desingularisation of a compactification of Z.

Definition 3.2 Let L be a lattice of signature (2, n) with n � 3. Let k 2 Z and let � : � ! C⇤ be a character for a subgroup
� < O+(L) of finite index. A holomorphic function from the a�ne cone D•

L of DL to C is called a modular form of weight
k for the group � with character � if

F (tZ) = t�kF (Z) 8t 2 C⇤

F (gZ) = �(g)F (Z) 8g 2 �

A modular form is called a cusp form if it vanishes at the cusps. We denote the linear spaces of modular forms and cusp
forms of weight k for the group � and character � by Mk(�,�) and Sk(�,�), respectively.

3.1 The low weight cusp form trick

Theorem 3.1 [4] Let L be an integral lattice of signature (2, n), n � 9. The modular variety FL(�) is of general type if
there exists a non-zero cusp form Fa 2 Sa(�,�) of small weight a � n vanishing with order at least 1 at infinity such that
divFa � Bdiv(⇡�) where Bdiv(⇡�) denotes the branch divisor of the projection ⇡� : DL ! FL(�).

The main ideas of the argument are as follows:
If there exists a special modular form Fa, one may construct an infinite series of �-invariant di↵erential forms which define

sections of the pluricanonical bundle of FL away from the ramification divisor of the projection from DL onto FL(�) and also
away from the cusps. If it is possible to exhibit such an Fa and if it is also possible to pick a compactification FL(�) of FL(�)
with su�ciently amenable geometric behaviour, one can extend the di↵erential forms to a global section of the pluricanonical
bundle on FL(�) and apply Hirzebruch-Mumford proportionality in order to obtain the general type statement.

As a consequence of this theorem, one can prove the following:

Theorem 3.2 [4] The moduli space F2d of K3 surfaces with a polarisation of degree 2d is of general type for any d � 61 and
for d = 46, 50, 52, 54, 57, 58 and 60. If d � 40 and d 6= 41, 44, 45 or 47 then the Kodaira dimension of F2d is non-negative.

Theorem 3.3 [6] Let d be a positive integer not equal to 2n with n � 0. Then every component of the moduli space of
10-dimensional O’Grady varieties with split polarisation h of Beauville degree h2 = 2d 6= 2n+1 is of general type.

The cusp forms for the K3 surface case come from pullbacks of the Borcherds form �12. The following theorems establish
that the form has the properties required:
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Orthogonal modular varieties are a class of locally symmetric variety with a modular interpretation for certain irreducible symplectic manifolds. Differential forms on an orthogonal modular variety can be interpreted as 
modular forms for an orthogonal group and so arithmetic information about the modular forms can be used to obtain geometric information about the modular variety. 
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