Irreducible symplectic manifolds and orthogonal modular forms

Matthew Dawes
University of Bath, UK
Department of Mathematical Sciences
Supervisor: Professor Gregory Sankaran

 modular forms for an orthogonal group and so arithmetic information about the modular forms can be used to obtain geometric information about the modular variety.

```
Irreducible Symplectic Manifolds
```



```
    1. X is a compact Kihler manjocl:
    3. Ho(X,\mp@subsup{\Omega}{y}{2})\cong ©W where
```



```
    - Irreducibl symplectic manifdds are a generalisation of the K3 surfaces (the other natural generalisation being the
```



```
    manifods.
    -The moduli of Hyerelabler manifolds are signifcant in Ouantum feld theory
Four clases of irreducible symplectic manifold have been discovered but tis not thoun if there ere awy more The for
    #
```



```
    - (O'Graly's --dimensional erample) A G-parameter deformation of modulis spaces of steaves on an abelian surface [8].
M
- Deformation K3(m)lype: 3U \oplus2Es(-1)\oplus{-2(n-1)
```



```
    - OTGrady's-dimensional example: }3|\oplus(-2)\oplus(-
    - o'Grady's 10-dimensional example: 3U \oplus2E 庳(-1)\oplusA(-1)
2 Moduli of polarised irreducible symplectic manifolds
```



```
c
```



```
M
2.1 Moduli and quotients of hermitian symmetric domains of type IV by an arithmetic
    group
```



```
*)
M)
Men one cat coniser ol+(L,h)
M
```

```
Theorem 2.1 (3/F) Forevery component NM,N,N,N
Mh,N,i
```



```
min
M,
mad, in doing so, one obtains thorems of the fllowing lind
Theorem 2.2 If n\geq7 then \mp@subsup{I}{L}{}\mathrm{ has canonical singulurities}
M Modular forms and Kodaira dimension
Deffnition 3.1 IfY is a connected smooth projective orrity of dimensionn, The Kodira dimension }\kappa(Y)\mathrm{ of Y is defined
```



```
M,
```



```
        F(tZ)=\mp@subsup{t}{}{*}F(Z)}\begin{array}{l}{|\in\mathbb{C}}\\{F(qZ)=\(q)F(Z)}
```



```
3.1 The low weight cusp form trick
```



```
M,
The main ideas of the argmentare as folows:
M
L)
```


 The eusp forms for the K K 3 surface case come from pullbacks of the Borcherds form Φ_{12}. The following theorems sestabis
that the form has the properties required:

```
M,
R-2(L)
R-2(L)={r\inII2
```



```
M
```



```
One may show that theseconditions. are eatisfod, for the K3 lattice and that the cusp form satisfes the other neessary
T)
```



```
k({\mp@subsup{\mathcal{F}}{L}{\prime(\Gamma))=-\infty}
fk>n or ifk=n and \mp@subsup{F}{k}{\prime}\mathrm{ is not a cusp form. Ifk and F F is c cusp form uhose orler of vonishing, at infnitit, is at least t}
uhere }\mp@subsup{\Gamma}{\chi}{}=ker(x.det) is a subgroup of
4 My interests
Undestanding the modulio of the generalised Kummer varieties
Reference
(1] M R Rapopoptr Y Yaid Ash. D Mumford. Smooth Compoctififations of Loochly Symmetric Varieties. Cambridge Univesity
```



```
\({ }^{\text {[3] }} \mathrm{V}\) V Gritsenko, K Hulek, and Gregory K Sankaran. Moduli spaces of irreducible symplectic manifiolds. Compos. Math,
```


