Hilbert functions of 0-dimensional Schemes in $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Paola Bonacini and Lucia Marino

University of Catania (Italy), Mathematics and Computer Science Department

CONTRIBUTION

Let $Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and let $X \subset Q$ be a 0 -dimensional scheme. Only if X is ACM, then its Hilbert function can be easily computed. We introduce:

- an iterative method to compute the Hilbert functions of some non ACM subschemes in Q
- a class of Hilbert functions of subschemes together with their geometrical description.

INTRODUCTION

Given a reduced 0-dimensional scheme X, we call $\mathbf{R}_{0}, \ldots, \mathbf{R}_{\mathrm{a}}$ and $\mathbf{C}_{0}, \ldots, \mathbf{C}_{\mathbf{b}}$ the $(1,0)$ and $(0,1)$-lines containing X. Any two (1,0)-lines (such as any two (0,1)-lines) have empty intersection. Every point is the intersection of a $(1,0)$ and a $(0,1)$-line. So, usually X is represented on a grid of lines:

Given a 0 -dimensional scheme $X \subset Q$, let us consider:

- $S(X)=k\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right] / I(X)$ and $m_{i j}=\operatorname{dim}_{k} S(X)_{(i, j)}$
- $M_{X}=\left(m_{i j}\right)$, its bi-graded Hilbert function
- $c_{i j}=m_{i j}+m_{i-1 j-1}-m_{i j-1}-m_{i-1 j}$ and $\Delta M_{X}=\left(c_{i j}\right)$
- $a_{i j}=m_{i j}-m_{i j-1}$ and $b_{i j}=m_{i j}-m_{i-1 j}$.

Note that $c_{i j} \leq 1$ for any (i, j) and $c_{i j}=1 \Longleftrightarrow I(X)_{(i, j)}=0$. Moreover, $1 \leq \operatorname{depth} S(X) \leq 2 . X$ is called arithmetically Cohen-Macaulay (ACM for short) if depth $S(X)=2$.

ACM CASE

CHARACTERIZATION THEOREMS

- A 0 -dimensional scheme $X \subset Q$ is ACM $\Longleftrightarrow c_{i j} \geq 0$ for any (i, j).
- If $M=\left(m_{i j}\right)$ is a table such that:
(1) $c_{i j} \leq 1$ and $c_{i j}=0$ for either $i \gg 0$ or $j \gg 0$
(2) $c_{i j} \leq 0 \Rightarrow c_{r s} \leq 0$ for any $(r, s) \geq(i, j)$
© $0 \leq a_{i j} \leq a_{i j-1}$ and $0 \leq b_{i j} \leq b_{i-1 j}$ for any (i, j) and, moreover, if $c_{i j} \geq 0$ for any (i, j), then M is the Hilbert function of an ACM scheme.

Let $X \subset Q$ be an ACM scheme. Then ΔM_{X} and the geometry of X are strictly related:

COMPUTING THE HILBERT FUNCTION

THEOREM

Let X be a 0 -dimensional scheme and let R be a $(1,0)$-line disjoint from X. Let $C_{b+1}, \ldots, C_{n}, n \geq b$, be arbitrary $(0,1)$-lines and $i_{1}, \ldots, i_{r} \in\{0, \ldots, b\}$. Let $\mathcal{P}=$ $\left\{R \cap C_{i} \mid i \in\{0, \ldots, n\}, i \neq i_{1}, \ldots, i_{r}\right\}$ and let $Z=X \cup \mathcal{P}$. Suppose also that on the $(0,1)$-line $C_{i_{k}}$ there are q_{k} points of X for $k=1, \ldots, r$ and that $q_{1} \leq q_{2} \leq \cdots \leq q_{r}$. Then, given $T=\left\{\left(q_{1}, n\right),\left(q_{2}, n-1\right), \ldots,\left(q_{r}, n-r+1\right)\right\}$, we have:

$$
c_{i j}(Z)= \begin{cases}1 & \text { if } i=0, j \leq m+r \\ 0 & \text { if } i=0, j \geq m+r+1 \\ c_{i-1 j}(X) & \text { if } i \geq 1 \text { and }(i, j) \notin T \\ c_{i-1 j}(X)-1 & \text { if } i \geq 1 \text { and }(i, j) \in T\end{cases}
$$

if one of the following conditions holds:
(1) X is ACM ;
(2) $r=0,1$;
(3) $r \geq 2, q_{r-1}<q_{r}$ and $\Delta M_{X}^{(i, m+r-k+1)}=0$ for any $k \in\{1, \ldots, r-1\}$ and $i \geq q_{k}$;
© $r \geq 2, q_{r-1}=q_{r}$ and $\Delta M_{X}^{(i, m+r-k+1)}=0$ for any $k \in\{1, \ldots, r\}$ and $i \geq q_{k}$.

Thanks to this theorem it is possible to compute, recursively, the Hilbert functions of some non ACM schemes. For example:

CONDITIONS ON THE HILBERT FUNCTION

Let $M=\left(m_{i j}\right)$ be a table such that:
(1) $c_{i j} \leq 1$ and $c_{i j}=0$ for either $i \gg 0$ or $j \gg 0$
(2) $c_{i j} \leq 0 \Rightarrow c_{r s} \leq 0$ for any $(r, s) \geq(i, j)$
© $0 \leq a_{i j} \leq a_{i j-1}$ and $0 \leq b_{i j} \leq b_{i-1 j}$ for any (i, j).
Take any $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ such that $c_{i_{1}, j_{1}}, c_{i 2 j_{2}}<0$ and consider $r_{1} \in\left\{0, \ldots,-c_{i_{1} j_{1}}-1\right\}$ and $r_{2} \in\left\{0, \ldots,-c_{i_{2} j_{2}}-1\right\}$. Suppose that $i_{1} \neq i_{2}$ and $j_{1} \neq j_{2}$ and either $a_{i_{11} j_{1}}+r_{1} \neq a_{i_{2} j_{2}}+r_{2}$ or $b_{i_{1} j_{1}}+r_{1} \neq b_{i_{2} j_{2}}+r_{2}$. Then the it is possible to describe a non ACM scheme Z such that $M=M_{Z}$. An example is the following:

REFERENCES

CONTACTS

http://www.dmi.unict.it/~bonacini http://www.dmi.unict.it/~1marino bonacini@dmi.unict.it, lmarino@dmi.unict.it
[1] B.--M. On the Hilbert functions of 0-dimensional schemes in $\mathbb{P}^{1} \times \mathbb{P}^{1}$, Collect. Math. 62 (2011), 57-67.
[2] B.-M. Hilbert functions and set of points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$, preprint.
[3] Giuffrida, Maggioni, Ragusa, On the postulation of 0-dimensional subschemes on a smooth quadric, Pacific J. Math. 155 (1992), no. 2, 251-282.

