Minimal free resolutions of 0-dimensional schemes in $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Paola Bonacini and Lucia Marino
University of Catania (Italy), Mathematics and Computer Science Department

CONTRIBUTION

Let X be a zero-dimensional scheme in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Then X has a minimal free resolution of length 2 if and only if X is ACM. We determine a class of reduced schemes whose resolutions, similarly to the ACM case, can be obtained by their Hilbert functions and depends only on their distributions of points in a grid of lines. Moreover, a minimal set of generators of the ideal of these schemes is given by curves split into the union of lines.

INTRODUCTION

Given a 0-dimensional scheme $X \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$, let us consider:

- $S(X)=k\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right] / I(X)$
- $m_{i j}=\operatorname{dim}_{k} S(X)_{(i, j)}$ and $M_{X}=\left(m_{i j}\right)$, its bi-graded Hilbert function
- $c_{i j}=m_{i j}+m_{i-1 j-1}-m_{i j-1}-m_{i-1 j}$ and $\Delta M_{X}=\left(c_{i j}\right)$.

It is known that $1 \leq$ depth $S(X) \leq 2$, so that $S(X)$ has a minimal free resolution of length ≤ 3. $S(X)$ has a minimal free resolution of length 2 when X is ACM. So we see that a minimal free resolution of a zero-dimensional scheme in $Q=\mathbb{P}^{1} \times \mathbb{P}^{1}$ is of the following type:

$$
0 \rightarrow \underset{i=1}{\stackrel{t}{\oplus}} \mathscr{O}_{Q}\left(-a_{3 i},-a_{3 i}^{\prime}\right) \rightarrow \underset{i=1}{\stackrel{n}{\oplus}} \mathscr{O}_{Q}\left(-a_{2 i},-a_{2 i}^{\prime}\right) \rightarrow \underset{i=1}{\stackrel{m}{\oplus}} \mathscr{O}_{Q}\left(-a_{1 i},-a_{1 i}^{\prime}\right) \rightarrow \mathscr{I}_{X} \rightarrow 0
$$

and X is ACM if $t=0$.

ACM CASE

It is known that for any 0-dimensional scheme $X \subset Q$ $c_{i j} \leq 1$ for any i, j and a X is $\mathrm{ACM} \Longleftrightarrow c_{i j} \geq 0$ for any (i, j). Moreover, if $c_{i j}=1$, then $c_{h k}=1$ for any $h \leq i$ and $k \leq j$. The pair (i, j) is called:

- corner for X if $c_{i j} \leq 0$ and $c_{i j-1}=c_{i-1 j}=1$
- vertex for X if $c_{i j} \leq 0, c_{i j-1}, c_{i-1 j} \leq 0$ and
$c_{i-1 j-1}=1$.
It is known that if X is ACM, then the generators's degrees $\left(a_{1 i}, a_{1 i}^{\prime}\right)$ run over all the corners of X and the first syzygies $\left(a_{2 i}, a_{2 i}^{\prime}\right)$ run over all the vertices of X and a set of minimal generators of X is given by curves split in the union of lines.

NOTATION

Let $X \subset Q$ be a reduced ACM 0-dimensional scheme. We call R_{0}, \ldots, R_{a} and C_{0}, \ldots, C_{b}, respectively, the $(1,0)$ and (0,1)-lines containing X and each at least one point of X. We consider $P_{i j}=R_{i} \cap C_{j}$ for any i, j.

THEOREM

Let X be a reduced ACM 0-dimensional scheme and $P_{i_{1} j_{1}}, \ldots, P_{i_{h} j_{h}} \in X$ points such that any two if them are not contained in a $(1,0)$ or $(0,1)$-line and $X \backslash\left\{P_{i_{r} j_{r}}\right\}$ is not ACM for any $r=1, \ldots, h$. Let us consider:

$$
Z=X \backslash\left\{P_{i_{1} j_{1}}, \ldots, P_{i_{h} j_{h}}\right\}
$$

Let $q_{l}+1=\#\left(X \cap C_{l}\right)$ and $p_{l}+1=\#\left(X \cap R_{l}\right)$ for $l=1, \ldots, h$ and let:

$$
r_{i j}=\#\left\{l \in\{1, \ldots, h\} \mid\left(q_{l}, p_{l}\right)=(i, j)\right\}
$$

for any (i, j). Then the minimal free resolution of Z is:

$$
\begin{aligned}
& 0 \rightarrow \underset{\substack{\oplus \\
l=1\\
}}{ } \mathscr{O}_{Q}\left(-q_{l}-1,-p_{l}-1\right) \rightarrow \\
& \rightarrow \underset{i=1}{\substack{\oplus-1 \\
i=1}} \mathscr{O}_{Q}\left(-a_{2 i},-a_{2 i}^{\prime}\right) \oplus \underset{l=1}{\stackrel{h}{\oplus}} \mathscr{O}_{Q}\left(-q_{l},-p_{l}-1\right) \oplus \underset{l=1}{\stackrel{h}{\oplus} \mathscr{O}_{Q}\left(-q_{l}-1,-p_{l}\right) \rightarrow} \\
& \rightarrow \underset{i=1}{\stackrel{m}{\oplus}} \mathscr{O}_{Q}\left(-a_{1 i},-a_{1 i}^{\prime}\right) \oplus \underset{l=1}{\stackrel{h}{\oplus}} \mathscr{O}_{Q}\left(-q_{l},-p_{l}\right) \rightarrow \mathscr{I}_{Z} \rightarrow 0,
\end{aligned}
$$

there exists a minimal set of generators of I_{Z} given by curves split into the union of $(1,0)$ and $(0,1)$-lines and

$$
\Delta M_{Z}(i, j)=\Delta M_{X}(i, j)-r_{i j}
$$

for any (i, j). In particular, we see that a pair (i, j) is the degree of: (1) a minimal generator for Z if and only if either (i, j) is a corner for ΔM_{Z} or $c_{i j}<0$
(2a first syzygy for Z if and only if either (i, j) is a vertex for ΔM_{Z} or $c_{i j-1}<0$ or $c_{i-1 j}<0$
(3) a second syzygy if and only if $c_{i-1 j-1}<0$.

EXAMPLE OF A NON ACM SCHEME

Let X be a reduced ACM scheme in Q with the following configuration of points in a grid of lines and let $P_{04}, P_{13}, P_{21}, P_{32}, P_{40} \in X$:

If $Z=X \backslash\left\{P_{04}, P_{13}, P_{21}, P_{32}, P_{40}\right\}$, by the previous theorem ΔM_{Z} is:

	0	1	2	3	4	5	6	7	\cdots
0	1	1	1	1	1	1	1	0	\cdots
1	1	1	1	1	1	1	1	0	\cdots
2	1	1	1	1	1	1	1	0	\cdots
3	1	1	1	1	1	0	-2	0	\cdots
4	1	1	1	0	-1	0	0	0	\cdots
5	1	1	-1	0	0	0	-1	0	\cdots
6	0	0	0	0	0	0	0	0	\cdots
$:$	\cdots								

and its minimal free resolution is:

$$
\begin{aligned}
& 0 \rightarrow \mathscr{O}_{Q}(-6,-3) \oplus \mathscr{\sigma}_{Q}(-6,-7) \oplus \mathscr{O}_{Q}(-5,-5) \oplus \mathscr{O}_{Q}(-4,-7)^{\oplus 2} \rightarrow \\
& \rightarrow \mathscr{O}_{Q}(-6,-2)^{\oplus 2} \oplus \mathscr{O}_{Q}(-5,-3)^{\oplus 2} \oplus \mathscr{O}_{Q}(-4,-5)^{\oplus 2} \oplus \mathscr{O}_{Q}(-3,-7)^{\oplus 3} \oplus \mathscr{O}_{Q}(-5,-7) \oplus \mathscr{O}_{Q}(-6,-6) \oplus \mathscr{O}_{Q}(-5,-4) \oplus \oplus \mathscr{O}_{Q}(-4,-6)^{\oplus 2} \rightarrow \\
& \rightarrow \mathscr{O}_{Q}(-6,0) \oplus \mathscr{O}_{Q}(-5,-2)^{\oplus 2} \oplus \mathscr{O}_{Q}(-4,-3) \oplus \mathscr{O}_{Q}(-3,-5) \oplus \mathscr{O}_{Q}(0,-7) \oplus \mathscr{O}_{Q}(-5,-6) \oplus \mathscr{O}_{Q}(-4,-4) \oplus \mathscr{O}_{Q}(-3,-6)^{\oplus 2} \rightarrow \mathscr{I}_{Z} \rightarrow 0 .
\end{aligned}
$$

REFERENCES
CONTACTS
[1] B.-M. Minimal free resolutions in $\mathbb{P}^{1} \times \mathbb{P}^{1}$, to appear in Algebra Colloquium. a smooth quadric, Pacific J. Math. 155 (1992), no. 2, 251-282
http://www.dmi.unict.it/~bonacini
http://www.dmi.unict.it/~lmarino
bonacini@dmi.unict.it, lmarino@dmi.unict.it

