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The Hodge Conjecture

The Hodge conjecture was posed as one of the seven Millennium problems in 2000 and still remains un-
certain. The objects of interest are smooth complex projective varieties X of some (complex) dimension n.
Then Zk(X) is the free abelian group generated by irreducible subvarieties of codimension k in X. If Y is
such a subvariety (maybe singular), the fundamental class [Y ] ∈ H2k(X) is characterized by the property∫
X
α ∪ [Y ] =

∫
Y
α|Y , for α ∈ H2n−2k(X). This defines the cycle class map

Ψ : Zk(X)→ H2k(X,Z), Z =
∑

aiZi 7→ [Z] :=
∑

ai[Zi].

Hodge decomposition yields that any cohomology group H i(X,C) decomposes into a direct sum of sheaf
cohomology groups, i.e.

H i(X,C) ∼=
⊕
p+q=i

Hp,q(X)

It is easy to see that the fundamental class [Z] is contained in Hk,k(X,Z) := Hk,k(X) ∩H2k(X,Z). So the
cycle class map factors over Hk,k(X,Z). Classes which lie in the middle part of the decomposition and which
are rational, i.e. classes in Hk,k(X,Q) := Hk,k(X) ∩H2k(X,Q) are called Hodge classes. By the above any
fundamental class of a cycle is a Hodge class and Hodge classes are called algebraic if they are rational linear
combinations of classes of algebraic cycles.

The $1,000,000 Question. (Hodge Conjecture) Is every Hodge class algebraic? Or in other words, is
ΨQ : Zk(X)Q → Hk,k(X,Q) surjective?

Naturally one would also like to understand the kernel of the cycle class map. This concerns another con-
jecture, namely the Bloch-Beilinson conjecture. But let us see what is already known about the image.
For integral X its fundamental class generates the cohomology group H0(X,Z). As our varieties are always
assumed to be integral all (0, 0)-Hodge classes are then rational multiples of [X], i.e. algebraic. The same
works for the top cohomology group H2n(X,Z) which is generated by the class of any point, so that any
(n, n)-Hodge class is algebraic as well. Considering (1, 1)-Hodge classes Lefschetz’ theorem yields that the
integral Hodge classes are given by integral linear combinations of algebraic classes.

Lefschetz theorem on (1, 1)-classes The following map is surjective

Z1(X)/ ∼lin
∼= Pic(X)

c1−→ H1,1(X,Z), D 7→ OX(D)
c17→ [D].

While this is true for integral (1, 1)-classes, there are counter examples for the integral Hodge conjecture in
general. Atiyah and Hirzebruch [AH62] showed the existence of a torsion Hodge class which is non-algebraic,
and Kollár [Kol92] found a non-torsion integral Hodge class which is not algebraic, but which has an integral
multiple which is algebraic. Another interesting aspect comes from the hard Lefschetz theorem

Hard Lefschetz theorem Let k ≤ n and ω rational Kähler class. Then Ln−k : Hk(X,Q)→ H2n−2k(X,Q),
induced by α 7→ α ∧ ωn−k on forms, is an isomorphism respecting bidegrees.

From this we can deduce, that the (n− k, n− k)-Hodge classes are algebraic if the (k, k)-Hodge classes are
algebraic and 2k ≤ n.

Self products of K3 surfaces

The above statements hence yield the Hodge conjecture for varieties of dimension up to n = 3. The first
interesting case occurs for (2, 2)-classes in dimension 4.

So we know that Hodge classes on a surface are algebraic. Does
this statement then also hold for products X × Y of surfaces?

Introduce the birational invariants q := dimH0,1(X) (irregular-
ity) and pg := dimH0,2(X) (geometric genus).

n (0,0) (1,1) (2,2) (3,3) (4,4)

0 X - - - -

1 X X - - -

2 X X X - -

3 X X X X -

4 X X ? X X

Definition. A smooth complex projective surface S is a K3 surface if its canonical bundle ωS
∼= OS is

trivial and H1(S,OS) ∼= H0,1(S) = 0. In particular a K3 surface has invariants q = 0 and pg = 1.

We consider the self-product of a K3 surface S × S. Künneth decomposition and the vanishing of the
respective cohomology groups yield

H2,2(S × S,Q) ∼=H0(S,Q)⊗H4(S,Q)⊕H4(S,Q)⊗H0(S,Q)

⊕
(
EndC(H2,0(S))⊕ EndC(H1,1(S))⊕ EndC(H0,2(S))

)
∩ EndQ(H2(S,Q))

∼= algebraic cycles⊕ EndHdg(H
2(S,Q))

where an endomorphism of the Hodge structure H2(S,Q) is exactly an endomorphism of the Q-vector space
H2(S,Q) which respects the bidegree decomposition on H2(S,C).
For a smooth complex projective surface X let Pic(X) be its Picard group and let ρ(X) denote its rank.
The image of Pic(X) in H2(X,Z) is called the Néron–Severi group NS(X). From the Lefschetz (1,1)-
theorem we get NS(X)Q = H1,1(X,Q). Via the intersection pairing we define the transcendental lattice as
T (X) := NS(X)⊥ ⊂ H2(X,Z). We get an orthogonal decomposition

H2(X,Q) = NS(X)Q ⊕ T (X)Q.

Due to the fact that T (S)Q does not contain any non-trivial proper sub Hodge structure we get
HomHdg(NS(S)Q, T (S)Q) = 0, HomHdg(T (S)Q,NS(S)Q) = 0 and so

EndHdg(H
2(S,Q)) ∼= EndHdg(NS(S)Q)⊕ EndHdg(T (S)Q) ∼= algebraic cycles⊕ EndHdg(T (S)Q).

Question. (Hodge Conjecture for S × S) Is every class in EndHdg(T (S)Q) algebraic?

By the same reasoning any non-trivial endomorphism T (S)Q → T (S)Q must be an isomorphism. In the
question which of these are algebraic we could first restrict ourselves to the easier case of Hodge isometries,
i.e. isomorphisms of Hodge structures which respect the intersection product. Let S ′ be another K3 surface.
Then Mukai has proven the following theorems in [5].

Theorem 2. For ρ(S) ≥ 11 every Hodge isometry T (S)Q → T (S ′)Q is algebraic.

Theorem 3. Any integral Hodge isometry T (S)→ T (S ′) is algebraic.

Geometric genus 1 and associated K3 surfaces

Let us turn to the general case of a product of algebraic surfaces X × Y . The interesting Hodge classes are
as before given by H2,2(X × Y,Q) which is contained in

Hdg(X × Y ) :=
(⊕

H i(X × Y,Q)
)
∩
(⊕

Hp,p(X × Y )
)

and again by the Künneth isomorphism we get for i+ j = 4

H2,2(X × Y ) ∩ (H i(X,Q)⊗Hj(Y,Q)) ∼= HomHdg(H
i(X,Q)∗, Hj(Y,Q)(2))

Note that the bilinear form on T (X) determines a natural isomorphism of rational Hodge structures
T (X)Q ∼= T (X)∗Q(−2). Analogous to the case of interest before, the Hodge–Künneth Transcendence group of
X and Y is defined by

HKT(X, Y ) := Hdg(X × Y ) ∩ (T (X)Q ⊗ T (Y )Q) ∼= HomHdg(T (X)∗Q, T (Y )Q(2)) ∼= HomHdg(T (X)Q, T (Y )Q).

Note that in the case of surfaces with geometric genus 1 the transcendental lattice is again irreducible over
Q, so that every such homomorphism is either the zero map or an isomorphism. Due to arguments given by
Lieberman and Okamoto we can again reduce to

Question. (Hodge Conjecture for X × Y ) Is every class in HomHdg(T (X)Q, T (Y )Q) algebraic?

Being algebraic as a homomorphism ζ : T (X)Q → T (Y )Q corresponds to the fact that there is an algebraic
cycle W on X × Y such that ζ : α 7→ pr2∗(pr∗1(α) ∪W ).
To any surface with pg = 1 Morrison associated a K3 surface with the same transcendental lattice.

Theorem 4. (Morrison) Let X be an algebraic surface with geometric genus one.

(i) There exists an algebraic K3 surface S and an integral Hodge isometry T (X) ∼= T (S) between X and
S. In this case S is called an associated K3 surface of X.

(ii) If the minimal model of X is neither a K3 surface nor a logarithmic transform of an elliptic K3 surface,
then any two associated K3 surfaces of X are isomorphic.

The aim is now to construct algebraic integral Hodge isometries from a surface with pg = 1 to its associated
K3 surface. We denote by K the canonical class.

Examples for surfaces with pg = q = 1.

1. with K2 = 6 found by Rito [6] and given as the desingularization of a double cover of a Kummer K3
surface.

2. with K2 = 3, 4, 5 (see [3]) are given by the desingularization of a bidouble cover of P2 branched over 3
curves D1, D3, D5 of respective degrees 1, 3 and 5.

3. with K2 = 2 are classified by [2] and given as double covers over the symmetric square of the Albanese.

Proposition 5. Let X and Y be smooth complex projective surfaces of geometric genus 1 and π : X → Y
a double cover. Then there is an algebraic Hodge isometry T (X)(2)Q ∼= T (Y )Q.

Work in Progress

In the above cases we claim to get the following

1. The associated K3 surface is given by the associated K3 surface of the abelian surface underlying the
Kummer surface.

2. The associated K3 surface is obtained as follows: Consider the double cover of P2 branched over D1 and
D5. This is a Kummer K3 surface. Then the associated K3 surface of the respective abelian surface
yields the desired.

3. Work in progress...

Nodal hypersurfaces. Another interesting question concerning the Hodge conjecture is the search for
nodal hypersurfaces, due to Thomas in [7]. In the special case of a self-product of K3 surfaces one can
restrict the search to particular families of curves as in

Theorem 6. [1] Let S be a K3 surface. The Hodge conjecture for S × S is equivalent to the following
statement: For any primitive 0 6= ζ ∈ EndHdg(T (S)) there is a nodal hypersurface D ⊂ S × S, in |O(N)| for
some N , such that ζ|D 6= 0 and pri|D : D → S is a flat family of curves for i = 1, 2.

Recall that a cohomology class of degree k is called primitive if it is in the kernel of Ln−k+1. The question
now is to find families of curves for a given endomorphism of the transcendental lattice.

References

[1] S. Anschlag, On the Hodge conjecture for self-products of K3 surfaces, Master thesis, 2012.

[2] F. Catanese, On a class of surfaces of general type, In: Algebraic surfaces, (Proc. C.I.M.E. Con-
ference, 1977), 269-284. Liguori Editore, Napoli (1981)

[3] F. Catanese, Singular bidouble covers and the construction of interesting algebraic surfaces, In:
Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), 97120. Contemp. Math., 241. Amer. Math.
Soc., Providence, RI (1999)

[4] G. Morrison, Isogenies between algebraic surfaces with geometric genus one, Tokyo J. Math., 10,
no. 1, (1987), 179-187.

[5] S. Mukai, On the moduli space of bundles on K3 surfaces. I, Tata Inst. Fund. Res. Stud. Math.,
11, (1987), 341-413.

[6] C. Rito, On surfaces with pg = q = 1 and non-ruled bicanonial involution, Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5), 6, no. 1, (2007), 81-102.

[7] R. P. Thomas, Nodes and the Hodge conjecture, J. Algebraic Geom., 14, no. 1, (2005), 177-185.

2013 Mathematisches Institut
anschlag@math.uni-bonn.de


