

Bonn International Graduate School in Mathematics

The Hodge Conjecture for products of complex algebraic surfaces

Anschlag, Stefanie

Advisor : Prof. Dr. Daniel Huybrechts

The Hodge Conjecture

The **Hodge conjecture** was posed as one of the seven Millennium problems in 2000 and still remains uncertain. The objects of interest are smooth complex projective varieties X of some (complex) dimension n. Then $Z^k(X)$ is the free abelian group generated by irreducible subvarieties of codimension k in X. If Y is such a subvariety (maybe singular), the fundamental class $[Y] \in H^{2k}(X)$ is characterized by the property $\int_X \alpha \cup [Y] = \int_Y \alpha|_Y$, for $\alpha \in H^{2n-2k}(X)$. This defines the cycle class map

$$\Psi: Z^k(X) \to H^{2k}(X,\mathbb{Z}), \ Z = \sum a_i Z_i \mapsto [Z] := \sum a_i [Z_i].$$

Hodge decomposition yields that any cohomology group $H^i(X, \mathbb{C})$ decomposes into a direct sum of sheaf cohomology groups, i.e.

$$H^i(X,\mathbb{C}) \cong \bigoplus_{p+q=i} H^{p,q}(X)$$

It is easy to see that the fundamental class [Z] is contained in $H^{k,k}(X,\mathbb{Z}) := H^{k,k}(X) \cap H^{2k}(X,\mathbb{Z})$. So the cycle class map factors over $H^{k,k}(X,\mathbb{Z})$. Classes which lie in the middle part of the decomposition and which are rational, i.e. classes in $H^{k,k}(X,\mathbb{Q}) := H^{k,k}(X) \cap H^{2k}(X,\mathbb{Q})$ are called *Hodge classes*. By the above any fundamental class of a cycle is a Hodge class and Hodge classes are called *algebraic* if they are rational linear combinations of classes of algebraic cycles.

The \$1,000,000 Question. (Hodge Conjecture) Is every Hodge class algebraic? Or in other words, is $\Psi_{\mathbb{Q}}: Z^k(X)_{\mathbb{Q}} \to H^{k,k}(X,\mathbb{Q})$ surjective?

Naturally one would also like to understand the kernel of the cycle class map. This concerns another conjecture, namely the Bloch-Beilinson conjecture. But let us see what is already known about the image. For integral X its fundamental class generates the cohomology group $H^0(X, \mathbb{Z})$. As our varieties are always assumed to be integral all (0, 0)-Hodge classes are then rational multiples of [X], i.e. algebraic. The same works for the top cohomology group $H^{2n}(X, \mathbb{Z})$ which is generated by the class of any point, so that any (n, n)-Hodge classes is algebraic as well. Considering (1, 1)-Hodge classes Lefschetz' theorem yields that the integral Hodge classes are given by integral linear combinations of algebraic classes.

Lefschetz theorem on (1,1)-classes The following map is surjective

$$Z^{1}(X)/\sim_{\operatorname{lin}}\cong\operatorname{Pic}(X)\xrightarrow{c_{1}}H^{1,1}(X,\mathbb{Z}), \ D\mapsto \mathcal{O}_{X}(D)\stackrel{c_{1}}{\mapsto}[D].$$

While this is true for integral (1, 1)-classes, there are counter examples for the integral Hodge conjecture in general. Atiyah and Hirzebruch [AH62] showed the existence of a torsion Hodge class which is non-algebraic, and Kollár [Kol92] found a non-torsion integral Hodge class which is not algebraic, but which has an integral multiple which is algebraic. Another interesting aspect comes from the hard Lefschetz theorem

Hard Lefschetz theorem Let $k \leq n$ and ω rational Kähler class. Then $L^{n-k} : H^k(X, \mathbb{Q}) \to H^{2n-2k}(X, \mathbb{Q})$, induced by $\alpha \mapsto \alpha \wedge \omega^{n-k}$ on forms, is an isomorphism respecting bidegrees.

Self products of K3 surfaces

The above statements hence yield the Hodge conjecture for varieties of dimension up to n = 3. The first interesting case occurs for (2, 2)-classes in dimension 4. $n \mid (0,0) \quad (1,1) \quad (2,2) \quad (3,3) \quad (4,4)$

So we know that Hodge classes on a surface are algebraic. Does this statement then also hold for products $X \times Y$ of surfaces?	5
Introduce the birational invariants $q := \dim H^{0,1}(X)$ (<i>irregular</i> -	
ity) and $p_q := \dim H^{0,2}(X)$ (geometric genus).	

	n	(0,0)	(1,1)	(2,2)	(3,3)	(4,4)
1	0	\checkmark	-	-	-	-
	1	\checkmark	\checkmark	-	-	-
	2	\checkmark	- ~ ~	\checkmark	-	-
-	3	\checkmark	\checkmark	\checkmark	\checkmark	-
	4	\checkmark	\checkmark	?	\checkmark	\checkmark

Definition. A smooth complex projective surface S is a K3 surface if its canonical bundle $\omega_S \cong \mathcal{O}_S$ is trivial and $H^1(S, \mathcal{O}_S) \cong H^{0,1}(S) = 0$. In particular a K3 surface has invariants q = 0 and $p_g = 1$.

We consider the self-product of a K3 surface $S \times S$. Künneth decomposition and the vanishing of the respective cohomology groups yield

$$H^{2,2}(S \times S, \mathbb{Q}) \cong H^0(S, \mathbb{Q}) \otimes H^4(S, \mathbb{Q}) \oplus H^4(S, \mathbb{Q}) \otimes H^0(S, \mathbb{Q})$$
$$\oplus \left(\operatorname{End}_{\mathbb{C}}(H^{2,0}(S)) \oplus \operatorname{End}_{\mathbb{C}}(H^{1,1}(S)) \oplus \operatorname{End}_{\mathbb{C}}(H^{0,2}(S)) \right) \cap \operatorname{End}_{\mathbb{Q}}(H^2(S, \mathbb{Q}))$$
$$\cong \text{algebraic cycles} \oplus \operatorname{End}_{\operatorname{Hdg}}(H^2(S, \mathbb{Q}))$$

where an endomorphism of the Hodge structure $H^2(S, \mathbb{Q})$ is exactly an endomorphism of the \mathbb{Q} -vector space $H^2(S, \mathbb{Q})$ which respects the bidegree decomposition on $H^2(S, \mathbb{C})$.

For a smooth complex projective surface X let $\operatorname{Pic}(X)$ be its Picard group and let $\rho(X)$ denote its rank. The image of $\operatorname{Pic}(X)$ in $H^2(X,\mathbb{Z})$ is called the *Néron–Severi group* $\operatorname{NS}(X)$. From the Lefschetz (1,1)theorem we get $\operatorname{NS}(X)_{\mathbb{Q}} = H^{1,1}(X,\mathbb{Q})$. Via the intersection pairing we define the *transcendental lattice* as $T(X) := \operatorname{NS}(X)^{\perp} \subset H^2(X,\mathbb{Z})$. We get an orthogonal decomposition

$$H^2(X,\mathbb{Q}) = \mathrm{NS}(X)_{\mathbb{Q}} \oplus T(X)_{\mathbb{Q}}.$$

Due to the fact that $T(S)_{\mathbb{Q}}$ does not contain any non-trivial proper sub Hodge structure we get $\operatorname{Hom}_{\operatorname{Hdg}}(NS(S)_{\mathbb{Q}}, T(S)_{\mathbb{Q}}) = 0$, $\operatorname{Hom}_{\operatorname{Hdg}}(T(S)_{\mathbb{Q}}, \operatorname{NS}(S)_{\mathbb{Q}}) = 0$ and so

 $\operatorname{End}_{\operatorname{Hdg}}(H^2(S,\mathbb{Q}))\cong \operatorname{End}_{\operatorname{Hdg}}(\operatorname{NS}(S)_{\mathbb{Q}})\oplus \operatorname{End}_{\operatorname{Hdg}}(T(S)_{\mathbb{Q}})\cong \text{ algebraic cycles}\oplus \operatorname{End}_{\operatorname{Hdg}}(T(S)_{\mathbb{Q}}).$

Question. (Hodge Conjecture for $S \times S$) Is every class in $\operatorname{End}_{\operatorname{Hdg}}(T(S)_{\mathbb{Q}})$ algebraic?

By the same reasoning any non-trivial endomorphism $T(S)_{\mathbb{Q}} \to T(S)_{\mathbb{Q}}$ must be an isomorphism. In the question which of these are algebraic we could first restrict ourselves to the easier case of *Hodge isometries*, i.e. isomorphisms of Hodge structures which respect the intersection product. Let S' be another K3 surface. Then Mukai has proven the following theorems in [5].

Theorem 2. For $\rho(S) \ge 11$ every Hodge isometry $T(S)_{\mathbb{Q}} \to T(S')_{\mathbb{Q}}$ is algebraic.

From this we can deduce, that the (n - k, n - k)-Hodge classes are algebraic if the (k, k)-Hodge classes are algebraic and $2k \le n$.

Theorem 3. Any integral Hodge isometry $T(S) \to T(S')$ is algebraic.

Geometric genus 1 and associated K3 surfaces

Let us turn to the general case of a product of algebraic surfaces $X \times Y$. The interesting Hodge classes are as before given by $H^{2,2}(X \times Y, \mathbb{Q})$ which is contained in

$$\mathrm{Hdg}(X \times Y) := \left(\bigoplus H^i(X \times Y, \mathbb{Q})\right) \cap \left(\bigoplus H^{p,p}(X \times Y)\right)$$

and again by the Künneth isomorphism we get for i + j = 4

 $H^{2,2}(X \times Y) \cap (H^i(X, \mathbb{Q}) \otimes H^j(Y, \mathbb{Q})) \cong \operatorname{Hom}_{\operatorname{Hdg}}(H^i(X, \mathbb{Q})^*, H^j(Y, \mathbb{Q})(2))$

Note that the bilinear form on T(X) determines a natural isomorphism of rational Hodge structures $T(X)_{\mathbb{Q}} \cong T(X)^*_{\mathbb{Q}}(-2)$. Analogous to the case of interest before, the *Hodge–Künneth Transcendence group* of X and Y is defined by

 $\operatorname{HKT}(X,Y) := \operatorname{Hdg}(X \times Y) \cap (T(X)_{\mathbb{Q}} \otimes T(Y)_{\mathbb{Q}}) \cong \operatorname{Hom}_{\operatorname{Hdg}}(T(X)^*_{\mathbb{Q}}, T(Y)_{\mathbb{Q}}(2)) \cong \operatorname{Hom}_{\operatorname{Hdg}}(T(X)_{\mathbb{Q}}, T(Y)_{\mathbb{Q}}).$

Note that in the case of surfaces with geometric genus 1 the transcendental lattice is again irreducible over \mathbb{Q} , so that every such homomorphism is either the zero map or an isomorphism. Due to arguments given by Lieberman and Okamoto we can again reduce to

Question. (Hodge Conjecture for $X \times Y$) Is every class in $\operatorname{Hom}_{\operatorname{Hdg}}(T(X)_{\mathbb{Q}}, T(Y)_{\mathbb{Q}})$ algebraic?

Being algebraic as a homomorphism $\zeta : T(X)_{\mathbb{Q}} \to T(Y)_{\mathbb{Q}}$ corresponds to the fact that there is an algebraic cycle W on $X \times Y$ such that $\zeta : \alpha \mapsto \operatorname{pr}_{2*}(\operatorname{pr}_1^*(\alpha) \cup W)$. To any surface with $p_q = 1$ Morrison associated a K3 surface with the same transcendental lattice.

Theorem 4. (Morrison) Let X be an algebraic surface with geometric genus one.

- (i) There exists an algebraic K3 surface S and an integral Hodge isometry $T(X) \cong T(S)$ between X and S. In this case S is called an associated K3 surface of X.
- (ii) If the minimal model of X is neither a K3 surface nor a logarithmic transform of an elliptic K3 surface, then any two associated K3 surfaces of X are isomorphic.

The aim is now to construct algebraic integral Hodge isometries from a surface with $p_g = 1$ to its associated K3 surface. We denote by K the canonical class.

Examples for surfaces with $p_g = q = 1$.

- 1. with $K^2 = 6$ found by Rito [6] and given as the desingularization of a double cover of a Kummer K3 surface.
- 2. with $K^2 = 3, 4, 5$ (see [3]) are given by the desingularization of a bidouble cover of \mathbb{P}^2 branched over 3 curves D_1, D_3, D_5 of respective degrees 1, 3 and 5.
- 3. with $K^2 = 2$ are classified by [2] and given as double covers over the symmetric square of the Albanese.

Proposition 5. Let X and Y be smooth complex projective surfaces of geometric genus 1 and $\pi : X \to Y$ a double cover. Then there is an algebraic Hodge isometry $T(X)(2)_{\mathbb{Q}} \cong T(Y)_{\mathbb{Q}}$.

Work in Progress

In the above cases we claim to get the following

- 1. The associated K3 surface is given by the associated K3 surface of the abelian surface underlying the Kummer surface.
- 2. The associated K3 surface is obtained as follows: Consider the double cover of \mathbb{P}^2 branched over D_1 and D_5 . This is a Kummer K3 surface. Then the associated K3 surface of the respective abelian surface yields the desired.
- 3. Work in progress...

Nodal hypersurfaces. Another interesting question concerning the Hodge conjecture is the search for nodal hypersurfaces, due to Thomas in [7]. In the special case of a self-product of K3 surfaces one can restrict the search to particular families of curves as in

Theorem 6. [1] Let S be a K3 surface. The Hodge conjecture for $S \times S$ is equivalent to the following statement: For any primitive $0 \neq \zeta \in \operatorname{End}_{\operatorname{Hdg}}(T(S))$ there is a nodal hypersurface $D \subset S \times S$, in $|\mathcal{O}(N)|$ for some N, such that $\zeta|_D \neq 0$ and $\operatorname{pr}_i|_D : D \to S$ is a flat family of curves for i = 1, 2.

Recall that a cohomology class of degree k is called *primitive* if it is in the kernel of L^{n-k+1} . The question now is to find families of curves for a given endomorphism of the transcendental lattice.

References

- [1] S. Anschlag, On the Hodge conjecture for self-products of K3 surfaces, Master thesis, 2012.
- [2] F. Catanese, On a class of surfaces of general type, In: Algebraic surfaces, (Proc. C.I.M.E. Conference, 1977), 269-284. Liguori Editore, Napoli (1981)
- [3] F. Catanese, Singular bidouble covers and the construction of interesting algebraic surfaces, In: Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), 97120. Contemp. Math., 241. Amer. Math. Soc., Providence, RI (1999)
- [4] G. Morrison, Isogenies between algebraic surfaces with geometric genus one, Tokyo J. Math., 10, no. 1, (1987), 179-187.
- [5] S. Mukai, On the moduli space of bundles on K3 surfaces. I, Tata Inst. Fund. Res. Stud. Math., 11, (1987), 341-413.
- [6] C. Rito, On surfaces with $p_g = q = 1$ and non-ruled bicanonial involution, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6, no. 1, (2007), 81-102.
- [7] R. P. Thomas, Nodes and the Hodge conjecture, J. Algebraic Geom., 14, no. 1, (2005), 177-185.

2013 Mathematisches Institut anschlag@math.uni-bonn.de