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KTH, Stockholm - June 28th, 2013

Ciaran Meachan Derived autoequivalences of hyperkähler varieties



Summary

1 Introduction

2 Pn-objects

3 Pn-functors

4 Hilbert schemes

5 Generalised Kummers

6 More Pn-functors

7 Open questions

Ciaran Meachan Derived autoequivalences of hyperkähler varieties



Introduction

Any good story about derived categories tends to start with a
result by Bondal & Orlov: In the late 90’s, they showed that
smooth projective varieties X which lie at the extreme ends of the
curvature spectrum, i.e. ample canonical or anti-canonical bundle,
have rather simple derived categories D(X ) := Db(Coh(X )).

More precisely, they proved that the group of autoequivalences
(which essentially reflects the complexity of D(X )) is trivial:

Aut(D(X )) ' Aut(X ) n (Pic(X )⊕ Z)

and the only Fourier-Mukai partner of such a variety is itself.

This result naturally leads us to ask what the autoequivalence
group is when X is flat, i.e. zero curvature or c1(X ) = 0.
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Introduction

Theorem (Beauville-Bogomolov decomposition)

Let X be a smooth projective variety with c1(X ) = 0. Then there
exists a finite étale cover X̃ → X such that

X̃ '
∏
i

Ai ×
∏
j

Yj ×
∏
k

Zk

where the

Ai are simple abelian varieties,

Yj are hyperkähler (=irreducible holomorphic symplectic),

Zk are (strict) Calabi-Yau varieties of dimension at least three,

⇒ A,Y ,Z are the building blocks of all varieties with c1(X ) = 0.

Question: Can we describe Aut(D(A)), Aut(D(Y )), Aut(D(Z ))?
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Introduction

Theorem (Orlov)

Let A be an abelian variety and Â := Pic0(A) be its dual variety. If
ρ : Aut(D(A))→ GL(H∗(A,Z)); Φ 7→ ΦH then we have a short
exact sequence

0→ 2Z⊕ (A× Â)→ Aut(D(A))→ Im(ρ)→ 1

where 2Z⊕ (A× Â) is generated by shifts, translations and twists
by line bundles L ∈ Pic0(A).

However, for a K3 surface S , which is the simplest hyperkähler
variety (and a strict Calabi-Yau variety of dimension two), the
problem is much more subtle.
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Introduction

Conjectural answer by Bridgeland in terms of stability conditions.
The difficulty lies in describing those autoequivalences which act
trivially on cohomology, i.e.

Aut0(D(S)) := ker (Aut(D(S))→ Aut(H∗(S ,Z))) = ?

This group is non-trivial since it contains the double shift [2] but
more interestingly, if E ∈ D(S) is a spherical object, i.e.
Ext∗(E , E) ' H∗(S2,C) ' C⊕ C[−2], the Seidel-Thomas twist

TE := cone(Hom(E , )⊗ E ev−→ idS) ∈ Aut(D(S))

gets mapped to the reflection v 7→ v + (v(E), v)v(E) in the
hyperplane orthogonal to v(E) ∈ Aut(H∗(S ,Z)). In other words,
we have (TH

E )2 ' idH∗(S,Z) and hence T 2
E ∈ Aut0(D(S)).

It is expected that Aut0(D(S)) is generated by spherical twists.
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Introduction

Today: we will focus on autoequivalences of hyperkähler varieties.

Examples

1 Hilbert schemes S [n] of points on a K3 surface S .

2 Generalised Kummer variety Kn assoc to an abelian surface A.
Recall, Kn is defined to be the fibre of the Albanese map

m : A[n+1] µ // A(n+1) Σ // A

over zero, i.e. A[n+1] ⊃ Kn := m−1(0).

3 Two sporadic examples of dimension six and ten which are
desingularisations of specific moduli spaces of sheaves.

Up to deformation, these are all the hyperkähler varieties we know!
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Pn-objects

Definition

An object E ∈ D(X ) is called a Pn-object if E ⊗ ωX ' E and
Ext∗(E , E) ' C[h]/hn+1 is isom as a graded ring to H∗(Pn,C).

E∨ � E [−2]
H̃ // T [−1]

��

// PE [−1]

��
E∨ � E [−2]

H:=h∨�id−id�h // E∨ � E //

tr
��

cone(H)

t̃r
��

O∆ O∆

PE := cone(E∨ � E [−1]
H̃[1]−−→ T )

' cone(cone(E∨ � E H−→ E∨ � E)
t̃r−→ O∆)
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Pn-objects

Theorem (Huybrechts, Thomas)

PE gives rise to a non-trivial autoequivalence of D(X ).

Idea of proof.

Observe that Ω := E ∪ E⊥ is a spanning class of D(X ) and PE acts
on E by [−2n] and E⊥ by the identity. Now use the criterion for
equivalences (although this part is vacuously satisfied for us).

Examples

1 Any line bundle L on a hyperkähler manifold X is a Pn-object.
Indeed, Ext∗X (L,L) ' H∗(X ,OX ) ' H∗(Pn,C).

2 Let S be a K3 surface and P1 ' C ↪→ S . Then OC ∈ D(S) is
a P1-object. (OC is also spherical and T 2

OC
' POC

.)

3 By the same token, we have Pn ' C [n] ↪→ S [n] is a Pn-object.
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Pn-objects

Theorem (Ploog)

There is an injective group homomorphism

Aut(D(S)) ↪→ Aut(D(S [n])) ; ΦP 7→ ΦSn
P�n

by pulling back to the n-fold product, equipping with the natural
Sn-action and applying the Bridgeland-King-Reid equivalence.

Examples

1 If E ∈ D(S) is a P1-object then we have a HT-twist PE = ΦPa .
Ploog tells us that this, in turn, gives rise to an auto ΦSn

P�n
a

.

2 E�n is a Pn-object and we have a HT-twist PE�n = ΦPb
. This

auto is not the same as ΦSn
P�n
a

since there are non-zero objects

for which ΦSn
P�n
a

acts by id, [−2], . . . , [−2n] whereas ΦPb
acts

by [−2n] on E and the identity on E⊥.
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Pn-functors

Definition

An exact functor F : A → B between triangulated categories with
left and right adjoints L,R : B → A is a Pn-functor if the following
conditions are satisfied:

(i) There is an autoequivalence H of A such that

RF ' id⊕ H ⊕ H2 ⊕ · · · ⊕ Hn

(ii) The monad structure map HRF ↪→ RFRF
RεF−→ RF models the

algebra structure of H∗(Pn,C):

C · hn ↪→ C[h]/hn+1 ·h−→ C[h]/hn+1 � C · 1.

(iii) R ' HnL. If A and B have Serre functors, this condition is
equivalent to SBFH

n ' FSA.
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Pn-functors

Similar to Pn-objects but we replace H by the composition

f : FHR ↪→ FRFR
εFR−FRε−−−−−−→ FR

FHR
f̃ // T [−1] //

��

PF [−1]

��
FHR

f :=(εFR−FRε)◦FjR // FR //

ε

��

cone(f )

ε̃
��

idB idB

The composition ε ◦ f is zero so we can find a lift f̃ and take the
double cone but, unlike the Pn-object case, this lift is not unique.

PF := cone(FHR[1]
f̃ [1]−−→ T )

' cone(cone(FHR
f−→ FR)

ε̃−→ idB)

Ciaran Meachan Derived autoequivalences of hyperkähler varieties



Pn-functors

Theorem (Addington)

If B is indecomposable then PF ∈ Aut(B).

Proof.

Observe that Ω := im F ∪ (im F )⊥ is a spanning class of B and
PF acts on im F by Hn+1[2] and im F⊥ by the identity. Now use
the criterion for equivalences.

Examples

1 Let E ∈ D(X ) be a Pn-object. F := E ⊗ ( ) : D(pt)→ D(X )
is a Pn-functor. Indeed, R ' Hom(E , ) and RF ' Ext∗(E , E)
This recovers the Huybrechts-Thomas twist from before.

2 q : E → Z a Pn-bundle and i : E → Ω1
q the zero section of

the relative cotangent bundle. Then F := i∗p
∗ is a Pn-functor

with H = [−2]. Family version of the embedded Pn example.
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Hilbert schemes

Theorem (Addington)

Let S [n] be the Hilbert scheme of points on a smooth proj K3
surface S and F : D(S)→ D(S [n]) be the natural functor induced
by the universal sheaf on S × S [n]. Then

F : D(S)→ D(S [n]) is a Pn−1-functor with H = [−2].

In particular, we have a non-trivial derived autoequivalence

PF := cone(cone(FR[−2]→ FR)→ idS [n]) ∈ Aut(D(S [n]))

We see that PF acts on im F by [2− 2n] and (im F )⊥ by the
identity. Therefore, it cannot be a HT-twist or one coming from
Ploog’s construction and so PF ∈ Aut(D(S [n])) is a new auto.
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Hilbert schemes

Idea of proof.

Let Z ⊂ S × S [n] be the universal subscheme. Then the structure
sequence 0→ IZ → OS×S [n] → OZ → 0 gives rise to natural
triangles of FM transforms F → F ′ → F ′′ and R ′′ → R ′ → R

R ′′F //

��

R ′F //

��

RF

��
R ′′F ′ //

��

R ′F ′ //

��

RF ′

��
R ′′F ′′ // R ′F ′′ // RF ′′

Key: Ellingsrud & Strømme’s work on the nested Hilbert scheme
S [n−1,n] allows us to calculate R ′′F ′′ and then RF . Next, we can
identify RF with π1∗π

∗
1 where π1 : Sn → S . That is, the monad

structure RFRF
RεF−−→ RF is given by multiplication in H∗(OS [n−1]).
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Generalised Kummers

Theorem (M)

Let Kn be the generalised Kummer variety associated to an abelian
surface A and FK : D(A)→ D(Kn) be the natural functor induced
by the universal sheaf on A× Kn. Then

FK : D(A)→ D(Kn) is a Pn−1-functor for all n > 1.

In particular, we have a non-trivial derived autoequivalence

PFK
:= cone(cone(FKRK [−2]→ FKRK )→ idKn) ∈ Aut(D(Kn))

We see that PFK
acts on im FK by [2− 2n] and (im FK )⊥ by id.

Therefore, it cannot be a HT-twist so PFK
∈ Aut(D(S [n])) is new.

Note that we do not (yet) have an analogue of Ploog’s construction

for the generalised Kummer, i.e. Aut(D(A))
?
↪→ Aut(D(Kn)).
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Generalised Kummers

Idea of proof.

Cannot use nested generalised Kummer varieties, because the
natural incidence variety has the wrong dimension. Instead, we
study the natural functor F : D(A)→ D(A[n+1]), understand why
this is not a Pn-functor for any n > 0 and then patiently track the
special subvariety Kn ⊂ A[n+1] through A[n,n+1].

A× Kn
ν //

π1

��

A[n+1]

m

��

(x , ζ) � ν //
_

π1

��

txζ_

m

��
A ϕ

// A x �
ϕ
// (n + 1)x

Key: The whole result hinges on understanding the Albanese map.
That is, m∗OA[n+1] '

⊕n
i=0OA[−2i ] is a formal object in D(A) and

the monad structure m∗m
∗m∗m

∗ → m∗m
∗ can be identified with

multiplication in the graded ring H∗(OKn). More precisely, we have
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Generalised Kummers

Theorem (M)

Let m : A[n] → A be the Albanese map. Then

m∗ : D(A)→ D(A[n]) is a Pn−1-functor with H = [−2].

In particular, we obtain new derived autoequivalences

Pm∗ := cone(cone(m∗m∗[−2]→ m∗m∗)→ idA[n]) ∈ Aut(D(A[n])).

Question: Mukai: D(A) ' D(Â). Ploog: D(A[n+1]) ' D(Â[n+1]).
Does this derived equivalence respect the Beauville-Bogomolov
decomposition? That is, are each of the factors of the finite étale
covers derived equivalent, i.e. do we have D(Kn(A)) ' D(Kn(Â))?
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More Pn-functors

Theorem (Krug//Donovan)

Let X be any smooth proj surface and δ : X → X n be the diagonal
embedding. Then

δ∗ ◦ triv : D(X )
triv−−→ DSn(X )

δ∗−→ DSn(X n) ' D(X [n])

is a Pn−1-functor with H ' S−1
X ' ω∨X [−2]

In particular, we get new derived autos PF ∈ Aut(D(S [n])).

X
[n]
∆
� � i //

p

��

X [n]

µ

��

I nX

��

oo

X ' ∆ �
� δ //

F

55X (n) X noo

Φ

aa When n = 2, this
agrees with Horja’s
EZ-spherical twist:
Φ ◦ F ' i∗ ◦ p∗.
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Open questions

1 How much of Aut(D(S [n])) is covered by
Huybrechts-Thomas, Ploog, Addington and Krug?

2 How much of Aut(D(Kn)) is covered by Huybrechts-Thomas
and M? Is there an analogue of Ploog’s map for the
generalised Kummer?

3 Do our Pn-functors deform? Are F : D(S)→ D(MH
S (v)) and

F : D(A)→ D(KH
A (v)) P

1
2

dim−1-functors?

4 Are there natural Pn-functor associated to the O’Grady
spaces, i.e. M̃H

S (2v) O’G10 and K̃H
A (2v) O’G6?

5 According to the hyperkähler SYZ conjecture, every
hyperkähler manifold can be deformed into a hyperkähler
manifold which admits a lagrangian fibration. Therefore, one
could also investigate whether there is a natural Pn-functor
associated to a lagrangian fibration π : X → Pn.
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Until Next Time

Thanks for listening!
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