On the tautological rings of $\mathcal{M}_{g,1}$ and its universal Jacobian

Qizheng Yin

University of Amsterdam Université Paris VI

Advisor: Ben Moonen and Claire Voisin

W^E fix a base field of arbitrary characteristic. Denote by $\mathcal{M}_{g,1}$ the moduli space of smooth 1-pointed curves of genus $g \geq 2$, which is isomorphic to the universal curve over \mathcal{M}_g . We shall work in the following setting.

Here C (resp. \mathcal{J}) is the universal curve (resp. universal Jacobian) over $\mathcal{M}_{g,1}$. The map x_0 (resp. σ_0) is the section given by the marked point (resp. zero section), and ι is the embedding induced by x_0 .

Moduli side

DENOTE by K the first Chern class of the relative dualizing sheaf of p. We define classes

$$\kappa_i := p_*(K^{i+1}) \in \operatorname{CH}^i_{\mathbb{Q}}(\mathcal{M}_{g,1}), \text{ for } i \ge 0,$$

$$\psi := x_0^*(K) \in \operatorname{CH}^1_{\mathbb{Q}}(\mathcal{M}_{g,1}),$$

and we define the *tautological ring* $\mathcal{R}(\mathcal{M}_{g,1})$ to be the \mathbb{Q} -subalgebra of $CH_{\mathbb{Q}}(\mathcal{M}_{g,1})$ generated by the classes above. Faber made the following conjectures.

(i) The ring $\mathcal{R}(\mathcal{M}_{g,1})$ is Gorenstein with socle in codimension g-1. It means that $\mathcal{R}^i(\mathcal{M}_{g,1}) = 0$ for i > g-1, that $\mathcal{R}^{g-1}(\mathcal{M}_{g,1}) \simeq \mathbb{Q}$, and that the natural paring between $\mathcal{R}^i(\mathcal{M}_{g,1})$ and $\mathcal{R}^{g-1-i}(\mathcal{M}_{g,1})$ is perfect for all $0 \leq i \leq g-1$.

(ii) The ring $\mathcal{R}(\mathcal{M}_{g,1})$ is generated by $\kappa_1, \ldots, \kappa_{\lfloor g/3 \rfloor}$ and ψ . There are no relations between these classes in codimension $\leq \lfloor g/3 \rfloor$.

The difficulty of proving these conjectures is to find sufficiently many relations between tautological classes.

Jacobian side

**** \blacksquare **C** define the *tautological ring* $\mathcal{T}(\mathcal{J})$ to be the small-

generate an \mathfrak{sl}_2 -action on $CH_{\mathbb{Q}}(\mathcal{J})$ (resp. $\mathcal{T}(\mathcal{J})$).

For $0 \le j \le 2g - 2$ and $j/2 \le i \le j + 1$, we define the classes

$$p_j^i := \mathcal{F}\big(\theta^{j-i+1} \cdot [\mathcal{C}]_{(j)}\big) \in \mathcal{T}_{(j)}^i(\mathcal{J})$$

Using Polishchuk's results, we prove that $\mathcal{T}(\mathcal{J})$ is generated by p_j^i and $\psi := \pi^*(\psi)$. We also show that $f \in \mathfrak{sl}_2$ acts on $\mathcal{T}(\mathcal{J})$ via an explicit degree 2 differential operator \mathcal{D} . Further, the ring $\mathcal{R}(\mathcal{M}_{g,1})$ can be identified as a \mathbb{Q} -subalgebra of $\mathcal{T}(\mathcal{J})$.

More importantly, we obtain a powerful method to produce relations in $\mathcal{T}(\mathcal{J})$ (resp. $\mathcal{R}(\mathcal{M}_{g,1})$): take any polynomial in p_j^i and ψ that vanishes for trivial (motivic) reasons, then apply the operator \mathcal{D} one or several times. The resulting polynomial should vanish as well. In this way we get a huge space of 'obvious' relations that are simply dictated by the \mathfrak{sl}_2 -action.

Main results

USING our relations, we prove the following main results.

(i) The ring $\mathcal{R}(\mathcal{M}_{g,1})$ is generated by $\kappa_1, \ldots, \kappa_{\lfloor g/3 \rfloor}$ and ψ . By pushing forward to \mathcal{M}_g , we also obtain that $\mathcal{R}(\mathcal{M}_g)$ is generated by $\kappa_1, \ldots, \kappa_{\lfloor g/3 \rfloor}$. This gives a new proof of part of Faber's conjectures, which was first obtained by lonel [lon05].

(ii) Computation confirms that Faber's conjectures for $\mathcal{M}_{g,1}$ are true for $g \leq 19$. From g = 20 on, our relations do not produce Gorenstein rings.

(iii) By pushing forward to \mathcal{M}_g , we obtain a new proof of Faber's conjectures (for \mathcal{M}_g) for $g \leq 23$. For $g \geq 24$, computation gives the same relations as the Faber-Zagier relations.

(iv) We also give an algebraic proof of an identity obtained by Morita (*cf.* [HR01]):

$$\pi\left([\mathcal{C}]_{(1)}, \mathcal{F}([\mathcal{C}]_{(1)})\right) = \kappa_1/6 + a\eta \in \mathcal{P}^1(\mathcal{M}_{-1})$$

W est \mathbb{Q} -subalgebra of $\operatorname{CH}_{\mathbb{Q}}(\mathcal{J})$ that contains $[\mathcal{C}] := [\iota(\mathcal{C})] \in \operatorname{CH}_{\mathbb{Q}}^{g-1}(\mathcal{J})$, and that is stable under the Fourier transform \mathcal{F} and the Beauville decomposition.

Consider the Beauville decomposition of $[\mathcal{C}]$

$$[\mathcal{C}] = \sum_{j=0}^{2g-2} [\mathcal{C}]_{(j)} \text{ with } [\mathcal{C}]_{(j)} \in \mathrm{CH}^{g-1}_{(j)}(\mathcal{J}).$$

Define $\theta := -\mathcal{F}([\mathcal{C}]_{(0)}) \in CH^1_{(0)}(\mathcal{J})$. Polishchuk [Pol07] proves that the operators

$$e(\alpha) := -\theta \cdot \alpha,$$

$$f(\alpha) := -[\mathcal{C}]_{(0)} * \alpha,$$

$$h(\alpha) := (2i - j - g) \cdot \alpha, \text{ for } \alpha \in \mathrm{CH}^{i}_{(j)}(\mathcal{J})$$

 $\pi_*\left([\mathcal{C}]_{(1)}:\mathcal{F}\left([\mathcal{C}]_{(1)}\right)\right) = \kappa_1/6 + g\psi \in \mathcal{K}(\mathcal{M}_{g,1}).$

Beyond all these results, our approach has many advantages compared to previous ones. From a theoretical perspective, it gives an extremely clean and uniform treatment of Faber's conjectures, which converts a geometric problem into a combinatorial problem. In this way, many complicated facts become obvious. On the practical side, our method produces huge quantities of relations, and is also very computer-friendly.

Finally, the nature of our approach (using the \mathfrak{sl}_2 -action as source of relations) also suggests that these might be the only relations we can ever find. There has been some work in this direction as well.

References

- [Fab99] C. Faber, *A conjectural description of the tautological ring of the moduli space of curves*. Moduli of curves and abelian varieties, 109–129, Aspects Math., E33, Vieweg, Braunschweig, 1999.
- [HR01] R. Hain, D. Reed, *Geometric proofs of some results of Morita*. J. Algebraic Geom. 10 (2001), no. 2, 199–217.
- [lon05] E. lonel, *Relations in the tautological ring of* M_g . Duke Math. J. 129 (2005), no. 1, 157–186.
- [Pol07] A. Polishchuk, Algebraic cycles on the relative symmetric powers and on the relative Jacobian of a family of *curves. I.* Selecta Math. (N.S.) 13 (2007), no. 3, 531–569.
- [Yin12] Q. Yin, On the tautological rings of $\mathcal{M}_{g,1}$ and its universal Jacobian. Preprint 2012.

GAeL XX, Grenoble, 2012