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WE fix a base field of arbitrary characteristic. De-
note byMg,1 the moduli space of smooth 1-pointed

curves of genus g ≥ 2, which is isomorphic to the univer-
sal curve overMg. We shall work in the following setting.
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Here C (resp. J ) is the universal curve (resp. universal
Jacobian) overMg,1. The map x0 (resp. σ0) is the section
given by the marked point (resp. zero section), and ι is
the embedding induced by x0.

Moduli side

DENOTE by K the first Chern class of the relative du-
alizing sheaf of p. We define classes

κi := p∗(K
i+1) ∈ CHi

Q(Mg,1), for i ≥ 0,

ψ := x∗0(K) ∈ CH1
Q(Mg,1),

and we define the tautological ring R(Mg,1) to be the
Q-subalgebra of CHQ(Mg,1) generated by the classes
above. Faber made the following conjectures.

(i) The ring R(Mg,1) is Gorenstein with socle in codi-
mension g − 1. It means that Ri(Mg,1) = 0 for i > g − 1,
that Rg−1(Mg,1) ' Q, and that the natural paring be-
tween Ri(Mg,1) and Rg−1−i(Mg,1) is perfect for all 0 ≤
i ≤ g − 1.

(ii) The ring R(Mg,1) is generated by κ1, . . . , κbg/3c and
ψ. There are no relations between these classes in codi-
mension ≤ bg/3c.
The difficulty of proving these conjectures is to find suffi-
ciently many relations between tautological classes.

Jacobian side

WE define the tautological ring T (J ) to be the small-
est Q-subalgebra of CHQ(J ) that contains [C] :=[

ι(C)
]
∈ CHg−1

Q (J ), and that is stable under the Fourier
transform F and the Beauville decomposition.
Consider the Beauville decomposition of [C]

[C] =
2g−2∑
j=0

[C](j) with [C](j) ∈ CHg−1
(j) (J ).

Define θ := −F
(
[C](0)

)
∈ CH1

(0)(J ). Polishchuk [Pol07]
proves that the operators

e(α) := −θ · α,
f(α) := −[C](0) ∗ α,
h(α) := (2i− j − g) · α, for α ∈ CHi

(j)(J )

generate an sl2-action on CHQ(J ) (resp. T (J )).
For 0 ≤ j ≤ 2g − 2 and j/2 ≤ i ≤ j + 1, we define the
classes

pij := F
(
θj−i+1 · [C](j)

)
∈ T i

(j)(J ).
Using Polishchuk’s results, we prove that T (J ) is gener-
ated by pij and ψ := π∗(ψ). We also show that f ∈ sl2
acts on T (J ) via an explicit degree 2 differential opera-
tor D. Further, the ring R(Mg,1) can be identified as a
Q-subalgebra of T (J ).
More importantly, we obtain a powerful method to pro-
duce relations in T (J ) (resp. R(Mg,1)): take any polyno-
mial in pij and ψ that vanishes for trivial (motivic) reasons,
then apply the operator D one or several times. The re-
sulting polynomial should vanish as well. In this way we
get a huge space of ‘obvious’ relations that are simply
dictated by the sl2-action.

Main results

USING our relations, we prove the following main re-
sults.

(i) The ring R(Mg,1) is generated by κ1, . . . , κbg/3c and
ψ. By pushing forward toMg, we also obtain thatR(Mg)
is generated by κ1, . . . , κbg/3c. This gives a new proof of
part of Faber’s conjectures, which was first obtained by
Ionel [Ion05].

(ii) Computation confirms that Faber’s conjectures for
Mg,1 are true for g ≤ 19. From g = 20 on, our relations
do not produce Gorenstein rings.

(iii) By pushing forward toMg, we obtain a new proof of
Faber’s conjectures (forMg) for g ≤ 23. For g ≥ 24, com-
putation gives the same relations as the Faber-Zagier re-
lations.

(iv) We also give an algebraic proof of an identity ob-
tained by Morita (cf. [HR01]):

π∗

(
[C](1) · F

(
[C](1)

))
= κ1/6 + gψ ∈ R1(Mg,1).

Beyond all these results, our approach has many ad-
vantages compared to previous ones. From a theoreti-
cal perspective, it gives an extremely clean and uniform
treatment of Faber’s conjectures, which converts a ge-
ometric problem into a combinatorial problem. In this
way, many complicated facts become obvious. On the
practical side, our method produces huge quantities of
relations, and is also very computer-friendly.
Finally, the nature of our approach (using the sl2-action
as source of relations) also suggests that these might
be the only relations we can ever find. There has been
some work in this direction as well.
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