1-Motives and Independence of ℓ

Peter Mannisto

UC Berkelev

Martin Olsson Advisor:

Introduction

We start with the following warm-up question:

Question. Let X be a smooth, possibly non-proper variety over an algebraically closed field k. What geometric structure does the Picard group Pic(X) possess?

When X is proper, then Pic(X) contains a subgroup $\operatorname{Pic}^{0}(X)$ which is the k-points of an abelian variety. When X is not proper we do not have this. But suppose we can compactify X to a smooth proper variety \overline{X} with complement $D := \overline{X} - X$ a divisor with strict normal crossings (e.g., if char k = 0). Then we can define a subgroup $\operatorname{Pic}^{0}(X) \subset \operatorname{Pic}(X)$ by restricting the Weil divisor exact sequence to $\operatorname{Pic}^{0}(\overline{X})$, yielding

$$\operatorname{Div}_D^0(\overline{X}) \to \operatorname{Pic}^0(\overline{X}) \to \operatorname{Pic}^0(X) \to 0,$$

where $\operatorname{Div}_D^0(\overline{X})$ is the divisors on \overline{X} supported on D which land in $\operatorname{Pic}^{0}(\overline{X})$. The subgroup $\operatorname{Pic}^{0}(X)$ can be shown to be independent of the choice of compactification. This suggests that the correct geometric structure to put on $Pic^{0}(X)$ is that of a 1-motive:

Definition. A 1-motive over an algebraically closed field k consists of the following data:

- 1. a semiabelian variety G (i.e., an extension of an abelian variety by a torus),
- 2. a lattice L (free, finitely generated abelian group), and
- 3. a map $L \rightarrow G$.

If k is not algebraically closed we require all of these data to be defined over k in a suitable sense.

The construction above produces a 1-motive $M^1(X) :=$ $[\operatorname{Div}_D^0(X) \rightarrow \operatorname{Pic}^0(X)]$ associated to a smooth, nonproper variety X. One can define a notion of isomorphism of 1-motives, and then the motive $M^1(X)$ is independent of the choice of \overline{X} [BVS].

1-Motives as universal cohomology

supported cohomology. A primary purpose of motives is to be 'universal' for these various cohomology theories. For 1-motives this takes the form of realization functors

$$T_{Hodge} : 1 - Mot(k) \to MHS(k),$$

$$T_{\ell} : 1 - Mot(k) \to \operatorname{Rep}_{\operatorname{Gal}(\overline{k}/k)}(\mathbb{Q}_{\ell})$$

to the category of mixed Hodge structures and *l*-adic Galois representations, respectively [BVS]. In our example above, the 1-motive $M^1(X)$ in fact has the property that $T_{Hodge}(M^1(X)) \cong H^1(X, \mathbb{Q})$ with its mixed Hodge structure, and $T_{\ell}(M^1(X)) \cong H^1(X, \mathbb{Q}_{\ell})$ for prime $\ell \neq \text{char } k$, and this determines $M^1(X)$ up to isomorphism. In general one can pose the following problem:

Problem. For a *d*-dimensional variety X over a perfect field k (possibly singular and non-proper), define 1-motives $M^{1}(X)$, $M^{1}_{c}(X)$, $M^{2d-1}(X)$, $M^{2d-1}_{c}(X)$ realizing the corresponding cohomology and compactly supported cohomology groups of a variety over X. These 1-motives should be unique up to isomorphism and contravariantly functorial for morphisms $X \rightarrow Y$.

This problem is solved in characteristic 0 in the paper [BVS] for $M^1(X)$ and $M^{2d-1}(X)$. Their methods use resolution of singularities in an essential way, especially for $M^{2d-1}(X)$ and so require some modification is positive characteristic. We can prove the following:

Theorem (-M.). For an algebraically closed field k of any characteristic, 1-motives $M^1(X)$, $M^1_c(X)$, $M^{2d-1}(X)$, $M_c^{2d-1}(X)$ can be defined which realize the corresponding cohomology groups, and they are unique up to isogeny of 1-motives.

There are two problems left (which I hope to solve): functoriality for these 1-motives, and allowing the base field to be non-algebraically closed. We can also prove the following independence-of- ℓ statement:

Theorem (-M.). Let X be a variety over a finite field k, and define $P^i_{(c)}(\ell,t) := \det(F - t1|H^i_{(c)}(X_{\overline{k}},\mathbb{Q}_\ell))$, the characteristic polynomial of the Frobenius element $F \in$ $\operatorname{Gal}(k/k)$ acting on the cohomology group $H^{i}_{(c)}(X_{\overline{k}}, \mathbb{Q}_{\ell})$. Then $P^i_{(c)}(\ell,t)$ has integer coefficients independent of $\ell \neq p$ for i = 0, 1, 2d - 1, 2d.

Recall that an algebraic variety X over a field k has several associated cohomology groups which are 'topological' in nature. Foremost among these are singular cohomology $H^*_{\text{sing}}(X, \mathbb{Q})$ if $k \subseteq \mathbb{C}$ and étale cohomology $H^*_{\text{et}}(X_{\overline{k}}, \mathbb{Q}_{\ell})$ for any field k and any $\ell \neq \text{char } k$. One also has variants $H^*_{c, sing}(X, \mathbb{Q})$ and $H^*_{c, et}(X, \mathbb{Q}_{\ell})$ for compactly

We remark that when X is smooth and proper, independence is known for all *i* by [Del]. For arbitrary (singular, non-proper) X the only cases above which are new are $P^{2d-1}(\ell, t)$ and $P_c^{2d-1}(\ell, t)$.

References

[BVS] L. Barbieri-Viale and V. Srinivas, Albanese and Picard 1-Motives, Mémoire SMF 87, Paris, 2001. [Del] P. Deligne, *La conjecture de Weil: II*, Publ. Math. de l'I.H.E.S. **52** (1980), p. 137-252.

GAeL XX, Grenoble, 2012