Annabelle Hartmann
Universität Duisburg Essen
Essener Seminar für Algebraische Geomerie und Arithmetik

Advisor: Prof. Dr. Hélène Esnault

FIX a complete local field K with ring of integers \mathcal{O}_{K}, such that the residue field k of \mathcal{O}_{K} is algebraically closed. One can pose the following question: How can one detect rational points of a smooth and projective K variety X ?

Aspecial thing about varieties over local fields is that they come with models. A model \mathcal{X} of a K-variety X is an S-variety, $S:=\operatorname{Spec}\left(\mathcal{O}_{K}\right)$, whose generic fiber is isomorphic to X. Note that there is a canonical map $\mathcal{X}\left(\mathcal{O}_{K}\right) \rightarrow X(K)$, which is a bijection if for example \mathcal{X} is proper. Let \mathcal{X}_{k} be the special fiber of \mathcal{X}. We get a specialization map $\psi: \mathcal{X}\left(\mathcal{O}_{K}\right) \rightarrow \mathcal{X}_{k}(k)$ by restricting \mathcal{O}_{K}-points to the special fiber.
If $x \in \mathcal{X}_{k}(k)$ is a regular point of \mathcal{X}, x is in the image of ψ if and only if it lies in the smooth locus of \mathcal{X} over S. But given a singular point in $\mathcal{X}_{k} \subset \mathcal{X}$ one can not say whether there is a \mathcal{O}_{K}-point through it. To see this look at the following example:
Example. Let k be an algebraically closed field of $\operatorname{char}(k) \neq 2$. Look at the complete local field $K=k((t))$. So $\mathcal{O}_{K}=k \llbracket t \rrbracket$. Let $X:=V\left(t x_{0} x_{1}-x_{2}^{2}\right) \subset \mathbb{P}_{K}^{2}$. X is a smooth projective K-variety $\mathcal{X}:=V\left(t x_{0} x_{1}-x_{2}^{2}\right) \subset$ $\mathbb{P}_{\mathcal{O}_{K}}^{2}$ is a projective model of X. Note that \mathcal{X} is singular for example in $P:=(0,[1: 0: 0])$. Note that $U=\operatorname{Spec}\left(k \llbracket t \rrbracket\left[x_{1}, x_{2}\right] /\left(t x_{1}-x_{2}^{2}\right)\right)$ is an affine neighborhood of P, and $\left(x_{1}, x_{2}\right) \subset k \llbracket t \rrbracket\left[x_{1}, x_{2}\right] /\left(t x_{1}-x_{2}^{2}\right)$ defines a \mathcal{O}_{K}-point through P. Look at the smooth and projective $k \llbracket s \rrbracket$-scheme $\mathbb{P}_{k \llbracket s \rrbracket}^{1}$. Let $G=\mathbb{Z} / 2 \mathbb{Z}$ act on \mathcal{Y} given by $g \in \operatorname{Aut}\left(\mathbb{P}_{k \llbracket s \rrbracket}^{1}\right)$ with $g\left(\left(s,\left[y_{0}: y_{1}\right]\right)\right)=\left(-s,\left[-y_{0}: y_{1}\right]\right)$. Note that $\mathcal{X}=\mathbb{P}_{k[s]}^{1} / G$.

Aspecial kind of model of a K-variety X is a weak Néron model, which is a smooth model \mathcal{X} of X with the property that the natural map from $\mathcal{X}\left(\mathcal{O}_{L}\right)$ to $X(K)$ is a bijection. Note that in this case X has a K-rational point if and only if the special fiber of \mathcal{X} is not empty. One can construct out of a proper model of X a weak Néron model using the method of Néron smoothening. This works by blowing up singular points with sections through them. But a priori we do not know whether through a given singular point there is a section, so this method does not give us an explicit construction of a weak Néron model.

WE examine singular models of a special form. Fix a smooth projective K-variety X, and a tame Galois extension L / K. Then $G:=G a l(L / K)$ acts on $X_{L}:=X \times_{\operatorname{Spec}(K)} \operatorname{Spec}(L)$, and $X_{L} / G=X$. Fix a weak Néron model \mathcal{Y} of X_{L}, such that the G-action on $X_{L} \subset \mathcal{Y}$ extends to an action on \mathcal{Y} (one can show that such a \mathcal{Y}
always exists). Then \mathcal{Y} / G is a model of X. In general \mathcal{Y} / G will be singular. We will call such a model a quotient model. Note that the \mathcal{X} examined in the example is a quotient model.
Theorem. There is a weak Néron model \mathcal{Z} of X endowed with a map to \mathcal{Y} / G, which is an isomorphism on the generic fiber, such that for every smooth S-scheme \mathcal{V} a given dominant S-morphism $\Psi: \mathcal{V} \rightarrow \mathcal{Y} / G$ factors through \mathcal{Z}.

Let the G-action on \mathcal{Y} be given by $g \in \operatorname{Aut}(\mathcal{Y})$ and that on $T=\operatorname{Spec}\left(\mathcal{O}_{L}\right)$ by $g_{T} \in \operatorname{Aut}(T)$. Then \mathcal{Z} is given as a functor by

$$
\begin{aligned}
\mathcal{Z}: & (\text { Sch } / S) \rightarrow(\text { Sets }) \\
& W \mapsto\left\{\sigma \in \operatorname{Hom}_{T}\left(W \times{ }_{S} T, \mathcal{Y} \mid g \sigma \circ\left(i d \times g_{s}\right)^{-1}=\sigma\right\}\right.
\end{aligned}
$$

Using this explicit description of \mathcal{Z} one can show for example the following corollary:
Corollary. $\mathcal{Y} / G\left(\mathcal{O}_{K}\right) \neq \emptyset$ if and only if there exists a closed fixed point $y \in \mathcal{Y}$.

ONE can use the results concerning quotient models to examine some motivic invariants of a K-variety X. Let \mathcal{X} be a weak Néron model of a given K-variety X. The motivic Serre invariant $S(X)$ is the class of the special fiber of \mathcal{X} in some quotient of $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right) /(\mathbb{L}-1)$. Here $K_{0}\left(V a r_{\mathbb{C}}\right)$ is the Grothendieck Ring of varieties, generated by isomorphism classes $[U]$ of separated k schemes of finite type and for every closed immersion $V \rightarrow U$ relations $[U]=[U \backslash V]+[V]$, with multiplication given by fiber product over k, and $\mathbb{L}=\left[\mathbb{A}_{k}^{1}\right]$.
Theorem. Let X be a smooth and projective K-variety, let \mathcal{Y} be a projective weak Néron model of X_{L} with a G action as described above. Then

$$
S(X)=\left[\mathcal{Y}^{G}\right] \in K_{0}^{\mathcal{O}_{K}}\left(\operatorname{Var}_{\mathbb{C}}\right) /(\mathbb{L}-1)
$$

with $\mathcal{Y}^{G} \subset \mathcal{Y}$ the subscheme of fixed points.
The rational volume $s(x)$ is the Euler characteristic with proper support of the special fiber of \mathcal{X} with coefficients in \mathbb{Q}_{l}.
Theorem. Let X be a smooth and projective K-variety, and let L / K be a tame Galois extension, such that $G a l(L / K)$ is an l-group, l a prime. Then

$$
s(X)=s\left(X_{L}\right) \bmod l
$$

Note that if $S(X) \neq 0$ or $s(X) \neq 0$, then X has a K rational point.

