Offen im Denken

Quotient Models of Varieties over Complete Local Fields

Annabelle Hartmann

Universität Duisburg Essen Essener Seminar für Algebraische Geomerie und Arithmetik

Advisor: Prof. Dr. Hélène Esnault

F ix a *complete local field* K with ring of integers \mathcal{O}_K , such that the residue field k of \mathcal{O}_K is algebraically closed. One can pose the following question: How can one detect rational points of a smooth and projective K-variety X?

A special thing about varieties over local fields is that they come with models. A model \mathcal{X} of a *K*-variety *X* is an *S*-variety, $S := Spec(\mathcal{O}_K)$, whose generic fiber is isomorphic to *X*. Note that there is a canonical map $\mathcal{X}(\mathcal{O}_K) \to X(K)$, which is a bijection if for example \mathcal{X} is proper. Let \mathcal{X}_k be the special fiber of \mathcal{X} . We get a specialization map $\psi : \mathcal{X}(\mathcal{O}_K) \to \mathcal{X}_k(k)$ by restricting \mathcal{O}_K -points to the special fiber.

If $x \in \mathcal{X}_k(k)$ is a regular point of \mathcal{X} , x is in the image of ψ if and only if it lies in the smooth locus of \mathcal{X} over S. But given a singular point in $\mathcal{X}_k \subset \mathcal{X}$ one can not say whether there is a \mathcal{O}_K -point through it. To see this look at the following example:

Example. Let k be an algebraically closed field of $char(k) \neq 2$. Look at the complete local field K = k((t)). So $\mathcal{O}_K = k[t]$. Let $X := V(tx_0x_1 - x_2^2) \subset \mathbb{P}_K^2$. X is a smooth projective K-variety $\mathcal{X} := V(tx_0x_1 - x_2^2) \subset \mathbb{P}_{\mathcal{O}_K}^2$ is a projective model of X. Note that \mathcal{X} is singular for example in P := (0, [1 : 0 : 0]). Note that $U = Spec(k[t][x_1, x_2]/(tx_1 - x_2^2))$ is an affine neighborhood of P, and $(x_1, x_2) \subset k[[t]][x_1, x_2]/(tx_1 - x_2^2)$ defines a \mathcal{O}_K -point through P. Look at the smooth and projective k[[s]]-scheme $\mathbb{P}_{k[[s]]}^1$. Let $G = \mathbb{Z}/2\mathbb{Z}$ act on \mathcal{Y} given by $g \in Aut(\mathbb{P}_{k[[s]]}^1)$ with $g((s, [y_0 : y_1])) = (-s, [-y_0 : y_1])$. Note that $\mathcal{X} = \mathbb{P}_{k[[s]]}^1/G$.

A special kind of model of a *K*-variety *X* is a *weak Néron model*, which is a smooth model \mathcal{X} of *X* with the property that the natural map from $\mathcal{X}(\mathcal{O}_L)$ to X(K)is a bijection. Note that in this case *X* has a *K*-rational point if and only if the special fiber of \mathcal{X} is not empty. One can construct out of a proper model of *X* a weak Néron model using the method of Néron smoothening. This works by blowing up singular points with sections through them. But a priori we do not know whether through a given singular point there is a section, so this method does not give us an explicit construction of a weak Néron model. always exists). Then \mathcal{Y}/G is a model of X. In general \mathcal{Y}/G will be singular. We will call such a model a *quotient model*. Note that the \mathcal{X} examined in the example is a quotient model.

Theorem. There is a weak Néron model \mathcal{Z} of X endowed with a map to \mathcal{Y}/G , which is an isomorphism on the generic fiber, such that for every smooth *S*-scheme \mathcal{V} a given dominant *S*-morphism $\Psi : \mathcal{V} \to \mathcal{Y}/G$ factors through \mathcal{Z} .

Let the *G*-action on \mathcal{Y} be given by $g \in Aut(\mathcal{Y})$ and that on $T = Spec(\mathcal{O}_L)$ by $g_T \in Aut(T)$. Then \mathcal{Z} is given as a functor by

$$\mathcal{Z} : (Sch/S) \to (Sets)$$
$$W \mapsto \{ \sigma \in Hom_T(W \times_S T, \mathcal{Y} \mid g\sigma \circ (id \times g_s)^{-1} = \sigma \}$$

Using this explicit description of \mathcal{Z} one can show for example the following corollary:

Corollary. $\mathcal{Y}/G(\mathcal{O}_K) \neq \emptyset$ if and only if there exists a closed fixed point $y \in \mathcal{Y}$.

O NE can use the results concerning quotient models to examine some motivic invariants of a *K*-variety *X*. Let \mathcal{X} be a weak Néron model of a given *K*-variety *X*. The *motivic Serre invariant* S(X) is the class of the special fiber of \mathcal{X} in some quotient of $K_0(Var_{\mathbb{C}})/(\mathbb{L}-1)$. Here $K_0(Var_{\mathbb{C}})$ is the *Grothendieck Ring of varieties*, generated by isomorphism classes [U] of separated *k*schemes of finite type and for every closed immersion $V \to U$ relations $[U] = [U \setminus V] + [V]$, with multiplication given by fiber product over *k*, and $\mathbb{L} = [\mathbb{A}^1_k]$.

Theorem. Let *X* be a smooth and projective *K*-variety, let \mathcal{Y} be a projective weak Néron model of X_L with a *G*-action as described above. Then

$$S(X) - [\mathcal{V}^G] \in K^{\mathcal{O}_K}(Var_{\sigma})/(\mathbb{I}_{+}-1)$$

W E examine singular models of a special form. Fix a smooth projective *K*-variety *X*, and a tame Galois extension L/K. Then G := Gal(L/K) acts on $X_L := X \times_{Spec(K)} Spec(L)$, and $X_L/G = X$. Fix a weak Néron model \mathcal{Y} of X_L , such that the *G*-action on $X_L \subset \mathcal{Y}$ extends to an action on \mathcal{Y} (one can show that such a \mathcal{Y}

GAeL XX, Grenoble, 2012

 $\mathcal{D}(\Lambda) - [\mathcal{Y}] \in \Lambda_0 \quad (V \, u r \, \mathbb{C}) / (\mathbb{L} - 1)$

with $\mathcal{Y}^{G} \subset \mathcal{Y}$ the subscheme of fixed points.

The *rational volume* s(x) is the Euler characteristic with proper support of the special fiber of \mathcal{X} with coefficients in \mathbb{Q}_l .

Theorem. Let *X* be a smooth and projective *K*-variety, and let L/K be a tame Galois extension, such that Gal(L/K) is an *l*-group, *l* a prime. Then

 $s(X) = s(X_L) \mod l$

Note that if $S(X) \neq 0$ or $s(X) \neq 0$, then X has a K-rational point.