Principal Schottky Bundles Over a Compact Riemann Surface

Susana Ferreira

School of Tecnology and Management Polytechnic Institute of Leiria

Advisor: Prof. Carlos Florentino and Prof. Ana Cristina Casimiro

Moduli space of G-bundles

WHEN studying the set of (stable or semistable) vector bundles, or more generally, principal *G*-bundles over a compact Riemann surface *X* with genus $g \ge 2$ we are looking for an algebraic variety which parametrizes the set of isomorphism classes of principal *G*-bundles. Since often principal *G*-bundles have many (nontrivial) automorphisms the moduli space may not be even an algebraic variety. In this way we have to make some restrictions in order to get a (coarse) moduli space of isomorphism classes of certain type of *G*-bundles over *X*. First, we denote by $\mathcal{M}_G^s({}^{ss})$ the set of isomorphism classes of stable (semistable) principal *G*-bundles over *X*, this is a (coarse) moduli space and we have the following decomposition in connected components that are indexed by $\pi_1(G)$

$$\mathcal{M}_G^s = \coprod_{d \in \pi_1(G)} \mathcal{M}_G^{s,d}$$

where $\mathcal{M}_{G}^{s,d}$ is the set of isomorphism classes of stable *G*bundles of topological type $d \in \pi_1(G)$. For any $g \ge 2$ and any $d \in \pi_1(G)$, by Ramanathan ([5], [4]), we have that each set $\mathcal{M}_{G}^{s,d}$ is nonempty and it is an open (and dense) subset of $\mathcal{M}_{G}^{ss,d}$.

Uniformization

The uniformization theorem says that any Riemann surface X of genus $g \ge 2$ can be written as a quotient of the upper half-plane by a Fuchsian group Γ , that is, $X \cong \mathbb{H}/\Gamma$ where $\Gamma \cong \pi_1(X)$. In the same way, the retrosection theorem for a compact Riemann surface $X, g \ge 2$, asserts that X can be written as Ω/Γ_s where Γ_s is a Schottky group with region of discontinuity $\Omega \subset \mathbb{CP}^1$. In particular, Γ_s is a free group F_g of rank g.

For vector bundles over a Riemann surface X there are similar notions. Narasimhan and Seshadri proved that every semistable vector bundle is induced by an unitary representation of the fundamental group. Ramanathan generalized Narasimhan and Seshadri's [3] result to principal G-bundles over a compact Riemann surface of genus $g \ge 2$ where G is a complex connected reductive algebraic group: each representation $\rho \in \operatorname{Hom}(\pi_1(X), G)$ induces a principal G-bundle $E_{\rho} = \widetilde{X} \times_{\rho} G$ where the following points $(\widetilde{x}, g) \sim (\widetilde{x}\gamma, \rho(\gamma)^{-1} \cdot g), \ \forall \gamma \in \pi_1(X)$

Narasimhan and Seshadri) resembles the idea of "uniformization", that is, the moduli space of stable *G*-bundles over *X* can be seen as a quotient $\operatorname{Hom}^{\sharp}(\pi_1(X), G)/\!\!/G$ where $\operatorname{Hom}^{\sharp}(\pi_1(X), G)$ is the set of representations ρ such that E_{ρ} is a stable *G*-bundle (and a smooth point) of \mathcal{M}_G^s .

Schottky Bundles

Following Narasimhan and Seshadri's results and this ideas of uniformization, Florentino [1] introduced the notion of Schottky vector bundles over X. He proved that the map $\mathbf{V}_{\cdot}: \mathbb{G}_n^{\sharp} \to \mathcal{M}_n^s$ defined by $\mathbf{V}(\rho) = E_{\rho}$, where \mathbb{G}_n^{\sharp} is the GIT quotient of simple Schottky representations is a local diffeomorphism in the neighborhood of unitary representations. Here the concept of Schottky representations means homomorphisms of $\pi_1(X)$ to $GL(n,\mathbb{C})$ with $\rho(\alpha_i) = 1$ for all $i = 1, \dots, g$ where we consider $\pi_1(X)$ with the usual presentation $\{\alpha_1, \beta_1, \dots, \alpha_g, \beta_g | \prod_i [\alpha_i, \beta_i] = 1\}$.

In our work we generalize the notion of Schottky vector bundle to principal bundles. We defined **principal Schottky G-bundle** over *X* as $E_G \cong E_\rho$ where ρ is a Schottky representation, that is, if $\rho : \pi_1(X) \to G$ is a representation of the fundamental group of *X* in *G* such that $\rho(\alpha_i) \in Z(G)$ for all $i = 1, \dots, g$ with Z(G) the center of *G*. If E_G is a Schottky *G*-bundle then the adjoint bundle $\operatorname{Ad}(E_G) = E_G \times_{\operatorname{Ad}_\rho} \mathfrak{g}$ is a Schottky vector bundle with fibre \mathfrak{g} induced by the adjoint representation $\operatorname{Ad} : G \to GL(\mathfrak{g})$ where \mathfrak{g} is the Lie algebra of *G*.

Let S be the set of Schottky representations, which is an algebraic subvariety of $\operatorname{Hom}(\pi_1(X), G)$ and let $\mathbb{S} = S/\!\!/G$ be the corresponding GIT quotient. We proved that S is actually isomorphic to $\operatorname{Hom}(F_g, G \times Z(G))$ and since we are working with the free group F_g , with g generators, by Martin [2], $\mathbb{S} = S/\!\!/G \cong \operatorname{Hom}(F_g, G \times Z(G))/\!\!/G \times Z(G)$ is irreducible and has dimension $(g-1)\dim G + (g+1)\dim Z(G)$.

Open Problem: Let $\mathbb{S}^{\sharp} = \{ [\rho] \in \mathbb{S} : E_{\rho} \text{ is smooth and stable} \}$. Is the map $\begin{array}{c} \mathbf{W} : \ \mathbb{S}^{\sharp} \to \mathcal{M}_{G}^{smooth} \\ [\rho] \mapsto [E_{\rho}] \end{array}$ surjective?

We proved that if we restrict to the case of unitary Schottky representations we have the following.

are identified. In the case ρ unitary, E_{ρ} is semistable and if further ρ is irreducible, E_{ρ} is stable. In some way, the moduli space constructed by Ramanathan (and by **Refere**

Main Theorem: The differential of the map

 $\mathbf{W}: \ \mathbb{S}^{\sharp} \ \to \ \mathcal{M}_{G}^{smooth}$ $[\rho] \ \mapsto \ [E_{\rho}]$

at a point $[\rho] \in S$ such that ρ is unitary and good (that is, stable and with $Stab(\rho) = Z(G \times Z(G))$), has maximal rank.

References

[1] C. Florentino, *Schottky uniformization and vector bundles over Riemann surface*, manuscripta math. **105** (2001), 69–83.

[2] B. Martin, *Restrictions of representations of surface group to a pair of free subgroups*, Journal of Algebra **225** (2000), 231–249.

[3] M.S. Narasimhan and C.S. Seshadri, *Holomorphic vector bundles on a compact Riemann surface*, Math. Ann. **155** (1964), 69–80.

[4] A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129–152.

[5] _____, Moduli for principal bundles over algebraic curves: I, ii, Proc. Indian Acad. Sci. **106** (1996).

GAeL XX, Grenoble, 2012