

The Tautological Ring of the Universal Curve

Olof Bergvall

Stockholm University Department of Mathematics

Advisor: Carel Faber

Background

- The *universal curve*, C_g or $\mathcal{M}_{g,1}$, (over the moduli space of smooth curves of genus $g \ge 2$ over the algebraically closed field k, \mathcal{M}_g) is the moduli space of smooth curves of genus g with one marked point.
- One can define the Chow ring of C_g , $A^*(C_g)$. However, one has to work with rational coefficients.
- The ring $A^*(\mathcal{C}_g)$ is believed to be very large. One therefore concentrates on a subring of geometrically important classes, the so-called *tautological ring*, $R^*(\mathcal{C}_g)$. We shall define $R^*(\mathcal{C}_g)$ below.

Definition

Let $\pi : \mathcal{C}_g \to \mathcal{M}_g$ be the morphism that forgets the marked point, i.e. $\pi([C, p]) = [C]$. Let ω_{π} be its relative dualizing sheaf, define $K = c_1(\omega_{\pi}) \in A^1(\mathcal{C}_g)$ and let $\kappa_i \in A^i(\mathcal{C}_g)$ be the pullback of the class $\pi_*(K^{i+1}) \in A^i(\mathcal{M}_g)$. We now define $R^*(\mathcal{C}_g)$ to be the Q-subalgebra of $A^*(\mathcal{C}_g)$ generated by the κ -classes and K.

Definition

The tautological ring of \mathcal{M}_g , $R^*(\mathcal{M}_g)$ is the \mathbb{Q} -subalgebra of $A^*(\mathcal{M}_g)$ generated by the classes $\pi_*(K^{i+1})$.

Theorem 1

[Faber, [1], Looijenga, [3]] $R^{g-1}(\mathcal{C}_g)$ is one-dimensional, generated by K^{g-1} , and $R^i(\mathcal{C}_g)$ vanishes for $i \geq g$. Similarly, $R^{g-2}(\mathcal{M}_g)$ is generated by $\pi_*(K^{g-1})$ and $R^i(\mathcal{M}_g)$ vanishes if $i \geq g-1$.

Thus, if one picks an element $a \in R^i(\mathcal{C}_g)$ and an element $b \in R^{g-1-i}(\mathcal{C}_g)$, then the element $a \cdot b$ will be a rational multiple of K^{g-1} . We order the κ -classes lexicgraphically and extend the order to $R^*(\mathcal{C}_g)$ by saying that $K^i \kappa_I > K^j \kappa_J$ if i > j or if i = j and $\kappa_I > \kappa_J$. We define $r_{k,l}^i$ as the number satisfying $m_k^i m_l^{g-1-i} = r_{k,l}^i K^{g-1}$, where m_k^i is the *k*th monomial of degree *i* and m_l^{g-1-i} is the *l*th monomial of degree *l*.

compute the matrices P_i . It is therefore desireable to obtain a relation between the matrices Q_i and the matrices P_i .

Definition

For j > 0, let P_i^j be the submatrix of P_i consisting of the rows of P_i which corresponds to monomials which contains at least one factor $\pi_*(K^{j+1})$. Further, define $P_i^0 = (2g-2)P_i$ and let P_i^{-1} be the zero matrix of dimensions $p(i+1) \times p(g-2-i)$.

Theorem 2

If $i \geq 1$, then

$$Q_{i} = \begin{pmatrix} P_{i-1}^{-1} & P_{i}^{0} & P_{i+1}^{1} & \cdots & P_{g-2}^{g-2-i} \\ P_{i-1}^{0} & P_{i+1}^{1} & \cdots & \cdots & \vdots \\ P_{i-1}^{1} & \vdots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ P_{i-1}^{i-1} & \cdots & \cdots & \cdots & P_{g-2}^{g-2} \end{pmatrix},$$

and the rank of Q_0 is 1.

Theorem 2 has been used to construct a Maple program which has computed the ranks of the matrices Q_i for all genera between 2 and 27, thus giving lower bounds for the dimensions of $R^i(\mathcal{C}_q)$.

A theorem of Faber, [1], gives a family of relations in the tautological ring of $\mathcal{M}_{g,2g-1}$. These relations can be pushed down to $R^*(\mathcal{C}_g)$. Using this method one may hope to find enough relations to show that the lower bound provided by the rank of Q_i is in fact the dimension of $R^i(\mathcal{C}_g)$. This has been done for $2 \le g \le 9$. Since the computations are quite hard, no higher genera has been attempted. However, the computations that has been performed show that:

Theorem 3

The tautological ring of C_g is Gorenstein for $2 \le g \le 9$.

The numbers $r_{k,l}^i$ define a matrix, Q_i , of dimensions $\left(\sum_{j=0}^i p(j)\right) \times \left(\sum_{j=0}^{g-1-i} p(j)\right)$, where p is the partition function. Since a relation between the monomials would give rise to a relation between the rows we have that the rank of Q_i is a lower bound for the dimension of $R^i(\mathcal{C}_g)$.

Similarly, one may order the monomials of $R^*(\mathcal{M}_g)$ and define numbers $r_{k,l}^i$ by $m_k^i m_l^{g-2-i} = r_{k,l}^i$ to obtain matrices P_i . These matrices have been studied by Liu and Xu, [2], and they have developed efficient methods to

References

- Faber, C., A Conjectural Description of the Tautological Ring of the Moduli Space of Curves, Moduli of Curves and Abelian Varieties: The Dutch Intercity Seminar on Moduli, Aspects Math. E33, Germany, 1999, 109–129.
- [2] Liu, K., Xu, H., Computing Top Intersections in the Tautological Ring of M_g , 2010, arXiv:1001.4498v1.
- [3] Looijenga, E., On the Tautological Ring of M_g , Invent. math. 121, 1995, 411-419.