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Background

e The universal curve, C, or M,,, (over the moduli
space of smooth curves of genus g > 2 over the al-
gebraically closed field k, M,) is the moduli space
of smooth curves of genus ¢ with one marked point.

e One can define the Chow ring of C,, A*(C,). How-
ever, one has to work with rational coefficients.

e The ring A*(C,) is believed to be very large. One
therefore concentrates on a subring of geometri-
cally important classes, the so-called tautological
ring, R*(C,). We shall define R*(C,) below.

Definition

let 7 : C;, — M, be the morphism that forgets the
marked point, i.e. w([C,p]) = [C]. Let w, be its rela-
tive dualizing sheaf, define K = ¢ (w,;) € AY(C,) and
let k; € A'(C,) be the pullback of the class m.(K"*!) €
A'(M,). We now define R*(C,) to be the Q-subalgebra
of A*(C,) generated by the x-classes and K.

Definition
The tautological ring of M,, R*(M,) is the Q-
subalgebra of A*(M,) generated by the classes
ﬂg(l{j+1).

Theorem 1

[Faber, [1], Looijenga, [3]] RY~!(C,) is one-dimensional,
generated by K9~', and R'(C,) vanishes for i > ¢. Sim-
ilarly, R972(M,) is generated by m.(K97') and R(M,)
vanishes if 1 > g — 1.

Thus, if one picks an element a € R'(C,) and an ele-
ment b € RI'7/(C,), then the element a - b will be a
rational multiple of K9-!. We order the x-classes lex-
icgraphically and extend the order to R*(C,) by saying
that K'x; > K'kyifi > jorifi = jand x; > x;. We de-
fine i, as the number satisfying mim{™' " = ri K971,
where m/, is the kth monomial of degree i and m{ ™" " is
the [th monomial of degree .

The numbers ri, define a matrix, @Q;, of dimensions
k1l

(Zﬁ-:o p(j)> X (zg;g—i p(j)), where p is the partition
function. Since a relation between the monomials would
give rise to a relation between the rows we have that the
rank of Q; is a lower bound for the dimension of R*(C,).

Similarly, one may order the monomials of k*(M,) and
define numbers 7}, by mim{ >~ = ri , to obtain matri-
ces P,. These matrices have been studied by Liu and

Xu, [2], and they have developed efficient methods to
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compute the matrices P,. It is therefore desireable to
obtain a relation between the matrices Q; and the ma-
trices P,.

Definition

For j > 0, let P/ be the submatrix of P; consisting of
the rows of P, which corresponds to monomials which
contains at least one factor =,(K’*1). Further, define
P? = (2g—2)P; and let P! be the zero matrix of dimen-
sions p(i + 1) x p(g — 2 — ).

Theorem 2
If: > 1, then
— —2—1
(P PP By BT
P Pz'1+1 :
i.i : " . :_2
sz'—f pgg_2 )

and the rank of Qg is 1.

Theorem 2 has been used to construct a Maple pro-
gram which has computed the ranks of the matrices
@, for all genera between 2 and 27, thus giving lower
bounds for the dimensions of R'(C,).

A theorem of Faber, [1], gives a family of relations in
the tautological ring of M, ,,_1. These relations can be
pushed down to R*(C,). Using this method one may
hope to find enough relations to show that the lower
bound provided by the rank of @); is in fact the dimen-
sion of R(C,). This has been done for 2 < g < 9. Since
the computations are quite hard, no higher genera has
been attempted. However, the computations that has
been performed show that:

Theorem 3
The tautological ring of C, is Gorenstein for 2 < g < 9.
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