Offen im Denken

Relative \mathcal{D} **-modules** in char p > 0

Giulia Battiston

Universität Duisburg Essen Essner Seminar für Algebraische Geometrie un Arithmetik

Advisor: Prof. Dr. Hélène Esnault

Relatives *D***-modules**

ET $X \to S$ be a smooth morphism of schemes over a L field k, let $U \subset X$ be an open with relative étale coordinates x_1, \ldots, x_n , and let $\delta_{x_i,(n)} \in End_{\mathcal{O}_S}(\mathcal{O}_X)$ denote the differential operator defined by

$$\delta_{x_i,(n)}(x_j^m) = \delta_{ij}\binom{m}{n} x_j^{m-n},$$

then the module of *relative differential operators* $\mathcal{D}_{X/S}$ is a subset of $End_{\mathcal{O}_S}(\mathcal{O}_X)$ locally generated by $\delta_{x_i,(n)}$ over \mathcal{O}_U . Note that if char k = 0, then $\delta_{x_i,(n)} = \delta_{x_i,(1)}/n!$ hence $\mathcal{D}_{X/S}$ is generated by $Der_{\mathcal{O}_S}(\mathcal{O}_X)$ and \mathcal{O}_X . On the other side, if char k = p > 0 this is no longer true, as p! is no longer invertible. Note also that $D_{X/S}$ acts naturally on \mathcal{O}_X , we will call this action the *trivial* action. Let M be a \mathcal{O}_X -module, then M endowed with an \mathcal{O}_X -linear action

 $\nabla: \mathcal{D}_{X/S} \to End_{\mathcal{O}_S}(M)$

is called a *(left)* $\mathcal{D}_{X/S}$ *-module* if the action ∇ extends the \mathcal{O}_X -action giving the module structure (for example, the zero action on M gives not raise to a $\mathcal{D}_{X/S}$ -module). A \mathcal{O}_X -coherent $\mathcal{D}_{X/S}$ -module is automatically locally free.

ET now k be an algebraically closed field of positive - characteristic. If S = Spec(k), then the category $\mathcal{D}_{\mathcal{O}coh}(X)$ of \mathcal{O}_X -coherent $\mathcal{D}_{X/k}$ -modules toghether with morphisms commuting with the $\mathcal{D}_{X/k}$ action, is a k-linear tannakian category; taking the fiber in any rational point $x \in X(k)$ gives a neutral fiber functor $\omega_x : \mathcal{D}_{\mathcal{O}coh}(X) \to \mathcal{D}_{\mathcal{O}coh}(X)$ $Vect_k$ into the category of finite k-vector spaces. For $M \in \mathcal{D}_{\mathcal{O}coh}(X)$ let $\langle M \rangle_{\otimes}$ be the smallest full tannakian subcategory of $\mathcal{D}_{\mathcal{O}coh}(X)$ containing M (hence containing M, M^{\vee} , closed for finite tensor products, finite sums and subquotients), then the Tannakian formalism ensure the existence of an affine k-group scheme $\pi_1(\langle M \rangle_{\otimes}, \omega_x)$

My research

EROM now on, let X, S be two smooth connected \frown k-varieties and $X \rightarrow S$ a smooth morphism with geometrically connected fibres, let (M, ∇) be an \mathcal{O}_X -coherent $\mathcal{D}_{X/S}$ -module. Following the idea of Grothendieck-Katz's p-curvature conjecture we would like to study the behavior of (M, ∇) on the generic fibre knowing its behavior on the closed ones. In particular we would like to know when it is *isotrivial*, i.e. there exist a finite étale cover that trivialize it. More precisely, the following theorem was proved by Y. André

Theorem 1. [An] ("Equicharacteristic 0 p-curvature") Let chark = 0, then (M, ∇) is isotrivial on the generic fibre iff it is isotrivial on every closed point of an open of *S*.

NE may ask then if the same holds also in equicharacteristic p > 0. This is not true in this generality but the following theorem holds:

Theorem 2. [EL] ("Equicharacteristic p > 0 p-curvature") Let char k = p > 0, assume that $X \to S$ is proper then if (M, ∇) has finite monodromy group of order prime to pon every closed point of a dense subset $S' \subset S(k)$, then if η indicates the generic point of S,

- i) there exist a finite Galois ètale covering $\pi_{ar\eta}$: $Y_{ar\eta}$ ightarrow $X_{\bar{\eta}} = X \times_S \bar{\eta}$ of order prime to p such that $\pi^*_{\bar{\eta}}(M_{\bar{\eta}}, \nabla)$ is a direct sum of line bundles
- ii) if k is uncountable then $(M_{\bar{\eta}}, \nabla)$ trivializes on a finite ètale cover of order prime to p (factoring as a Kummer+Galois cover).

The natural question is then:

associated to $\langle M \rangle_{\otimes}$, called the *monodromy group* of M. An object (M, ∇) in $\mathcal{D}_{\mathcal{O}coh}(X)$ is called *trivial* if it is isomorphic to $\oplus \mathcal{O}_X$ where $\mathcal{D}_{X/S}$ acts trivially on every \mathcal{O}_X .

Q. Does the Theorem 2 hold without the projective assumption on $X \to S$?

Note that from a smooth case it is quite easy to reduce to a quasi-projective one.

References

[An] Y. André: Sur la conjecture des *p*-courbures de Grothendieck-Katz et un problème de Dwork, Geometric aspects of Dwork theory, Vol. I, II, 55-112, Walter de Gruyter GmbH & Co. KG, Berlin, 2004

[EL] H. Esnault, A. Langer: On a positive equicharacteristic variant of the *p*-curvature conjecture (2011, preprint)