XX GAeL June 18-22, Grenoble http://www.mimuw.edu.pl/~gael/

Curves, abelian varieties and the Schottky problem

Samuel Grushevsky

Stony Brook University

Lecture 1: Abelian varieties and their moduli space A_g

We will introduce the moduli space of complex abelian varieties, algebraically and analytically, Siegel modular forms, and compute its canonical bundle on a suitable compactification.

Lecture 2: Kodaira dimension of A_g

Using Siegel modular forms, we will give Freitag's proof that A_g is of general type for g > 8. We will then use Grothendieck-Riemann-Roch to compute, following Mumford, the class of the Andreotti-Mayer locus of abelian varieties with a singular theta divisor, proving that A_g is of general type for g > 6.

Lecture 3: Curves, and the Kodaira dimension of M_q

We will introduce and discuss the moduli space of curves, compute the canonical class, and prove various results on the Kodaira dimension of M_g . We will also discuss the relationship of this question to the Kodaira dimension of A_g , via the Torelli embedding of M_g into A_g .

Lecture 4: Modular forms and the Schottky problem

We will discuss the classical Schottky-Jung approach to the Schottky problem of characterizing Jacobians among all abelian varieties, the Schottky's original solution to the problem, and recent results on the Schottky problem in genus 5, via Siegel modular forms.