Problems for GAeL XX; Samuel Grushevsky.

The problems go beyond the material covered in this course. The number of stars is correlated with relative difficulty. ${ }^{* *}$ is something I don't know how to do without invoking heavy machinery not covered in the course, ${ }^{* * *}$ nobody (to the best of my knowledge) knows how to do - if you have any ideas for ${ }^{* *}$ or ${ }^{* * *}$, I would be very interested.
Problem 1. Prove that if A is an abelian variety (a complex projective variety with a group structure), its universal cover is \mathbb{C}^{g}.

Problem 2. Prove that θ is quasi-periodic in z, i.e. relate $\theta(z+m)$ to $\theta(z)$ for $m \in \mathbb{Z}^{g}$.

Problem 3. In dimension 1, prove that theta constants are modular forms (hint: Poisson summation formula for the Fourier series).
Problem 4. Prove honestly that $\wedge d \tau_{i j}$ is a modular form of weight $g+1$.

Problem 5 (*). *. Is the derivative of a modular form a modular form? In genus 1, can you write down any polynomial of a theta constant and its derivatives that is a modular form?

Problem 6. Describe the moduli space \mathcal{A}_{1} as explicitly as you can. Use this description to compactify it, and to compute $\operatorname{Pic}\left(\mathbb{Q}\left(\mathcal{A}_{1}\right)\right.$ and $\operatorname{Pic}_{\mathbb{Q}}\left(\overline{\mathcal{A}}_{1}\right)$.

Problem $7\left(^{*}\right)$. Do the same for \mathcal{A}_{2}. How would your answer differ for \mathcal{M}_{2} ? What different compactifications can you think of, and how are they related? How are their Picard groups related?
Problem 8. Determine the dimension of $H^{0}\left(\overline{\mathcal{A}}_{1}, 2 L\right)$, and use this to deduce the Riemann identity

$$
\theta\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{4}(\tau)=\theta\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{4}(\tau)+\theta\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{4}(\tau)
$$

Problem 9 (* (hard)). Determine the ring of modular forms of genus 1, i.e. compute $\oplus_{n \geq 0} H^{0}\left(\overline{\mathcal{A}}_{1}, n L\right)$.
Problem $10\left(^{*}\right)$. For $g=2$, use theta constants to define two modular forms (modular for the entire $S p(4, \mathbb{Z})$) satisfying an algebraic relation.
Problem 11 (*) *. Define an $\operatorname{Sp}(2 g, \mathbb{R})$ action on the Siegel upper halfspace \mathcal{H}_{g}, and determine the stabilizer of some point $\tau \in \mathcal{H}_{g}$. Use this to define a metric on \mathcal{H}_{g} invariant under the $\operatorname{Sp}(2 g, \mathbb{R})$ action, the so-called Siegel or Bergman metric.

Problem $12\left(^{*}\right)$. Compute the volume of \mathcal{A}_{1} and of \mathcal{A}_{2} in the metric defined in the previous problem.

Problem 13. Computing the volume of \mathcal{A}_{3} in this metric explicitly is hard. Thus express the volume of \mathcal{A}_{g}, for any g, as an intersection number (hint: what is the class of the (1,1)-form giving the metric?)
Problem $14\left(^{* * *)}\right.$. What can you say about the curvature of the locus of Jacobians $\mathcal{J}_{g} \subset \mathcal{A}_{g}$ with respect to the metric defined above?
Problem 15. Let $F_{1}(\tau):=\prod_{m \text { even }} \theta_{m}(\tau)$, so that $\Theta_{\text {null }}=\left\{F_{1}(\tau)=0\right\} \subset$ \mathcal{A}_{g}. Use the geometry of the $g=3$ case to compute the class of the closure of the hyperelliptic locus in $\overline{\mathcal{M}}_{3}$ (watch out for the divisors δ_{i}).

Problem $16\left(^{*}\right)$. Compute the class of the theta-null divisor in $\overline{\mathcal{A}}_{g}$ and $\overline{\mathcal{M}}_{g}$ for any g (in the lecture we only discussed \mathcal{A}_{g} and did not compute the boundary coefficient for it).

Problem 17 (*). Let

$$
F_{2}(\tau):=\prod_{m \text { even }} \theta_{m}^{8}(\tau) \cdot \sum_{n \text { even }} \theta_{n}^{-8}(\tau)
$$

What is the geometric significance of the locus $\left\{F_{1}(\tau)=F_{2}(\tau)=0\right\}$? Use this (and the solution to the Schottky problem in genus 4) to compute the class of the hyperelliptic locus in \mathcal{M}_{4}. (hint: every genus 4 hyperelliptic curve has 10 theta-nulls - interpret and prove this in terms of g_{d}^{r} 's).
Problem $18\left({ }^{* *}\right)$. Use the above to compute the class of the closure of the hyperelliptic locus in $H^{4}\left(\overline{\mathcal{M}}_{4}\right)$.
Problem $19{ }^{\left({ }^{* *}\right)}$. Let

$$
F_{3}(\tau):=\prod_{m \text { even }} \theta_{m}^{8}(\tau) \cdot \sum_{n_{1} \neq n_{2} \text { even }} \theta_{n_{1}}^{-8}(\tau) \theta_{n_{2}}^{-8}(\tau)
$$

Is the locus $\left\{F_{1}(\tau)=F_{2}(\tau)=F_{3}(\tau)=0\right\} \subset \mathcal{A}_{g}$ irreducible? What about its intersection with \mathcal{J}_{g} ?

Problem $20\left(^{* * *}\right)$. Can the above be used to characterize hyperelliptic curves, i.e. can you write down a collection of modular forms defining the hyperelliptic locus in \mathcal{J}_{g} ? Is the hyperelliptic locus a complete intersection? If not, what is the minimal number of defining equations?
Problem $21\left({ }^{* * *}\right)$. Compute $\operatorname{dim} H^{0}\left(\overline{\mathcal{A}_{g}}, N_{0}^{\prime}\right)$.
Problem $22\left({ }^{(* *)}\right.$. Compute the codimension of the locus $N_{1} \subset \mathcal{A}_{g}$.

